

# On Generalized ( $\Psi, \varphi$ )-Almost Weakly Contractive Maps in Generalized Fuzzy Metric Spaces 

Maduraiveeran Jeyaraman ${ }^{1 *}$ [jeya.math@gmail.com](mailto:jeya.math@gmail.com)<br>Rengasamy Muthuraj ${ }^{2}$ [rmr1973@yahoo.co.in](mailto:rmr1973@yahoo.co.in)<br>Mangaiyarkarasu Sornavalli ${ }^{3}$ [sornavalliv7@gmail.com](mailto:sornavalliv7@gmail.com)<br>${ }^{1} P G$ and Research Department of Math., Raja Doraisingam Govt. Arts College, Sivagangai-630 561<br>${ }^{2} P G$ and Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai-622 001<br>${ }^{3}$ Assistant Professor, Velammal College of Engineering and Technology, Madurai-625 009


#### Abstract

In this paper, we come out with the approach of generalized $(\Psi, \varphi)$-almost weakly contractive maps in the context of generalized fuzzy metric spaces. We prove theorem to show the existence of a fixed point and also provide an example in support to our result.


Keywords - $(\Psi, \varphi)$-almost weakly contractive map, Fuzzy metric space, Generalized fuzzy metric spaces.

## 1 Introduction

In Mathematics, the concept of fuzzy set was introduced by Zadeh [15]. It is a new way to represent vagueness in our daily life. In 1975 Kramosil and Michalek [3] introduced the concept of fuzzy metric spaces which opened a new way for further development of analysis in such spaces. George and Veeramani [2] modified the concept of fuzzy metric space. After that several fixed point theorems have been proved in fuzzy metric spaces. In 2008, Dutta and Choudary [8] introduced $(\Psi, \varphi)$ - weakly contractive maps and showed the existence of fixed points in complete metric spaces. In 2009, Doric [7] unfolded it to a pair of maps by broadening the result that was proposed by Zhang and Song [14] Harjani and Sadarangani [9], Presented some fixed point results in a complete metric space bestowed with a partial order for weakly C-contractive mappings. Saha [12] established a weakened version of contraction mappings principle in fuzzy metric space with a partial ordering. In the present work, we insinuate the concept of $(\Psi, \varphi)$-almost weakly contractive maps in the panorama of fuzzy metric spaces and observe few results.

[^0]
## 2 Preliminaries

Definition 2.1. A 3 - tuple ( $\mathrm{X}, \mathcal{M}, *$ ) is called generalized fuzzy metric space if X is an arbitrary non - empty set, * is a continuous t - norm, and $\mathcal{M}$ is a fuzzy set on $\mathrm{X}^{3} \mathrm{x}(0, \infty)$ satisfying the following conditions; for each $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{a} \in \mathrm{X}$ and $\mathrm{t}, \mathrm{s}>0$
(GFM - 1) $\quad \mathcal{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})>0$,
(GFM - 2) $\quad \mathcal{M}(x, y, z, t)=1$, if $x=y=z$,
(GFM - 3) $\quad \mathcal{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=\mathcal{M}(\mathrm{p}\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}, \mathrm{t})$, where p is a permutation function,
(GFM - 4) $\quad \mathcal{M}(\mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{t}) * \mathcal{M}(\mathrm{a}, \mathrm{z}, \mathrm{z}, \mathrm{s}) \leq \mathcal{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}+\mathrm{s})$,
(GFM - 5) $\mathcal{M}(\mathrm{x}, \mathrm{y}, \mathrm{z},):.(0, \infty) \rightarrow[0,1]$ is continuous,
(GFM - 6) $\quad \lim _{\mathrm{t} \rightarrow \infty} \mathcal{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=1$.
Definition 2.2. If $\left\{x_{n}\right\}$ is a sequence in a generalized fuzzy metric spaces such that $\mathcal{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}, \mathrm{x}, \mathrm{t}\right) \rightarrow 1$ whenever $\mathrm{n} \rightarrow \infty$, then $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is said to converges to $\mathrm{x} \in \mathrm{X}$.
(i) A sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in X is said to be a converge to a point x in X if and only if for each $\varepsilon>0, \mathrm{t}>0$ there exists $\mathrm{n}_{0} \in \mathrm{~N}$ such that $\mathcal{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{m}}, \mathrm{t}\right)>1-\varepsilon$ for all $\mathrm{n} \geq \mathrm{n}_{0}$.
(ii) A generalized fuzzy metric space ( $\mathrm{X}, \mathcal{M},{ }^{*}$ ) is said to be complete if every Cauchy sequence in it converges to a point in it.

Definition 2.3. Let $\left(\mathrm{X}, \mathcal{M},{ }^{*}\right)$ be a complete generalized fuzzy metric space. Let C be a subset of X . Let $\mathrm{T}: \mathrm{C} \rightarrow \mathrm{C}$ be a self mapping which satisfies the following inequality:
$\Psi(\mathcal{M}(\mathrm{Tx}, \mathrm{Ty}, \mathrm{Tz}, \mathrm{t}) \leq \Psi(\mathcal{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}))-\varphi(\mathcal{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$ where $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}, \mathrm{t}>0, \Psi$ and $\varphi:(0,1] \rightarrow[0, \infty)$ are two functions such that,
(i) $\Psi$ is continuous and monotone decreasing with $\Psi(\mathrm{t})=0 \Leftrightarrow \mathrm{t}=1$
(ii) $\varphi$ is continuous with $\varphi(\mathrm{s})=0 \Leftrightarrow \mathrm{~s}=1$

Then T is said to be a weak contraction on C .
Definition 2.4. Let ( $\left.\mathrm{X}, \mathcal{M},{ }^{*}\right)$ be a generalized fuzzy metric space. Let there exists $\Psi, \varphi:(0,1] \rightarrow[0, \infty)$ such that
(i) $\Psi$ is continuous and monotonically decreasing,
(ii) $\Psi(\mathrm{t})=0 \Leftrightarrow \mathrm{t}=1$
(iii) $\varphi$ is continuous with $\varphi(\mathrm{s})=0 \Leftrightarrow \mathrm{~s}=1$

Then $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a self map satisfying the inequality:
$\Psi(\mathcal{M}(\mathrm{Tx}, \mathrm{Ty}, \mathrm{Tz}, \mathrm{t}) \leq \Psi(\mathcal{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}))-\varphi(\mathcal{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})+\mathrm{L}\{1-\mathrm{m}(\mathrm{x}, \mathrm{y}, \mathrm{z})\}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ $\in X, t>0, L \geq 0$, where $m(x, y, z)=\max \{\mathcal{M}(x, T x, z, t), \mathcal{M}(x, T y, T z, t), \mathcal{M}(y, T y, T z, t)$, $\mathscr{M}(\mathrm{Tx}, \mathrm{y}, \mathrm{z}, \mathrm{t})\}$. Then T is said to be a $(\Psi, \varphi)$ - almost weakly contractive map on X .

## 3 Main Result

Theorem 3.1. Let $(\mathrm{X}, \mathcal{M}, *)$ be a complete generalized fuzzy metric space. Let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a $(\Psi, \varphi)$ - almost weakly contractive map. Then, T has a fixed point in X which is unique.

Proof: Let $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a sequence in X such that $\mathrm{Tx}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}+1}$. If $\mathrm{x}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}+1}$, then the theorem is obvious.If $\mathrm{x}_{\mathrm{n}} \neq \mathrm{x}_{\mathrm{n}+1}$, consider

$$
\begin{align*}
& \Psi\left(\mathcal{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{t}\right)\right)=\Psi\left(\mathcal{M}\left(\mathrm{Tx}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}, \mathrm{t}\right)\right) \\
& \leq \Psi\binom{\left.\mathcal{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)\right)-\varphi\left(\mathcal{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)\right)+}{\mathrm{L}\left\{1-\mathrm{m}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)\right.}  \tag{3.1.1}\\
& \mathrm{m}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)=\max \left\{\begin{array}{c}
\mathcal{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right), \mathcal{M}\left(\mathrm{Tx}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}, \mathrm{t}\right), \\
\mathcal{M}\left(\mathrm{x}_{\mathrm{n}}, T \mathrm{~T}_{\mathrm{n}}, T \mathrm{Tx}_{\mathrm{n}}, \mathrm{t}\right), \mathcal{M}\left(\mathrm{Tx}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right),
\end{array}\right\} \\
& =\max \left\{\begin{array}{l}
\mathcal{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right), \mathcal{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{t}\right), \\
\left.\mathcal{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{t}\right), \mathcal{M}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)\right\}
\end{array}\right\} \\
& =\max \left\{\mathscr{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right), 1, \mathcal{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{t}\right), \mathcal{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)\right\} \\
& =1 \\
& \mathrm{~m}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)=1 \tag{3.1.2}
\end{align*}
$$

from (3.1.1) and (3.1.2), we get that
$\Psi\left(\mathcal{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{t}\right)\right) \leq \Psi\left(\mathcal{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)\right)-\varphi\left(\mathcal{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)\right)$
$\Psi\left(\mathcal{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{t}\right)\right)<\Psi\left(\mathcal{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)\right)$
We know $\Psi$ is monotonically decreasing $\mathscr{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{t}\right)>\mathcal{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)$
$\left\{\mathscr{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{t}\right)\right\}$ is an increasing sequence of non-negative real numbers.
Let $\lim _{\mathrm{n} \rightarrow \infty} \mathcal{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{t}\right)=\mathrm{r}$ then taking limit as $\mathrm{n} \rightarrow \infty$ in (3.1.3)
$\Rightarrow \psi(\mathrm{r}) \leq \psi(\mathrm{r})-\varphi(\mathrm{r})$
$\Rightarrow \varphi(\mathrm{r}) \leq 0 \Rightarrow \varphi(\mathrm{r})=0$.
$\Leftrightarrow \mathrm{r}=1$ (from definition (2.4)
Therefore $\lim _{\mathrm{n} \rightarrow \infty} \mathcal{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{t}\right)=1$.
To prove that $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ is a Cauchy sequence.
Let $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is not Cauchy, then, for any given $\varepsilon>0$, we can find subsequences $\left\{x_{n_{k}}\right\},\left\{x_{m_{k}}\right\}$ of $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ with $n_{k}>m_{k}$ such that
$\mathcal{M}\left(x_{n_{k}}, x_{m_{k}}, x_{m_{k}}, t\right) \leq 1-\varepsilon$
then, we have
$\mathcal{M}\left(x_{n_{k-1}}, x_{m_{k}}, x_{m_{k}}, \mathrm{t}\right)>1-\varepsilon, \mathcal{M}\left(x_{n_{k-1}}, x_{m_{k-1}}, x_{m_{k-1}}, \mathrm{t}\right)>1-\varepsilon$.
Consider
$1-\varepsilon \geq \mathcal{M}\left(x_{n_{k}}, x_{m_{k}}, x_{m_{k}}, \mathrm{t}\right)$
$1-\varepsilon \geq \lim _{\mathrm{k} \rightarrow \infty} \sup \mathscr{M}\left(x_{n_{k}}, x_{m_{k}}, x_{m_{k}}, \mathrm{t}\right)$

$$
\begin{align*}
\mathscr{M}\left(x_{n_{k}}, x_{m_{k}}, x_{m_{k}}, \mathrm{t}\right) & \geq \mathcal{M}\left(x_{n_{k}}, x_{n_{k-1}}, x_{n_{k-1}}, \frac{t}{2}\right) * \mathcal{M}\left(x_{n_{k-1}}, x_{m_{k}}, x_{m_{k}}, \frac{t}{2}\right) \\
& >\mathcal{M}\left(x_{n_{k}}, x_{n_{k-1}}, x_{n_{k-1}}, \frac{t}{2}\right) * 1-\varepsilon(\text { from (3.1.8)) } \\
& >1 * 1-\varepsilon \text { as } \mathrm{k} \rightarrow \infty \quad \text { (from (3.1.6)) } \\
& \Rightarrow \lim _{\mathrm{k} \rightarrow \infty} \mathcal{M}\left(x_{n_{k}}, x_{m_{k}}, x_{m_{k}}, \mathrm{t}\right)>1-\varepsilon \tag{3.1.10}
\end{align*}
$$

Therefore
$\lim _{\mathrm{k} \rightarrow \infty} \inf \mathscr{M}\left(x_{n_{k}}, x_{m_{k}}, x_{m_{k}}, \mathrm{t}\right)>1-\varepsilon$,
from (3.1.9) and (3..11) we see that
$1-\varepsilon<\lim _{\mathrm{k} \rightarrow \infty} \inf \mathcal{M}\left(x_{n_{k}}, x_{m_{k}}, x_{m_{k}}, \mathrm{t}\right) \leq \lim _{\mathrm{k} \rightarrow \infty} \sup \mathscr{M}\left(x_{n_{k}}, x_{m_{k}}, x_{m_{k}}, \mathrm{t}\right)<1-\varepsilon$
$\lim _{k \rightarrow \infty} \mathscr{M}\left(x_{n_{k}}, x_{m_{k}}, x_{m_{k}}, \mathrm{t}\right) \quad$ exists and is equal to $1-\varepsilon$
$\lim _{\mathrm{k} \rightarrow \infty} \mathcal{M}\left(x_{n_{k}}, x_{m_{k}}, x_{m_{k}}, \mathrm{t}\right)=1-\varepsilon$.
Consider

$$
\begin{align*}
\Psi\left(\mathcal{M}\left(x_{n_{k}}, x_{m_{k}}, x_{m_{k}}, \mathrm{t}\right)=\right. & \Psi\left(\mathcal{M}\left(T x_{n_{k-1}}, \mathrm{~T} x_{m_{k-1}}, \mathrm{~T} x_{m_{k-1}}, \mathrm{t}\right)\right) \\
\leq & \Psi\left(\left(\mathcal{M}\left(x_{n_{k-1}}, x_{m_{k-1}}, x_{m_{k-1},}, \mathrm{t}\right)-\right.\right. \\
& \varphi\left(\mathcal{M}\left(x_{n_{k-1}}, x_{m_{k-1}}, x_{m_{k-1}}, \mathrm{t}\right)+\right. \\
& \left.\mathrm{L}\left\{1-\mathrm{m}\left(x_{n_{k-1}}, x_{m_{k-1}}, x_{m_{k-1}}, \mathrm{t}\right)\right\}\right) \tag{3.1.13}
\end{align*}
$$

from definition (2.4) , (3.1.8), and since we know that $\Psi$ is a decreasing function, we have
$\mathcal{M}\left(x_{n_{k-1}}, x_{m_{k-1}}, x_{m_{k-1}}, \mathrm{t}\right)>1-\varepsilon \Rightarrow \Psi\left(\mathcal{M}\left(x_{n_{k-1}}, x_{m_{k-1}}, x_{m_{k-1}}, \mathrm{t}\right) \leq \Psi(1-\varepsilon)\right.$.
Since $\varphi$ is continuous, we have
$\mathcal{M}\left(x_{n_{k-1}}, x_{m_{k-1}}, x_{m_{k-1}}, \mathrm{t}\right)>1-\varepsilon \Rightarrow \varphi \mathscr{M}\left(x_{n_{k-1}}, x_{m_{k-1}}, x_{m_{k-1}}, \mathrm{t}\right) \geq \varphi(1-\varepsilon)$
also,
$\mathrm{m}\left(x_{n_{k-1}}, x_{m_{k-1}}, x_{m_{k-1}}, \mathrm{t}\right)=\max \left\{\begin{array}{c}\mathcal{M}\left(x_{n_{k-1}}, T x_{n_{k-1}}, x_{m_{k-1}, \mathrm{t}},\right. \\ \mathcal{M}\left(x_{n_{k-1}}, T x_{m_{k-1}}, T x_{m_{k-1}}, \mathrm{t}\right), \\ \mathcal{M}\left(x_{m_{k-1}}, T x_{m_{k-1}}, T x_{m_{k-1}}, \mathrm{t}\right), \\ \mathcal{M}\left(\mathrm{T} x_{n_{k-1}}, x_{m_{k-1}}, x_{m_{k-1}}, \mathrm{t}\right)\end{array}\right\}$

$$
=\max \left\{\begin{array}{c}
\mathcal{M}\left(x_{n_{k-1}}, x_{n_{k}}, x_{m_{k-1}}, \mathrm{t}\right), \\
\mathcal{M}\left(x_{n_{k-1}}, x_{m_{k}}, x_{m_{k}}, \mathrm{t}\right), \\
\mathcal{M}\left(x_{m_{k-1}}, x_{m_{k}}, x_{m_{k}}, \mathrm{t}\right), \\
\mathcal{M}\left(x_{n_{k}}, x_{m_{k-1}}, x_{m_{k}}, \mathrm{t}\right)
\end{array}\right\}
$$

Therefore
$\mathrm{m}\left(x_{n_{k-1}}, x_{m_{k-1}}, x_{m_{k-1}}\right) \rightarrow 1$ as $\mathrm{k} \rightarrow \infty$.
Using (3.1.12), (3.1.14), (3.1.15), and (3.1.17), equation (3.1.13) becomes $\Psi\left(\mathcal{M}\left(x_{n_{k}}, x_{m_{k}}, x_{m_{k}}, \mathrm{t}\right) \leq \Psi(1-\varepsilon)-\varphi(1-\varepsilon)+\mathrm{L}\left\{1-\mathrm{m}\left(x_{n_{k-1}}, x_{m_{k-1}}, x_{m_{k-1}}\right)\right\}\right.$.

Since, $X$ is complete, we can find $a, z \in X$ such that the sequence $\left\{x_{n}\right\}$ is convergent to $z$ as $n \rightarrow \infty$. To prove $z$ is a fixed point of $T$ in $X$.

$$
\begin{align*}
\Psi\left(\mathcal{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{Tz}, \mathrm{Tz}, \mathrm{t}\right)=\right. & \Psi\left(\mathcal{M}\left(T x_{n-1}, \mathrm{Tz}, \mathrm{Tz}, \mathrm{t}\right)\right. \\
\leq & \Psi\left(\mathcal{M}\left(x_{n-1}, \mathrm{z}, \mathrm{z}, \mathrm{t}\right)\right)-\varphi\left(\mathcal{M}\left(x_{n-1}, \mathrm{z}, \mathrm{z}, \mathrm{t}\right)\right)+ \\
& \mathrm{L}\left\{1-\mathrm{m}\left\{\left(x_{n-1}, \mathrm{z}, \mathrm{z}\right)\right\}\right. \tag{3.1.18}
\end{align*}
$$

Where, $\mathrm{m}\left(x_{n-1}, \mathrm{z}, \mathrm{z}\right)=\max \left\{\begin{array}{c}\mathcal{M}\left(x_{n-1} \mathrm{z}, \mathrm{z}, \mathrm{t}\right), \mathcal{M}\left(\mathrm{T} x_{n-1}, x_{n-1}, x_{n-1}, \mathrm{t}\right), \\ \mathcal{M}\left(T x_{n-1}, \mathrm{z}, \mathrm{z}, \mathrm{t}\right), \mathcal{M}\left(\mathrm{Tz}, x_{n-1}, x_{n-1}, \mathrm{t}\right), \mathcal{M}(\mathrm{Tz}, \mathrm{z}, \mathrm{z}, \mathrm{t})\end{array}\right\}$
as $n \rightarrow \infty$, (3.1.18) becomes
$\Psi(\mathcal{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz}, \mathrm{t}) \leq \Psi(\mathcal{M}(\mathrm{z}, \mathrm{z}, \mathrm{z}, \mathrm{t})-\varphi(\mathcal{M}(\mathrm{z}, \mathrm{z}, \mathrm{z}, \mathrm{t}))+\mathrm{L}\{1-1\}=\Psi(1)-\varphi(1)=0$.
Therefore, $\Psi(\mathcal{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz}, \mathrm{t})=0 \Rightarrow \mathcal{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{Tz}, \mathrm{t})=1$
Thus, $\mathrm{Tz}=\mathrm{z} \Rightarrow \mathrm{z}$ is a fixed point of T in X .
To prove z is unique. If possible, let z , w be two fixed point of T in X , then

$$
\begin{aligned}
\Psi(\mathcal{M}(\mathrm{z}, \mathrm{w}, \mathrm{w}, \mathrm{t}) \leq & \Psi(\mathcal{M}(\mathrm{Tz}, \mathrm{Tw}, \mathrm{Tw}, \mathrm{t})) \leq \Psi((\mathcal{M}(\mathrm{z}, \mathrm{w}, \mathrm{w}, \mathrm{t})-\varphi(\mathcal{M}(\mathrm{z}, \mathrm{w} ., \mathrm{w}, \mathrm{t})) \\
& +\mathrm{L}\{1-\mathrm{m}(\mathrm{z}, \mathrm{w}, \mathrm{w})\}) \\
= & \Psi(\mathcal{M}(\mathrm{z}, \mathrm{w}, \mathrm{w}, \mathrm{t})-\varphi(\mathcal{M}(\mathrm{z}, \mathrm{w}, \mathrm{w}, \mathrm{t}))+\mathrm{L}\{0\} .(\text { since } \mathrm{m}(\mathrm{z}, \mathrm{w}, \mathrm{w})=1)
\end{aligned}
$$

Therefore $\mathcal{M}(\mathrm{z}, \mathrm{w}, \mathrm{w}, \mathrm{t})=1$ which implies $\mathrm{z}=\mathrm{w}$, That is fixed point is unique.
Example 3.2. Let $\mathrm{X}=[0,1]$ and $*$ be the continuous $t$-norm defined by $\mathrm{a} * \mathrm{~b}=\mathrm{ab} . \mathcal{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=\left\{\begin{array}{lc}1, & \text { if either } x=0 \text { or } \quad y=0 \text { or } z=0 \\ \frac{\min \{x, y, z\}}{\max \{x, y, z\}} & \text { if } x \neq 0, y \neq 0 \text { and } z \neq 0\end{array}\right\}$

Then, clearly $(\mathrm{X}, \mathcal{M}, *)$ is a complete generalized fuzzy metric space.

Let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be defined by $\mathrm{Tx}=\left\{\begin{array}{cr}0 & \text { if } x=\frac{1}{2} \\ 1 & \text { if } x \in\left[0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right]\end{array}\right\}$.
Let $\psi$ and $\varphi$ on $(0,1]$ be defined by $\psi(s)=1-s^{2}$ and $\varphi(s)=1-s$. Here, $T$ satisfies the inequality (3.1.8) with any $\mathrm{L} \geq 0$. Therefore T is a ( $\Psi, \varphi$ ) - almost weakly contractive map on X. Thus, T satisfies all the hypothesis of Theorem 3.1 and so, have a unique fixed point in X i.e., at $\mathrm{x}=1$.

## References

[1] Atanassov, K., Intuitionistic fuzzy sets, Fuzzy, Sets and Systems 20 (1986) 87-96.
[2] George, A. and Veeramani, P., On some results in fuzzy metric spaces, Fuzzy sets and Systems, (1994). 395-399.
[3] Kramosil, I. and Michalek, J., Fuzzy metric and statistical metric space, Kybernetika, 11(1975), 326-334.
[4] Sun, G. and Yang, K., Generalized fuzzy metric spaces with properties, Research Journal of Applied Sciences Eng. and Technology, Vol.2, (7), (2010), 673-678.
[5] Babu, G. V. R., Dasari Ratna babu, Kanuri Nageswara Rao, Bendi Venkata Siva Kumar, Fixed points of $(\Psi, \varphi)$-almost weakly contractive maps in $G$ - metric Spaces, Applied Mathematical E-Notes 14 (2014), 69- 85.
[6] Berinde, V., Approximating fixed points of weak contractions using the picard Iteration, Nonlinear Anal. Forum, 9 (2004), 43-53.
[7] Doric, D., Common fixed point for generalized $(\Psi, \varphi)$ - weakly contractions, Appl. Math. Letter., 22 (2009), 1896-1900.
[8] Dutta, P. N. and Choudhury B. S., A generalization of contraction principle in metric spaces, Fixed point Theory and Appl., (2008), Article ID 406368.
[9] Harjani, J. and Sadarangani, K., Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Analy., 71 (2009) 3403-3410.
[10] Manthena P., Rangamma, M., Fixed points of of $(\Psi, \varphi)$-lmost weakly contractive maps in Fuzzy metric spaces, Advanced Fixed point theory, 6 (2016), No.4, 387-396.
[11] Rhoades, B. E., some theorems on weak contractive maps, Nonlinear Anal. 47(2001), 2683- 2693.
[12] Saha, P., A weak contraction in G-Complete Fuzzy metric space, Intern. J. Fuzzy Mathematical Archive 3 (2013), 100-103.
[13] Schweizer, B. and Sklar, A., Statistical metric spaces, Pacific Journal of Math., 10 (1960), 313.
[14] Zang, Q. and Song, Y., Fixed point theory for generalized $\varphi$-weak contractions, Appl. Math. Letter, 22 (2009), 75-78.
[15] Zadeh, L. A, Fuzzy sets, Infor. and Control., (1965), 8338 - 353.


[^0]:    *Corresponding Author.

