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Öz 

Toprak üstü biyokütlenin belirlenebilmesi için birçok yöntem kullanılabilmektedir. Çalışmada, bu 
yöntemler incelenmiş ve hali hazırda var olan klasik yöntemlere bir alternatif olarak uzaktan algılama 
yönteminin kullanımı üzerinde durulmuştur. Pasif optik, radar ve lidar sistemlerin kullanıldığı uzaktan 
algılama yöntemi, arazi çalışmalarını en az seviyede tutarak geniş alanlarda biyokütlenin 
belirlenmesine olanak vermektedir. Yapılan literatür değerlendirmesi, biyokütle belirlemede uzaktan 
algılamanın yararlarını ortaya koymakla beraber, topografik koşullar, biyofiziksel özellikler ve 
çevresel koşullardaki farklılıkların biyokütlenin belirlenmesinde zorluklara neden olduğunu 
göstermektedir.  

Anahtar Kelimeler: Biyokütle belirleme, orman, uzaktan algılama  

Abstract 

Numerous methods can be used for above ground biomass estimation. In this study, these methods 
were assessed and the use of remote sensing emphasized as an alternative to available classical 
methods. The remote sensing methods that use passive optical, radar and lidar systems, lets biomass to 
be estimated for large areas with minimum field work. The literature review has demonstrated the 
benefits of remote sensing for biomass estimation along with indicating topographic conditions, 
biophysical properties and environmental conditions may cause complexity. 

Keywords: Biomass estimation, forest, remote sensing 

 

 

Introduction 

Biomass, regarding the forest biomass issue, 
expressed in terms of dry weight of organic matter, 
is an important indicator of ecosystem energy 
potential and productivity. Biomass, in general, 

includes the above ground and below ground 
living mass, such as trees, shrubs, vines, roots, and 
the dead mass of fine and coarse litter associated 
with the soil. Due to the difficulty in collecting 
field data of below ground biomass, most previous 
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research on biomass estimation focused on above 
ground biomass (AGB) (Lu, 2006). 

A forest ecosystem plays an important role in the 
global carbon cycle owing as it contributes 80% of 
above ground biomass. Nevertheless, forests are 
also discussed to have net positive CO2 due to 
anthropogenic activities, such as land use change. 
However, the effect of land use change, 
particularly the tropical forest change, on the 
carbon cycle is difficult to determine and may lead 
to the underestimation of carbon balance.  

Article 2.1. of the Kyoto Protocol, which was 
established to address the issue of global warming, 
forces nations to be responsible for the protection 
and enhancement of sinks and reservoirs of 
greenhouse gases, promotion of sustainable forest 
management practices, and afforestation and 
reforestation. In addition, the greenhouse gas 
emissions from sources and removals through 
sinks associated with those activities shall be 
reported in a transparent and verifiable manner. To 
that end, every country has started to prepare their 
carbon inventories. Consequently, recent 
researches have focused on biomass assessments 
with the purpose of reducing uncertainties of 
carbon cycle and carbon emissions. 

When a forest is considered as a carbon sink that 
absorbs atmospheric CO2, it is assessed in the 
Kyoto Protocol for one of the carbon sequestration 
options to reduce the amount of greenhouse gases 
(FAO, 2010). Apart from its scientific merit in 
understanding the global carbon cycle, accurate 
and precise quantification of emissions from land 
use change has also become a key issue for policy 
makers considering the recent developments 
associated with the reduction of the emissions 
caused out of deforestation and degradation 
(REDD) in developing countries as a climate 
mitigation strategy.  

However, the main goal of previous biomass 
studies was to produce various data and 
information for renewable energy resources and to 
decrease dependence on fossil fuel (Alemdağ, 
1981). In other words, the former approaches 
regarding biomass were in energy point of view. 
Biomass regression tables for each species were 
prepared to estimate the energy potential of forest 
biomass. Subsequently, biomass inventories have 
been calculated using these tables.  

Despite the high precision of such inventories, 
they are designed to yield average wood volumes 
for administrative units; they do not provide maps 
of biomass at a resolution compatible with land 
use change. Hence, if the ‘average’ forest is 
cleared, logged, or burned, the use of average 
values will bias the calculated carbon sources and 
sinks (Houghton, 2005).  

Yet, knowledge of the spatial distribution of 
biomass is required for to calculate the sources and 
sinks of carbon that result from converting a forest 
to cleared land (and vice versa). On the other hand, 
knowing the spatial distribution of forest biomass 
is also important to enable measurement of change 
through time. 

Direct measurement of biomass with fieldwork is 
time consuming and hence is generally limited to 
5-10 year intervals. The calculation/estimation of 
forest biomass using satellites is a promising 
alternative to ground based methods (Hese et al., 
2005). 

The purpose of this paper is to evaluate the 
improved understanding of biomass and carbon 
monitoring and review the capability of different 
remote sensing systems. The paper begins with the 
importance of biomass for the carbon cycle and 
describes our current knowledge of biomass. 

The Importance of Biomass for the  
Carbon Cycle 

Biomass is an object of interest for wide range of 
reasons. It is important for energy sector because 
of being renewable and being raw material of food 
and solid fuel.  

However in the carbon cycle and climate change 
prospect, biomass gains importance for two main 
reasons. Firstly, the biomass in an ecosystem 
determines the carbon amount that will be emitted 
to the atmosphere in form of carbon dioxide, 
carbon monoxide or methane in the case of 
disturbance. Secondly, it is used for removal of 
carbon that is already available in the atmosphere. 
Additionally, half of the biomass amount is 
roughly equal to the carbon amount of vegetation. 
This feature lets biomass and carbon terms be used 
in similar meanings for biomass studies. 

Therefore, the biomass on earth forms the sinks of 
carbon called “carbon pools”. The carbon pools in 
terrestrial ecosystem can be grouped in to five: 
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aboveground biomass, dead wood, litter, 
belowground biomass and soil carbon (Penman et 
al., 2003). 

The organic matter in the soil generally holds 
approximately three times more carbon than 
biomass does but this carbon in soils is physically 
and chemically protected and not easily oxidized 
(Davidson and Janssens, 2006). But nonetheless, 
aboveground biomass can easily be released to the 
atmosphere with processes such as fire, logging, 
land use change, pests, etc. 

Forests contain 70-90 % of terrestrial above 
ground and below ground biomass. As a 
consequence of being a large portion of biomass in 
forest ecosystem, trees, are more emphasized in 
the biomass studies (Cairns et al., 1997). 

Therefore, in this study, the aboveground biomass 
we focused on includes the trees within forest 
ecosystem and we excluded litter, below ground 
biomass and soil organic matter. 

Early Methods 

The preliminary studies on biomass were 
conducted with the aim of estimating the above 
ground biomass by tree species in 1930s’. The 
methods used in these studies are called as 
“harvest method” due to harvesting the trees in a 
plot and weighting them after oven drying process 
(Brown et al., 1989). In practice, this type of 
destructive measurement becomes more difficult if 
the belowground biomass is also included with the 
study and/or if the vegetation includes large trees. 
The size of the plot also gains importance in this 
method. Small plots could overestimate average 
biomass density if they include large trees or vice 
versa. In general, using harvest method in high 
biomass density areas is not practical and 
repeating these measurements is not feasible 
(Houghton et al., 2009). 

To eliminate these problems, researchers have 
developed indirect methods to estimate the above 
ground biomass. The most common approach uses 
empirically based allometric equations based on 
destructive samples that allow the estimation of 
tree biomass density from more easily measured 
properties, such as diameter at breast height (dbh) 
and height (Whittaker and Woodwell, 1968). 
Undoubtedly, the most commonly used 
mathematical model for estimating tree biomass is 

the allometric equation with the following power 
form (Kalaitzidis and Zianis, 2009): 

 

    (1) 

   

where a and b are scaling parameters that vary 
with the variables under investigation; Y is the 
total tree biomass or one of its components and X 
a tree dimension variable (i.e. DBH, DBH2, 
DBH2H  etc.; DBH implies diameter at breast 
height which is 1.3 m above ground and H is the 
tree height). By this way, using DBH or height 
data on species basis, the biomass of a tree and 
forest is calculated via various regression models. 
There is a vast number of generalized equations 
that were developed for biomass estimation at 
regional or national level and summarized in 
publications such as  by  Muukkonen (2007) for 
several species in European forests, Ter-Mikaelian 
and Korzukhin (1997) for North American tree 
species and Tolunay (2011) for Turkey’s forests. 

Remote Sensing Methods 

The use of remote sensing method is the most 
practical and cost effective alternative to acquire 
data over larger areas. The advantages of remotely 
sensed data over traditional field inventory 
methods for biomass estimation were indicated by 
a number of publications (Sader et al., 1989; Roy 
and Ravan, 1996; Boyd et al., 1999; Nelson et al., 
2000; Steininger, 2000; Lu et al., 2002).  

Although remotely sensed observations do not 
directly measure biomass, the radiometry is 
sensitive to vegetation structure (crown size and 
tree density), texture and shadow, which are 
correlated with AGB (Baccini et al., 2008). 
Consequently, remotely sensed spectral reflectance 
measurements can be useful predictors of biomass. 
Most recently, Lidar (light detection and ranging) 
remote sensing has been successfully used to 
characterize vegetation vertical structure and 
height, and to infer AGB (Drake, 2002; Lefsky et 
al., 2005). The remote sensing technologies for 
biomass estimation can be grouped in to three: 
passive optical, radar, and lidar. 
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Passive Optical Systems 

Optical remote sensing, theoretically, have limited 
ability to estimate forest biomass because the 
recorded spectral responses in optical images are 
predominantly related to the interaction between 
the sun radiance and vegetation cover. Since 
optical sensors use electromagnetic energy 
reflected or absorbed in the uppermost canopy 
layers, they are typically less sensitive to 
vegetation structure (Steininger, 2000). 

Biomass estimation using passive optical data is 
usually implemented by determining the 
correlation between biomass and spectral 
responses and/or vegetation indices derived from 
multi-spectral images. 

Previous studies have shown that visible bands are 
strongly related with biomass (Franklin, 1986; Lu 
et al., 2002). The correlation of forest biomass and 
other stand parameters with near infrared 
wavelength could be either positive (Spanner et 
al., 1990) or negative (Danson and Curran, 1993) 
because of the increase in canopy shadowing with 
larger stands and decrease in understory brightness 
due to dense biomass. Shadowing generally plays 
an important role in all bands.  

To remove variability caused by canopy geometry, 
soil background, sun view angles, and atmospheric 
conditions on estimation of AGB, many studies 
have been developed on the relationships between 
various vegetation indices and forest biophysical 
parameters. It has been found that the 
perpendicular vegetation index (PVI) (Richardson 
and Wiegand, 1977), soil adjusted vegetation 
index (SAVI) (Huete, 1988), modified SAVI 
(MSAVI) (Qi et al., 1994), and global 
environmental monitoring index (GEMI) (Pinty 
and Verstraete, 1992) partially reduced 
background reflectance effects in the data. 
However, results vary, depending on the 
characteristics of the study area. The sensitivity of 
vegetation indices to variations in forest 
biophysical parameters was evaluated by many 
researchers (Wulder, 1998; Treitz and Howarth, 
1999; Lu et al., 2004; Lu, 2006). In general, it can 
be concluded that, vegetation indices can partially 
reduce the impacts on reflectance caused by 
environmental conditions, thus improve 
correlation between AGB and vegetation indices, 

especially in those sites with complex vegetation 
stand structures (Lu et al., 2004) 

Apart from vegetation indices, researchers have 
been trying various different remote sensing 
methods and obtained different level of success. 
For example, Foody et al., (2001) tested the neural 
network approach along with the normalized 
vegetation index. They found that a basic 
multilayer perception network provided estimates 
of biomass that were strongly correlated with those 
measured in the field (r=0.80). In a study in the 
Brazilian Amazon, Lu et al. (2002) found that 
neither individual Landsat bands, nor vegetation 
indices derived from the Landsat bands, could be 
used effectively to estimate AGB. They found 
good estimations (R2=0.88) using a multiple 
regression model that uses spectral reflectance 
data along with the measures of ‘texture’. 

Radar Systems 

The ability of radar systems to operate day and 
night, to penetrate clouds and to record 
backscattering from different layers of forest 
structure, including the upper canopy and woody 
biomass component, cause radar data to be used 
extensively in estimation of forest stand 
parameters. Many previous research has shown the 
potential of radar data in estimating AGB (Hussin 
et al., 1991; Saatchi and Moghaddam, 1995; 
Imhoff et al., 2000; Saatchi et al., 2007; Simard et 
al., 2008; Koch, 2010; Sexton et al., 2009; 
Ghasemi et al., 2011). 

Different radar data have their own characteristics 
in relating to forest stand parameters. For example 
SAR data is acquired in X, C, L and P bands. The 
X band is scattered by leaves and canopy cover 
surface so it is suitable to extract information 
about the surface layer of the trees. The C band 
penetrates through leaves and scatters by small 
branches and under layer elements. The L band 
penetrates through the surface layers and is 
scattered by the trunk and main branches. The P 
band has the most penetration into the canopy 
cover and the major part of P band backscattering 
is caused by trunk and the ground reflectance. So 
the backscatters of the P and L band are the most 
related to the biophysical parameters of the trees 
(Ghasemi et al., 2011). In particular, SAR L band 
data have proven to be valuable for AGB 
estimation (Lu, 2006).  
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The other important parameter of SAR data is the 
polarization of the signals. The polarization is the 
direction of electric field in the electromagnetic 
waves and is the main factor into the interaction 
between signals and the reflectors (Ghasemi et al., 
2011). Most of the microwave sensors emit the 
signals in horizontal (H) or vertical (V) 
polarizations. The SAR data may have four 
polarizations:  HH, HV, VH and VV. The past 
studies have shown that longer wavelengths (L and 
P band) and the HV polarization have the most 
sensitivity to the AGB (Sun et al., 2002). Milne 
and Dong (2002) also argued that, for forest 
biomass mapping, longer wavelength bands are 
generally better than shorter wavelength bands 
since they have greater foliage penetration, better 
linear correlation with woody biomass and higher 
saturation levels of the backscattering response to 
AGB. 

The saturation problem is also common in radar 
data. The saturation levels depend on the 
wavelengths (i.e. different bands, such as C, L, P), 
polarization (such as HV and VV), and the 
characteristics of vegetation stand structure and 
ground conditions (Lu, 2006). For example, P 
band backscatter has been shown to be sensitive to 
forest biomass up to a saturation level of 100-300 
t/ha depending on forest type and making it 
suitable to map the biomass of most of the boreal 
forest and a large part of the temperate forests 
(GTOS, 2009) while L-band synthetic aperture 
radar is saturated at about 100-150 t/ha (Shugart et 
al., 2010). Kasischke et al., (1997) summarizes 
saturation problem in their review study as the 
saturation point is higher for longer wavelengths 
and the HV polarization is most sensitive while 
VV is the least. 

The topography can considerably affect vegetation 
reflectance and backscattering values in rugged 
and/or mountainous regions. Thus some 
approaches have been developed for topographic 
correction of SAR data. For example Sun et al., 
(2002) found that multi-polarization L band SAR 
data were useful for AGB estimation of forest 
stands in mountainous areas. Soja et al., (2010) 
also tested various models for topographic 
correction for improved biomass estimation. They 
found that even with the best of the models they 
tested, AGB can be estimated with a root mean 

square error of 50 t/ha and 66 t/ha for HV and HH 
respectively.  

Radar signals are highly affected by the variations 
of moisture in both canopy and soil which are 
often difficult to measure. Thus, the same stand 
could produce a significantly different radar 
backscatter value depending on environmental 
conditions that effect either soil moisture or 
canopy moisture. 

Lidar Systems 

Lidar (Light Detection and Ranging) is an active 
remote sensing technology, which emits laser 
pulses from the instrument on a platform towards a 
target and measures the reflected energy and/or 
time difference between the pulse emission and 
reception. The area illuminated by the laser pulse 
is known as the lidar “footprint” and the size of the 
footprint is determined by the laser divergence and 
the altitude of the lidar instrument (Rosette et al., 
2012). Lidar systems can be grouped in to two: 
full waveform and discrete return systems. Full 
waveform lidar systems record the entire returned 
signal above a background energy noise threshold 
that is related to the vertical distribution of canopy 
structure (Dubayah and Drake, 2000) while 
discrete return systems record first and last returns 
or at times, also a number of intermediate points 
(Rosette et al., 2012).  

There is a growing number of studies on AGB 
using full waveform or discrete return lidar  
systems and reviewed by Wulder (1998), Dubayah 
and Drake (2000), Lefsky et al. (2001), Lim et al. 
(2003), Koch (2010) and Rosette et al. (2012). The 
relationship between AGB and lidar comes from 
the idea that taller trees contain more wood and 
typically support more foliage and roots than 
shorter trees of the same species and on the other 
hand lidar enables to obtain height information 
from vegetation. This theoretical information lets 
lidar instruments to model biomass using 
vegetation heights. Additionally, full waveform 
lidar systems also measure the vertical distribution 
of the intercepted canopy elements.  

In biomass estimation with discrete return lidar 
systems, lidar pulses represent the vertical layer 
between canopy top (first return) and ground (last 
return). Typically, two variables are extracted 
from lidar data: 1) Digital Surface Model (DSM) 
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from the first return which represents the crown 
surface and 2) Digital Terrain Model (DTM), from 
last return, representing the ground (Hyyppa et al., 
2004). Additionally mean canopy height can be 
obtained using various statistic models like 
percentiles or weighted averages. 

On the other hand, AGB estimation with full 
waveform lidar systems such as the Geoscience 
Laser Altimeter System (GLAS) on Ice, Cloud, 
and Land Elevation Satellite (ICESat) provides 
information about not only the first and last return, 
but also the vertical structure of vegetation (fig. 1) 

depending on intercepted surface area, orientation 
and surface reflectivity, returned energy level 
changes in given height. Several researches (Drake 
et al., 2002; Harding et al., 2001; Lefsky et al., 
2002) have shown that waveform shape is directly 
related to biomass and other biophysical 
parameters such as canopy height, crown size, 
vertical distribution of canopy, and leaf area index. 
For example Dubayah et al., (2000) showed that 
lidar measured heights are highly correlated with 
AGB in mixed deciduous-coniferous, pine, 
western hemlock, and in dense tropical wet forests.  

 

 

Figure 1: Full waveform (left) and discrete return (right) lidar data of coincided area Forest of Dean, Gloucestershire, UK 
(Rosette et al., 2012)

One of the most crucial steps in AGB estimation 
with full waveform lidar is accurate detection of 
ground return. Theoretically for full waveform 
airborne systems like SLICER and LVIS, and 
satellite data like GLAS, the ground peak can be 
determined as the centroid of latest Gaussian peak 
and works best in flat areas and open canopies. But 
however, in closed canopies or rough terrain, 
detection of ground can be complicated due to 
weakening of signal by canopy obstruction or 
widening of the waveform respectively. Rosette et 
al. (2008) suggested using latest Gaussian peak or 
the one before whichever has greatest amplitude in 
slopped areas. Lefsky et al. (2005) combined 
GLAS waveform and ancillary topographical data 
to estimate maximum forest canopy height in three 
ecosystems over sloping terrain and they found 
that the models could explain 59–69% of the 
variations of the field-measured forest canopy 

heights. Xing et al. (2010) the improved Lefsky’s 
model and their improved model explained 56–
92% of variation within the 0–30◦ terrain slope 
category.  To reduce the effects of terrain 
Duncanson (2010) developed a methodology to 
estimate AGB in rugged relief or sloping terrain 
without using ancillary topographic data and 
showed that GLAS data can be used in these areas 
by classifying terrain relief using discriminant 
analysis. The latest studies also shows that GLAS 
data can be used for AGB estimation in areas with 
high slope but more research is still needed to 
reduce the effect of terrain on estimating maximum 
forest canopy height, using GLAS waveform data, 
especially in terrain with slopes larger than 15◦ 
(Xing et al., 2010).  

Once the ground return is accurately determined, 
the height of the canopy can be calculated either as 
“maximum height” using the difference between 
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signal begin and signal end (Drake, 2002; Sun et 
al., 2008) or “mean height” (Duong et al., 2008) 
using the difference between first and the last 
Gaussian peak. It has been proven that relative 
height (RH) metrics associated with energy 
quartiles such as RH25, RH50, and RH75 are also 
good predictors of biomass. One of the most used 
one of them is the RH50, which is also known as 
Height of Median Energy (HOME). HOME is the 
height above the ground elevation at which 50% of 
the returned energy in the waveform is above and 
50% below (Dubayah et al., 2010). Because the 
HOME metric is partially determined by the 
amount of lidar energy that reaches the ground 
surface, it is sensitive to both vegetation vertical 
structure and horizontal canopy density (Drake et 
al., 2002). Latest studies also shows that RH50 is a 
better predictor of biomass than RH100 (maximum 
height) and AGB can therefore be estimated with 
good accuracy from lidar data. 

Conclusions 

Traditional methods of estimating biomass for 
forest inventory often rely on taking field 
measurements within sample plots, such as DBH 
or maximum tree height. These methods can be 
time, cost and labor intensive. Extrapolation of 
field measurements to all study area relies on 
representative sampling of trees within a land 
cover type and correct classification of land cover 
over large areas. The weakness of the traditional 
methods of estimating biomass lie within the 
statistical extrapolations made from the samples to 
the plot/field and the bias in the selection of 
representative samples. These statistical errors are 
known and are considered as acceptable. 

However, this is the area where remotely sensed 
data can assist in the improvement of the 
accuracies of those biomass estimations. The state-
of-the-art of the remote sensing methods provides 
spatial information crucial to characterize the 
spatial distribution of biomass density. Remote 
sensing is the most accurate tool for global and 
regional biomass studies not only due its ability to 
measure large areas and supply wall to wall maps, 
but also ability of periodic measurement of the area 
of interest. 

A vast number of studies to estimate AGB 
implemented using various remote sensing 
methods including passive optical, radar and lidar 
data. Remote sensing based AGB estimation is a 

complex procedure in which many factors, such as 
atmospheric conditions, mixed pixels, data 
saturation, complex biophysical environments, 
insufficient sample data, extracted remote sensing 
variables, and the selected algorithms, may 
interactively affect AGB estimation performance 
(Lu, 2006). 

Active remote sensing systems including radar and 
lidar are currently proposed as promising to 
measure three dimensional vegetation structure and 
AGB. Radar estimates of AGB are limited by a 
loss of sensitivity with increasing biomass, known 
as saturation (Zolkos et al., 2013). There is a 
potential of combined polarimetric and 
interferometric SAR (Pol-InSAR) to estimate 
biomass at higher densities (Goetz and Dubayah, 2011).  

However lidar systems have strong relationship 
with biomass beyond levels of 1000 t/ha, far 
exceeding the normal saturation level of passive 
optical or radar sensors. Lidar systems can be used 
to retrieve tree height estimates, however the 
elevation differences within the footprint, 
especially for large footprint lidar data, can be 
significant in comparison with the predominant 
tree height and make it difficult to estimate tree 
height accurately. The height metrics derived from 
waveform lidar data can also be a good estimator 
of AGB. There are differences between types of 
lidar systems (airborne discrete return, spaceborne 
waveform etc.) and the results of the studies. A 
very recent study of Zolkos et al. (2013) showed 
that AGB models developed from airborne lidar 
metrics are significantly more accurate than those 
using radar or passive optical data. 

The future research may focus on development of 
different methods with using multi source data and 
improving the use of active data such as radar or 
lidar. The upcoming missions such as ICESat-2 
and DESDynl of NASA and BIOMASS of ESA 
will radically improve the current capability by 
providing direct measurements of AGB from 
active sensors. 
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