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Abstract 

Nonlocal elasticity theory is one of the popular approaches for nano mechanic problems. In this study, nonlocal 

parameter is defined via different approach.  Nonlocal finite element formulations for axial vibration of nanorods 

have been given and some parameters are compared with the lattice dynamics. Weak form and final finite element 

formulation for axial vibration case have been derived. 
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1. Introduction 

It is known that the general forms of the nonlocality are as follows [1]: 
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If the Eq. (2) is write in Eq. (1), we obtain  
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Here, the first integral through the surface represents the surface stresses. As a result, non-

local elasticity theory includes surface physics, an important entity not included in classical 

theories. Again Eq. (3) and (4) introduce in Eq.(5), ones obtain 
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In above equations the (') means depending on x . Namely, )(xuu  . If we solve the Eq.(6) 

under the suitable boundary and initial conditions, ),( txu  displacement vector can be obtained. 

Initial conditions are depend klt not kl . So we can easily write 
lnk tn )(kl   

2. Definition of nonlocal parameter in nonlocal elasticity 

It is shown that the unit of nonlocal parameter located in Eq. (2)  ( xxα  ) is (length)-3. Thus, 

the non-local parameter will be dependent on a characteristic length ratio (a/l) in which an 

internal characteristic length a, (eg. lattice parameter, granular distance) and an external 

characteristic length l (eg, crack length, wavelength) is present. Thus it defined as 

 
 ,xxαα  , 

l

ae0  
(7)  

Here e0  will be different constant for each material. Some properties of nonlocal parameter are 

as follows: 

 It reach the maximum value at xx  and decrease the value via xx  calculation. 

 When 0 , the statement of α  is become Dirac delta function. Hence, the boundary 

(limit) of the classical elasticity introduce the nearly zero value boundary of the internal length 

scale (a). Namely: 

    xxαxxα 
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So, it is easily said that “a” is a delta array. 
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 For small internal length scale value (such as 1 ) nonlocal elasticity theory behave 

as  atomic lattice dynamics. 

By matching the wave distribution curves with the distribution curves of the atomic lattice 

dynamics (or experiments), we can determine “a”value for a certain material. Various forms 

have been obtained as a result of research [2-16]. Some of them are as follows: 

One-dimensional parameter 
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Two-dimensional parameter 
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Here 
0K is a modified Bessel function. 

Three-dimensional parameter 
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When the equation 10 is examined, it is seen that the one-dimensional plane waves based on 

the Born-Kármán model, which is based on the theory of non-local elasticity and atomic lattice 

dynamics, fits perfectly with the distribution curve. When the two-dimensional parameter is 

analyzed, it is seen that the maximum error is 1.2% [1]. It is seen that all non-local parameters 

are normalized when the integrals are taken (over the length, area or volume). In addition, for 



B. Uzun, H.M. Numanoglu, Ö. Civalek 

267 

0 the Dirac delta function is obtained. With this feature, it is seen that when the term Dirac 

delta function is used in Equation 2, classical theory of elasticity is reverted and Hooke's law 

becomes valid. This observation was developed by Eringen [2] as follows: 

If α is the linear differential operator Green function, we write 

    xxxxL   ,  (15)  

After used this Equation in Eq.(2), ones obtain 

 
klklLt   (16)  

Let be consider the L is a differential operator having constant coefficients  

   kklkkl LtLt ,,
  (17)  

So, we obtain the below equation 

 0)( 11,  ufLkkl
  (18)  

Hence we obtain the differential equation instead of partial integral. For static case

0)( 11  ufL   

Finally, we can write below form  

 0, kkl  (19)  

If we sued the Eq. (19) in Eq.(3) we obtain the well-known Navier equation. So, differential 

operator as define via Eq.(3) 

 2221  lL   (20)  

 After using this equation in Eq. (17) we obtained the following form 

     tl .1 222
 (21)  

 

The accuracy of this result can be demonstrated by the atomic distribution relationship. For 

this purpose, the frequency expression obtained from the Born-Kármán model must be equal 

to the expression of non-local elasticity for plane waves. 

3. Modeling by lattice dynamics 

Lattice dynamics is known as harmonic approach provided that the displacements are small. 

In the chain, atoms can be connected with elastic springs (Figure 1). 
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Fig. 1. One-dimensional lattice model 

Therefore, force applied to the nth atom can be written as 

 )()( 11 nnnnn uuKuuKF  
 (22)  

Here K is the inter-atomic force (elastic) constant. Newton's second law applied to the nth 

atom 
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In the above expression M denotes the mass of the atom. Similarly, the equation for each atom 

in the cage should be written. N; In order to express the total number of atoms, the result is the 

N equation which must be solved simultaneously. In addition, the boundary conditions applied 

to the end of the cage must also be taken into account. The following conversion will be used 

for the solution 

 )( tkxi

n
nAeu


  (24)  

Here, 
nx  n. refers to the position of the atom and naxn  . This equation represents a moving wave 

with q wavelength where all atoms oscillate at the same frequency (q) with the same A 

amplitude. Equation (24) is written in Equation (23) 

  )2()( )1()1(2 anikanikiknaikna eeeCeM    (25)  

After some manipulation 
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Finally 
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So, frequency and distribution relation is 
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We expect the results obtained with the cage dynamics between the two atoms to be the same 

as the non-local elasticity results. In this case, the ratio of cage dynamics frequency distribution 

relation to bar frequency distribution relation 
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Here angular frequency can be write as 
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Also /0 Ec  .   is the Brillouin region is the value of the upper limit of k. This value is for 

one dimensional mesh dynamics. In the light of this information Equation (31) is reorganized 
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If we write above equation as terms of cosine  
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If the equation opens into the Maclaurin series 
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After using these equations in Eq.(32), we obtain 
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Using the first-order approach and by using the first two-term of the Eq.36 
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After some arrangement 
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Hence, non-dimensional frequency via nonlocal elasticity is 
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The relation of frequency distribution via lattice dynamics is as follows with the help of 

equation (29) 
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If the Eq. (39) and Eq. (40) are equalized for ka  
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If second-order approach Eq. (36) extract the polynomial form in three-terms as 
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And nonlocal stress equation 
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In this last equation 
klt  and 

kl , means the Fourier transforms of 
klt and 

kl ’, respectively. If 

we take the inverse Fourier transform of Eq. (43) 
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Also, the governing equation for stress in nonlocal case is 
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These equations replaced Navier's classical elasticity equations. New dimensionless frequency 

according to non-local elasticity theory is 
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Lazar et al. [16]. Stated that 44 4  . Frequency distribution relationship via lattice dynamics is 

as follows 
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 Eq. (46) and Eq. (47) are equalized for ka  
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Fig. 2. Convergence of frequency value 

The first and secon-order approaches of the theory of non-local elasticity, classical elasticity 

theory, and the frequency comparison of the lattice dynamics are presented in Figure 2. As 

can be seen from the figure, the frequency results for the second order approximation of non-

local elasticity theory are closer to the lattice dynamic than the first-order approach. In more 

general case (under the axial foundation effect and thermal effect) free vibration form of axial 

vibration of elastic nanorod have been given as two different forms: 
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Eq. (50) is the weak form for FEM approach of axial vibration. Some applications have also 

been listed in references related to macro, micro and nanomechanics [17-39]. 
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4.Conclusion 

Some comparison has been made for axial vibration. First and second order approach for 

nonlocal elasticity and lattice dynamics results have also been compared. Finally, weak form 

is given for axial vibration problem of nanorods. 
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