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THE TRUE AND APPARENT ELLIPTICAL ORBITS OF A VISUAL 

BINARY STAR 
 

 

ESMAT BEKIR 

 
Abstract. Observation of binary star orbits reveals only the apparent orbit of these two 

celestial bodies which differs from the true orbit. Because of the inclination of the plane of 

the true orbit one can only observe its projection onto the plane of the sky. Computing the 
true orbit from the apparent orbit is based on constructing the auxiliary ellipse. This process 

is well known (Kallrath 2009) but requires arduous numerical computations. In this paper a 

simpler approach to obtain the auxiliary ellipse is presented and its derivation is provided. 
This approach finds out that the coefficients of the auxiliary ellipse are linear functions of 

those of the apparent ellipse. 

 

1. Introduction 

 

Notation. 

a, b, c, f, g, h denote the coefficients of the apparent ellipse 

 
2 2

2 2 2 0ax hxy by gx fy c                    (1) 

,x y : denote the ellipse center coordinates. 

L, l : are two useful identities that are used frequently and defined by 

 2 2

2

2L ax hxy by gx fy

l ab h

     

 
 

 

Constructing the complete orbit of a binary star system from astronomical 

observations requires collecting data of separation and position angle of a secondary 

star with respect to the primary one for a moderately long arc (desirably the entire 

orbit) (Argyle 2004 and Mullaney 2005). These data points are then fitted into an 

(apparent) ellipse. Because the collected data are projections of the true data on the 

plane of the sky, more work is needed to construct the true ellipse. There are various 
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methods for computing the true orbit elements such as the Kowalsky's (Smart 1949), 

Zwier's (Smart 1949), or Atkinson methods (Atkinson 1966). Using these methods 

requires extensive amount of computations. In contrast, I present an analytical 

method for constructing the auxiliary ellipse, which allows for closed form formulas 

for computing the orbit elements as shown later. Astronomers have used the 

auxiliary circle depicted as AL'PM' in Fig. 1 to retrieve the true data. Before probing 

into that, some aspects of projection geometry are introduced. Angles between lines 

may not be preserved but parallel lines remain so in projection;  

   
 

 

          

a line may shrink but its segments will maintain their proportions. Another preserved 

property is the ellipse conjugate diameters. An ellipse diameter is any chord that 

passes through its center; a diameter is conjugate to another diameter if it bisects it 

and all the chords that are parallel to it. The motive for using the auxiliary circle is 

that one of its diameters (the one that is parallel to the plane of view) will not be 

shrunken by the projection. This diameter, once obtained, allows for determining all 

the orbital elements. Examining Fig. 1, helps the understanding of the construction 

process of the auxiliary ellipse (Hilditch 2001). The figure shows that both the true 

orbit ellipse ALPM and the auxiliary circle AL'PM' share the diameter PFCA that is 

conjugate to LCM. If e is the true ellipse eccentricity, then from analytical geometry 

the ordinates of the ellipse are scaled down ordinates of the circle by a factor K, 

given by 

 
2

1K e             (2) 

For example CL =CL' K. As mentioned, this property is preserved in projection. 

Figure 2 depicts the apparent ellipse which is the projection of the true ellipse. It 

shows the PFCA diameter and its conjugate LCM. The auxiliary ellipse (projection 

of auxiliary circle) can be constructed by scaling up the lengths of the conjugate 

P A 

L' 

M' 

C 

L 

M 

F 

C 

P 

A 

M 

L 

F 

Figure 1. True ellipse and auxiliary circle           Figure 2.   Apparent ellipse 
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diameter LCM and its parallels by 1/K. The equations of these lines are given in the 

literature and provided also for completeness in Eq. (7) below. First, one needs to 

compute the intersections of these lines with the ellipse for at least five points. Next, 

compute the coordinates that scale up the chord lengths by 1/K. These new 

coordinates will now be points on the auxiliary ellipse which are used to compute 

the ellipse coefficients. Figure 4 depicts an example of an apparent ellipse and its 

constructed auxiliary one. Instead of this numerical process, our approach is to solve 

for the auxiliary ellipse coefficients analytically. 

 

Eccentricity Computation 

 

Herein, we adopt the notation that F is the origin of the apparent ellipse and ,x y is 

its center.  If the equation of the major axis of the apparent ellipse is y mx and its 

slope is /m y x , then it intersects its border at 

2 2 2 2

2 2

2 2 2 2

2 2

2 2 2 0

( 2 ) 2( ) 0

( 2 ) 2( ) 0

2 0

ax hmx bm x gx fmx c

a hm bm x g fm x c

ax hxy by x gx fy xx cx

Lx Lxx cx

L c L c
x x x y y y

L L

      

      

      

   

 
    

  (3) 

Therefore the apastron and periastron coordinates are respectively given by 

 

A ,

P ,

L c L c
x x y y

L L

L c L c
x x y y

L L

  
    
 

  
    
 

  (4) 

It is worth noting that while C is the center of both the apparent and the true ellipses, 

F is not the focus of the apparent ellipse, but the ratio of FC to PC is preserved. If

2 2
FC r x y   , then Eq. (4) shows that  AC PC /r L c L   . Thus if 

the true ellipse eccentricity is e, then 

 
FC r L

e
PC L cL c

r
L

  


  (5) 
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which implies that 

2 2
1

L c
e e

L c L c


   

 
 

 

Parametric Representation of the Apparent Ellipse 

 

Since the projected major axis passes through the points F(0,0) and the center C

( , )x y , then any point on this line can be represented by ( , )x y  , where α is a 

parameter variable. Herein, we refer only to the latus rectum that passes through the 

primary star. If the equation of this latus rectum is y mx , (m=-g/f), then it 

intersects the ellipse at, see derivation of Eq.(3), 

 

2 2

2 2 2 2

2 2

( 2 ) 2( ) 0

( 2 ) 0

0

/( ) /( )

a hm bm x g fm x c

af hfg bg x cf

Llx cf

x f c Ll y g c Ll

      

    

  

  

   (6) 

The equation of any line parallel to the latus rectum is 

  fy gx d      (7) 

If this line passes through a point ( , )x y  (which is a point on the major axis) then 

it must satisfy Eq.(7); this implies that 

 f y g x d d gx fy            (8) 

Substituting for d in Eq. (7) gives, 

     

fy gx gx fy

f y y g x x

y y g

x x f

 

 





    

    

 




   (9) 

If this line intersects the ellipse at (u,v), then parametrically Eq. (9) can be 

represented by 

   
v y gs

u x fs





  

 
   (10) 

from which we can find that 

( )fv gu gx fy L

fv gu

L

 



     


 

  (11) 

A point (u,v) must satisfy Eq. (1) to get 
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2 2

2 2

2 2 2 0

( ) 2 ( )( ) ( )

2 ( ) 2 ( ) 0

au huv bv gu fv c

a x fs h x fs y gs b y gs

g x fs f y gs c

   

 

      

     

     

  (12) 

Expanding and collecting terms of the above equation results in 

 

2 2 2

2 2 2

( 2 ) 2 [( ) ( ) ]

2 ( ) ( 2 ) 0

ax hxy by af hg x bg hf y s

gx fy af hfg bg s c

 



     

      
  (13) 

Using Eqs. (A.3), (A.4) and (A.8) in Eq. (13) yields 

 
2 2 2 2

2 ( ) 2 2 0L lyx lxy s L lLs c L L lLs c                

from which s can be solved, 

  

2

2 2 /c L
s

l

  
    (14) 

Geometrically, the parameter s represents the distance between the two points 

( , )x y   and (u,v). If this distance is lengthened by a factor 1/K, (where K as given 

by Eq. (2)) then the new length will be 

 
s

s
K

     (15) 

The above two equations give 

 

2

2

2

2 /c L
s

K l

  
     (16) 

The scaled up ellipse is now given by, see Eq. (10) 

   
v y gs

u x fs





   

  
   (17) 

From the above we note that, 

  
gu fv

L


 
     (18) 

 

Equation of the Auxiliary Ellipse 

 

To get the equation of the scaled up ellipse the parameter α must be eliminated from 

Eq. (17) and simultaneously from s'. One approach is to rewrite Eq. (17) as follows 
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 

   

 

2 2 2

2

2 2 2

u x f s

u x v y fgs

v y g s



 



  

     

  

   (19) 

Now multiply the first equation by a, the second by 2h, the last by b and add up to 

get, 

 

         

 

2 2 2 2 2

2 2 2 2 2

2 2 2

2 2

2 2 ( ) ( 2 )

2

a u x h u x v y b v y s af hfg bg

au hu v bv axu hyu byv hxv ax hxy by

af hfg bg s

   

 

             

               

  

 (20) 

The coefficient of α in Eq. (20), via Eqs.(A.2) and (18), can be simplified to 

( ) ( ) ( ) ( )axu hyu byv hxv ax hy u by hx v gu fv L                   

Using the above equation and Eqs. (A.4), (A.8), (18) and (16) in Eq. (20) yields 

 

2

2 2 2 2

2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 /
2 2

2 2 / 0

2 (1 ) 2 0

c L
au hu v bv L L lL

lK

aK u hK u v bK v LK L c L

aK u hK u v bK v L K L c

 
 

  

 

 
        

          

         

       (21) 

Finally we substitute from Eq. (18) in the above 

 

 
2

2 2 2 2 2 2
2 (1 ) 2 0

gu fv
aK u hK u v bK v L K gu fv c

L

  
             

 

 (22) 

Then Eq. (22) becomes 

   2 2
2 2 0a u h u v b v gu fv c                (23) 

where, 

2
(1 )K

n
L


 and 

 

2 2

2

2 2

a K a ng

h K h nfg

b K b nf

  

  

  

  (24) 
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This is the equation for any scaled up ellipse. It becomes the equation of the 

auxiliary ellipse by specializing it to our case for which
2 2

1K e  and
2

n e L . 

Using Eq. (5) allows these two parameters to be expressed as: 

 

2 2

2

1

1 1

c
K e

L c

K
n

L L c


  




 



  (25) 

from which the auxiliary ellipse can be expressed by 

 

2

2

( )

( )

( )

a n ca g

h n ch fg

b n cb f

   

   

   

   (26) 

The lengths of the semi-axes of the auxiliary ellipse A and B are now given by 

 

 

 

 

 

 
2 2

2

2

4

L c
A

a b D

L c
B

a b D

D b a h




  




  

    

   (27) 

The semi-major axis A is unaffected by the projection and represent the true radius 

of the auxiliary circle, but B is scaled down by cos i, where i is the inclination of the 

orbit plane to the plane of the sky, therefore 

 
1 1

cos ( / ) cos
a b D

i B A
a b D

    
 

  
  (28) 

Note that the argument of the arc cosine in Eq. (28) is nonnegative, thus its solutions 

fall in the first and fourth quadrants. By definition i should be in the range between 

0° and 180°. Thus we select i to be between 0° and 90° for counter clockwise motion 

and between 90° and 180° for clockwise motion. Next we compute the position angle 

of the first node relative to the North. Note that the line of nodes of the true orbit 

is parallel to the major axis of the auxiliary ellipse, thus is the same as the slope 

of the major axis. From Eq. (A.5) the slope angle is given by 

 
-11 2

tan
2

h

b a


 
  

  
  (29) 
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There is an ambiguity of 180° in Eq.(29); however, the first node is the one with

180   . In the absence of radial velocity data, it is not known whether this is the 

angle of the ascending or descending node. Resolving this ambiguity will result in 

determining . It remains to determine the argument of the periastron ω. This angle 

is measured from the first node in the direction of motion of the secondary and runs 

from 0° to 360°. As with any celestial orbit, we see that its major axis passes by four 

points: periastron P, primary star at the focus F, center of the elliptical orbit C, and 

the apastron A. In the plane of the sky, the projection of the major axis still passes 

through these four points. However, we determine both the primary star and the 

center of the apparent ellipse. Joining these two points allows us to determine the 

projected major axis slope, θ.  

 
1

tan
y

x
 
   (30) 

Extending it both sides (until intersecting with the ellipse) will determine the 

positions of the periastron and apastron as given by Eq.(4). The angle difference 

between this line and the line of nodes, λ, 

      (31) 

gives the projected argument of periastron on the plane of the sky. Examining Fig. 

3 shows that the argument of periastron ω is 

 
sin( )

tan  = 
cos( ) cos i









   (32) 

 
Summary 

 

The steps to convert the apparent ellipse equation 

 
2 2

2 2 2 0ax hxy by gx fy c        (33) 

to the auxiliary ellipse are summarized as follows, illustrated with a numerical 

example starting from a hypothetical apparent ellipse with equation (Tatum 2016) 

λ 

90◦ i 

ω 

Plane of sky 

Plane of orbit 

● 
Ω North 

Figure 3. The argument of periastron spherical triangle 
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2 2
14 -23 18 -3 -31 -100 0x xy y x y   

1. compute the center point 

 
2

2

=1.713987

1.956159

hf bg
x

ab h

hg af
y

ab h







 



  (34) 

2. compute the coefficients of the auxiliary ellipse as follows 

 

  32.891445

1
0.00752494

L gx fy

n
L c

   

 


  (35) 

 

2

2

'

( ) 10.55185

( ) 8.478725

( ) 15.35276

1.5

15.5

100.

a n ca g

h n ch fg

b n cb f

g g

f f

c c

     

     

     

   

   

   

  (36) 

3. the equation of the auxiliary ellipse is now given by 

2 2
10.55185 16.95745 15.35276 3 31 100 0 x xy y x y       (37) 
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st

True eccentricity = 0.497500

Lengths of semi axes ,    5.665411 ,  2.471021

Position angle of the 1 node   127° 05'

Inclination angle    64  08 '

   11  41'

Argument of periastron    25  21'

e nL

A B

i













 

 

 

 

The apparent and auxiliary ellipses are depicted in Fig. 4. 

 

Appendix 

Characteristics of Equation of Ellipse 

 

The following is a general equation of an ellipse 

 
2 2

2 2 2 0ax hxy by gx fy c        (A.1) 

provided that 

Figure 4. Apparent and auxiliary ellipses 
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  2
0ab h a gx fy c     

where ,x y  is its center point that satisfies the following 

 
0

0

ax hy g

hx by f

  

  
  (A.2) 

hence 

 
2

2

hf bg
x

ab h

hg af
y

ab h











  (A.3) 

The variables L, l and D, used frequently, denote 

 

 

 

2 2

2

2 2

2

4

L ax hxy by gx fy

l ab h

D a b h

     

 

  

  (A.4) 

The tilt θ of the major axis of the ellipse with respect to the x-axis is  

 
2

tan 2
h

b a






   (A.5) 

One may note that there is an ambiguity of 90° in computing θ. To determine the 

ellipse semi major and semi minor axes we shift the origin of Eq. (A.1) to the center 

given by Eq. (A.3), then rotate the shifted axes by angle θ. The equation of the ellipse 

in the rotated frame becomes 

   

     

2 2

2 2

0
2 2

2 0

a b D a b D
r t gx fy c

a b D r a b D t L c

   
     

        

  (A.6) 

The major and minor axes are now given by  

 

 

 

 
2 2

2 2L c L c
A B

a b D a b D

 
 

   
   (A.7) 

Using Eq. (A.3) in the following we obtain 
2 2

2 2

2 ( ) ( )

( )

2

j af hfg bg f af hg g bg hf

fyl gxl l gx fy lL

j af hfg bg lL

      

       

   

  (A.8) 
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Figure A1. General ellipse shape 
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