Coefficient estimates for a subclass of analytic bi-pseudo-starlike functions of Ma-Minda type

Serap Bulut ${ }^{1 *}$
${ }^{1}$ Kocaeli University, Faculty of Aviation and Space Sciences, Arslanbey Campus, 41285 Kartepe-Kocaeli, TURKEY
*Corresponding author E-mail: serap.bulut@kocaeli.edu.tr

Abstract

In this paper, we introduce a new subclass $\mathscr{L}_{\mathscr{B}_{\Sigma}^{\lambda}}^{\lambda}(\varphi)$ of analytic and bi-univalent functions in the open unit disk \mathbb{U}. For functions belonging to this class, we obtain initial coefficient bounds. Our results generalize and improve some earlier results in the literature.

Keywords: Analytic functions; univalent functions; bi-univalent functions; coefficient bounds; subordination; pseudo-starlike functions. 2010 Mathematics Subject Classification: 30C45

1. Introduction

Let $\mathbb{R}=(-\infty, \infty)$ be the set of real numbers, \mathbb{C} be the set of complex numbers and
$\mathbb{N}:=\{1,2,3, \ldots\}=\mathbb{N}_{0} \backslash\{0\}$
be the set of positive integers.
Let \mathscr{A} denote the class of all functions of the form
$f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$
which are analytic in the open unit disk
$\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$.
We also denote by \mathscr{S} the class of all functions in the normalized analytic function class \mathscr{A} which are univalent in \mathbb{U}.
For two functions f and g, analytic in \mathbb{U}, we say that the function f is subordinate to g in \mathbb{U}, and write
$f(z) \prec g(z) \quad(z \in \mathbb{U})$,
if there exists a Schwarz function ω, which is analytic in \mathbb{U} with
$\omega(0)=0 \quad$ and $\quad|\omega(z)|<1 \quad(z \in \mathbb{U})$
such that
$f(z)=g(\omega(z)) \quad(z \in \mathbb{U})$.
Indeed, it is known that
$f(z) \prec g(z) \quad(z \in \mathbb{U}) \Rightarrow f(0)=g(0) \quad$ and $\quad f(\mathbb{U}) \subset g(\mathbb{U})$.
Furthermore, if the function g is univalent in \mathbb{U}, then we have the following equivalence
$f(z) \prec g(z) \quad(z \in \mathbb{U}) \Leftrightarrow f(0)=g(0) \quad$ and $\quad f(\mathbb{U}) \subset g(\mathbb{U})$.

Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the entire unit disk \mathbb{U}. In fact, the Koebe one-quarter theorem [7] ensures that the image of \mathbb{U} under every univalent function $f \in \mathscr{S}$ contains a disk of radius $1 / 4$. Thus every function $f \in \mathscr{A}$ has an inverse f^{-1}, which is defined by
$f^{-1}(f(z))=z \quad(z \in \mathbb{U})$
and
$f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)$.
In fact, the inverse function f^{-1} is given by
$f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots$.
A function $f \in \mathscr{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1.1). For a brief history and interesting examples of functions in the class Σ, see [13] (see also [2]). In fact, the aforecited work of Srivastava et al. [13] essentially revived the investigation of various subclasses of the bi-univalent function class Σ in recent years; it was followed by such works as those by Xu et al. [14, 15], and others (see, for example, [4, 5, 6, 8, 9, 12, 17, 18]).

Let φ be an analytic and univalent function with positive real part in \mathbb{U} with $\varphi(0)=1, \varphi^{\prime}(0)>0$ and φ maps the unit disk \mathbb{U} onto a region starlike with respect to 1 , and symmetric with respect to the real axis. The Taylor's series expansion of such function is of the form
$\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$
where all coefficients are real and $B_{1}>0$. Throughout this paper we assume that the function φ satisfies the above conditions.
Let $u(z)$ and $v(z)$ be two analytic functions in the unit disk \mathbb{U} with
$u(0)=v(0)=0 \quad$ and $\quad \max \{|u(z)|,|v(z)|\}<1$.
We suppose also that
$u(z)=p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots \quad(z \in \mathbb{U})$
and
$v(z)=q_{1} z+q_{2} z^{2}+q_{3} z^{3}+\cdots \quad(z \in \mathbb{U})$.
We observe that
$\left|p_{1}\right| \leq 1, \quad\left|p_{2}\right| \leq 1-\left|p_{1}\right|^{2}, \quad\left|q_{1}\right| \leq 1, \quad\left|q_{2}\right| \leq 1-\left|q_{1}\right|^{2}$.
By simple computations, we have
$\varphi(u(z))=1+B_{1} p_{1} z+\left(B_{1} p_{2}+B_{2} p_{1}^{2}\right) z^{2}+\cdots \quad(z \in \mathbb{U})$
and
$\varphi(v(w))=1+B_{1} q_{1} w+\left(B_{1} q_{2}+B_{2} q_{1}^{2}\right) w^{2}+\cdots \quad(w \in \mathbb{U})$.
Recently, Babalola [3] defined the class $\mathscr{L}_{\lambda}(\beta)$ of λ-pseudo-starlike functions of order β as follows:
Suppose $0 \leq \beta<1$ and $\lambda \geq 1$ is real. A function $f \in \mathscr{A}$ given by (1.1) belongs to the class $\mathscr{L}_{\lambda}(\beta)$ of λ-pseudo-starlike functions of order β in the unit disk \mathbb{U} if and only if
$\mathfrak{\Re}\left(\frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}\right)>\beta \quad(z \in \mathbb{U})$.
Babalola [3] proved that all pseudo-starlike functions are Bazilevič of type $1-1 / \lambda$, order $\beta^{1 / \lambda}$ and univalent in \mathbb{U}.
Motivated by the abovementioned works, we define the following subclass of function class Σ.
Definition 1.1. For $\lambda \geq 1$, a function $f \in \Sigma$ given by (1.1) is said to be in the class $\mathscr{L}_{\mathscr{B}_{\Sigma}^{\lambda}}(\varphi)$ if the following conditions are satisfied:
$\frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)} \prec \varphi(z) \quad(z \in \mathbb{U})$
and
$\frac{w\left(g^{\prime}(w)\right)^{\lambda}}{g(w)} \prec \varphi(w) \quad(w \in \mathbb{U})$,
where the function $g=f^{-1}$ is defined by (1.2).

Remark 1.2. In the following special cases of Definition 1.1 , we show how the class of analytic bi-univalent functions $\mathscr{L} \mathscr{B}_{\Sigma}^{\lambda}(\varphi)$ for suitable choices of λ and φ lead to certain known classes of analytic bi-univalent functions studied earlier in the literature.
(i) For $\lambda=1$, we get the class $\mathscr{L} \mathscr{B}_{\Sigma}^{1}(\varphi)=\mathscr{S}_{\Sigma}(\varphi)$ of Ma-Minda bi-starlike functions introduced and studied by Ali et al. [1].
(ii) If we let
$\varphi(z):=\varphi_{\alpha}(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\cdots \quad(0<\alpha \leq 1, z \in \mathbb{U})$,
then the class $\mathscr{L} \mathscr{B}_{\Sigma}^{\lambda}(\varphi)$ reduces to the class denoted by $\mathscr{L} \mathscr{B}_{\Sigma}^{\lambda}(\alpha)$ which is the subclass of the functions $f \in \Sigma$ satisfying
$\left|\arg \left(\frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad$ and $\quad\left|\arg \left(\frac{w\left(g^{\prime}(w)\right)^{\lambda}}{g(w)}\right)\right|<\frac{\alpha \pi}{2}$,
where the function $g=f^{-1}$ is defined by (1.2).
(iii) If we let
$\varphi(z):=\varphi_{\beta}(z)=\frac{1+(1-2 \beta) z}{1-z}=1+2(1-\beta) z+2(1-\beta) z^{2}+\cdots \quad(0 \leq \beta<1, z \in \mathbb{U})$,
then the class $\mathscr{L} \mathscr{B}_{\Sigma}^{\lambda}(\varphi)$ reduces to the class denoted by $\mathscr{L} \mathscr{B}_{\Sigma}(\lambda, \beta)$ which is the subclass of the functions $f \in \Sigma$ satisfying
$\Re\left(\frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}\right)>\beta \quad$ and $\quad \Re\left(\frac{w\left(g^{\prime}(w)\right)^{\lambda}}{g(w)}\right)>\beta$,
where the function $g=f^{-1}$ is defined by (1.2).
The classes $\mathscr{L} \mathscr{B}_{\Sigma}^{\lambda}(\alpha)$ and $\mathscr{L} \mathscr{B}_{\Sigma}(\lambda, \beta)$ are introduced and studied by Joshi et al. [10]. In the special case $\lambda=1$, we get the classes $\mathscr{L} \mathscr{B}_{\Sigma}^{1}(\alpha)=\mathscr{S}_{\Sigma}^{*}[\alpha]$ and $\mathscr{L} \mathscr{B}_{\Sigma}(1, \beta)=\mathscr{S}_{\Sigma}^{*}(\beta)$ introduced and studied by Brannan and Taha [2].

In order to derive our main results, we need the following lemma.
Lemma 1.3. [16] Let $k, l \in \mathbb{R}$ and $z_{1}, z_{2} \in \mathbb{C}$. If $\left|z_{1}\right|<R$ and $\left|z_{2}\right|<R$, then
$\left|(k+l) z_{1}+(k-l) z_{2}\right| \leq\left\{\begin{array}{ll}2 R|k| & , \\ |k| \geq|l| \\ 2 R|l| & |k| \leq|l|\end{array}\right.$.

2. Main Results

Theorem 2.1. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $\mathscr{L} \mathscr{B}_{\Sigma}^{\lambda}(\varphi)$ and $\lambda \geq 1$. Then
$\left|a_{2}\right| \leq \sqrt{\frac{B_{1}^{3}}{(2 \lambda-1)\left[(2 \lambda-1) B_{1}+\left|\lambda B_{1}^{2}-(2 \lambda-1) B_{2}\right|\right]}}$
and
$\left|a_{3}\right| \leq\left\{\begin{array}{cc}\frac{B_{1}^{2}}{(2 \lambda-1)^{2}} & B_{1} \leq \frac{(2 \lambda-1)^{2}}{3 \lambda-1} \\ \left(1-\frac{(2 \lambda-1)^{2}}{(3 \lambda-1) B_{1}}\right) \frac{B_{1}^{3}}{(2 \lambda-1)\left[(2 \lambda-1) B_{1}+\left|\lambda B_{1}^{2}-(2 \lambda-1) B_{2}\right|\right]}+\frac{B_{1}}{3 \lambda-1} & , \quad B_{1} \geq \frac{(2 \lambda-1)^{2}}{3 \lambda-1}\end{array}\right.$.
Proof. Let $f \in \mathscr{L} \mathscr{B}_{\Sigma}^{\lambda}(\varphi)$ and $g=f^{-1}$ be defined by (1.2). Then there are analytic functions $u, v: \mathbb{U} \rightarrow \mathbb{U}$, with $u(0)=v(0)=0$, such that $\frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}=\varphi(u(z))$
and
$\frac{w\left(g^{\prime}(w)\right)^{\lambda}}{g(w)}=\varphi(v(w))$.
It follows from (1.7), (1.8), (2.3) and (2.4) that

$$
\begin{align*}
(2 \lambda-1) a_{2} & =B_{1} p_{1} \tag{2.5}\\
\left(2 \lambda^{2}-4 \lambda+1\right) a_{2}^{2}+(3 \lambda-1) a_{3} & =B_{1} p_{2}+B_{2} p_{1}^{2} \tag{2.6}\\
-(2 \lambda-1) a_{2} & =B_{1} q_{1} \tag{2.7}\\
\left(2 \lambda^{2}+2 \lambda-1\right) a_{2}^{2}-(3 \lambda-1) a_{3} & =B_{1} q_{2}+B_{2} q_{1}^{2} . \tag{2.8}
\end{align*}
$$

From (2.5) and (2.7), we find that
$p_{1}=-q_{1}$
and
$2(2 \lambda-1)^{2} a_{2}^{2}=B_{1}^{2}\left(p_{1}^{2}+q_{1}^{2}\right)$.
Also from (2.6), (2.8) and (2.10), we have
$a_{2}^{2}=\frac{B_{1}^{3}\left(p_{2}+q_{2}\right)}{2(2 \lambda-1)\left[\lambda B_{1}^{2}-(2 \lambda-1) B_{2}\right]}$.
In view of (2.9) and (2.11), together with (1.6), we get
$\left|a_{2}\right|^{2} \leq \frac{B_{1}^{3}\left(1-\left|p_{1}\right|^{2}\right)}{(2 \lambda-1)\left|\lambda B_{1}^{2}-(2 \lambda-1) B_{2}\right|}$.
Substituting (2.5) in (2.12) we obtain
$\left|a_{2}\right| \leq \sqrt{\frac{B_{1}^{3}}{(2 \lambda-1)\left[(2 \lambda-1) B_{1}+\left|\lambda B_{1}^{2}-(2 \lambda-1) B_{2}\right|\right]}}$,
which is desired inequality (2.1).
On the other hand, by subtracting (2.8) from (2.6) and a computation using (2.9) finally lead to
$a_{3}=a_{2}^{2}+\frac{B_{1}\left(p_{2}-q_{2}\right)}{2(3 \lambda-1)}$.
From (1.6), (2.5), (2.9) and (2.14), it follows that

$$
\begin{align*}
\left|a_{3}\right| & \leq\left|a_{2}\right|^{2}+\frac{B_{1}}{2(3 \lambda-1)}\left(\left|p_{2}\right|+\left|q_{2}\right|\right) \\
& \leq\left|a_{2}\right|^{2}+\frac{B_{1}}{3 \lambda-1}\left(1-\left|p_{1}\right|^{2}\right) \\
& =\left(1-\frac{(2 \lambda-1)^{2}}{(3 \lambda-1) B_{1}}\right)\left|a_{2}\right|^{2}+\frac{B_{1}}{3 \lambda-1} . \tag{2.15}
\end{align*}
$$

Substituting (2.5) and (2.13) in (2.15) we obtain the desired inequality (2.2).
Remark 2.2. Theorem 2.1 is an improvement of the estimates obtained by Mazi and Altnkaya [11, Corollary 5].
If we take $\lambda=1$ in Theorem 2.1, then we have the following Corollary 1 .
Corollary 1. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $\mathscr{S} \mathscr{T}_{\Sigma}(\varphi)$. Then
$\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{B_{1}+\left|B_{1}^{2}-B_{2}\right|}}$
and
$\left|a_{3}\right| \leq\left\{\begin{array}{cc}B_{1}^{2} & , \\ B_{1} \leq \frac{1}{2} \\ \left(1-\frac{1}{2 B_{1}}\right) \frac{B_{1}^{3}}{B_{1}+\left|B_{1}^{2}-B_{2}\right|}+\frac{B_{1}}{2} & , \\ B_{1} \geq \frac{1}{2}\end{array}\right.$.
Remark 2.3. Corollary 1 is an improvement of the estimates obtained by Mazi and Altnnkaya [11, Corollary 4].
If we consider the function φ_{α}, defined in Remark 1.2 (ii), in Theorem 2.1, then we get the following consequence.
Corollary 2. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $\mathscr{L} \mathscr{B}_{\Sigma}^{\lambda}(\alpha)$ and $\lambda \geq 1$. Then
$\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(2 \lambda-1)(2 \lambda-1+\alpha)}}$
and
$\left|a_{3}\right| \leq\left\{\begin{array}{cl}\frac{4 \alpha^{2}}{(2 \lambda-1)^{2}} & , \quad 0<\alpha \leq \frac{(2 \lambda-1)^{2}}{2(3 \lambda-1)} \\ \left(1-\frac{(2 \lambda-1)^{2}}{2(3 \lambda-1) \alpha}\right) \frac{4 \alpha^{2}}{(2 \lambda-1)(2 \lambda-1+\alpha)}+\frac{2 \alpha}{3 \lambda-1} & , \quad \frac{(2 \lambda-1)^{2}}{2(3 \lambda-1)} \leq \alpha \leq 1\end{array}\right.$.

Remark 2.4. Note that the coefficient estimates on $\left|a_{3}\right|$ in Corollary 2 is an improvement of the estimate obtained by Joshi et al. [10, Theorem 1].
If we take $\lambda=1$ in Corollary 2 , then we get the following consequence.
Corollary 3. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $\mathscr{S}_{\Sigma}^{*}[\alpha]$. Then
$\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{1+\alpha}}$
and
$\left|a_{3}\right| \leq\left\{\begin{array}{cc}4 \alpha^{2} & , \quad 0<\alpha \leq \frac{1}{4} \\ \frac{5 \alpha^{2}}{1+\alpha} & , \quad \frac{1}{4} \leq \alpha<1\end{array}\right.$.

If we consider the function φ_{β}, defined in Remark $1.2(i i i)$, in Theorem 2.1, then we get the following consequence.
Corollary 4. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $\mathscr{L} \mathscr{B} \Sigma(\lambda, \beta)$ and $\lambda \geq 1$. Then
$\left|a_{2}\right| \leq \frac{2(1-\beta)}{\sqrt{(2 \lambda-1)(2 \lambda-1+|2 \lambda \beta-1|)}}$
and
$\left|a_{3}\right| \leq\left\{\begin{array}{cc}\left(1-\frac{(2 \lambda-1)^{2}}{2(3 \lambda-1)(1-\beta)}\right) \frac{4(1-\beta)^{2}}{(2 \lambda-1)(2 \lambda-1+|2 \lambda \beta-1|)}+\frac{2(1-\beta)}{3 \lambda-1} & , \quad 0 \leq \beta \leq 1-\frac{(2 \lambda-1)^{2}}{2(3 \lambda-1)} \\ \frac{4(1-\beta)^{2}}{(2 \lambda-1)^{2}} & , \quad 1-\frac{(2 \lambda-1)^{2}}{2(3 \lambda-1)} \leq \beta<1\end{array}\right.$.
Remark 2.5. Note that Corollary 4 is an improvement of the estimates obtained by Joshi et al. [10, Theorem 2].
If we take $\lambda=1$ in Corollary 4 , then we get the following consequence.
Corollary 5. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $\mathscr{S}_{\Sigma}^{*}(\beta)$. Then
$\left|a_{2}\right| \leq\left\{\begin{array}{cl}\sqrt{2(1-\beta)} & , \quad 0 \leq \beta \leq \frac{1}{2} \\ \frac{2(1-\beta)}{\sqrt{2 \beta}} & , \quad \frac{1}{2} \leq \beta<1\end{array}\right.$
and
$\left|a_{3}\right| \leq\left\{\begin{array}{cll}\frac{5-6 \beta}{2} & , & 0 \leq \beta<\frac{1}{2} \\ \frac{(1-\beta)(3-2 \beta)}{2 \beta} & , & \frac{1}{2} \leq \beta \leq \frac{3}{4} \\ 4(1-\beta)^{2} & , & \frac{3}{4} \leq \beta<1\end{array}\right.$.

References

[1] R.M. Ali, S.K. Lee, V. Ravichandran and S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (3) (2012), 344-351.
[2] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babeş-Bolyai Math. 31 (2) (1986), 70-77.
[3] K.O. Babalola, On λ-pseudo-starlike functions, J. Class. Anal. 3 (2) (2013), 137-147.
[4] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43 (2) (2013), 59-65.
[5] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27 (7) (2013), 1165-1171.
[6] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal. 2 (1) (2013), 49-60.
[7] P.L. Duren, Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983.
[8] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573.
[9] S. Hajiparvaneh and A. Zireh, Coefficient estimates for subclass of analytic and bi-univalent functions defined by differential operator, Tbilisi Math. J. 10 (2) (2017), 91-102.
[10] S. Joshi, S. Joshi and H. Pawar, On some subclasses of bi-univalent functions associated with pseudo-starlike functions, J. Egyptian Math. Soc. 24 (2016), 522-525.
[11] E. Mazi and Ş. Altınkaya, On a new subclass of bi-univalent functions satisfying subordinate conditions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (1) (2019), 724-733.
[12] H.M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (5) (2013), 831-842.
[13] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[14] Q.-H. Xu, Y.-C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994.
[15] Q.-H. Xu, H.-G. Xiao and H.M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461-11465.
[16] P. Zaprawa, Estimates of initial coefficients for bi-univalent functions, Abstr. Appl. Anal. 2014, Art. ID 357480, 1-6.
[17] A. Zireh and S. Hajiparvaneh, Coefficient bounds for certain subclasses of analytic and bi-univalent functions, Ann. Acad. Rom. Sci. Ser. Math. Appl. 8 (2) (2016), 133-144.
[18] A. Zireh and S. Hajiparvaneh, Coefficient bounds for certain subclasses of analytic functions, Appl. Math. E-Notes 17 (2017), 177-185.

