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SOLUTIONS OF THE RADIAL SCHRÖDINGER EQUATION IN
HYPERGEOMETRIC AND DISCRETE FRACTIONAL FORMS

OKKES OZTURK AND RESAT YILMAZER

Abstract. The purpose of this present paper is to obtain the hypergeometric
and discrete fractional solutions of the radial Schrödinger equation by using
the nabla discrete fractional calculus operator.

1. Introduction

Recently, it is possible to see many scientific works related to fractional calculus,
discrete fractional calculus (fractional sum and difference calculus) and Schrödinger
equation that is the main equation of our study. Sumudu convolution and shift prop-
erties were investigated and, Sumudu transform method was applied to Bessel func-
tions and equations [6]. The Sumudu operator was used to the classes of fractional
differential equations [15]. The solution of generalized fractional kinetic equation
involving the generalized Lauricella functions was obtained [12]. The analytical
solution for the fractional radial diffusion equation was derived by means of Hankel
and Sumudu transforms [8]. A suffi cient condition to guarantee the solution of the
constant coeffi cient fractional differential equation via the Sumudu transform was
presented [11]. Existence and uniqueness of solutions to a boundary value problem
for a discrete fractional mixed type sum-difference equation with the nonlinear term
dependent on a fractional difference of lower order were introduced via Schauder’s
fixed point theorem and contraction mapping principle [16]. Chen and Tang stud-
ied on the discrete fractional boundary value problem in detail, and exhibited the
uniqueness and multiplicity of the solutions for the discrete fractional boundary
value problem [10]. Continuous dependence of solutions on the initial conditions
for nabla fractional difference equations was given, and the linear variation of para-
meters formula for nabla fractional difference equations involving Riemann-Liouville
type fractional differences was also presented [18]. Existence of multiple solutions
for a fractional difference boundary value problem with p-Laplacian operator was
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obtained [13]. A new class of 3-point boundary value problems of nonlinear frac-
tional difference equations was defined, and existence and uniqueness of solutions
were proved by means of the Banach fixed-point theorem, and existence of the
positive solutions was also proved by means of the Krasnoselskii’s fixed-point the-
orem [21]. The stability of the equilibrium solution of the νth order linear system
of fractional-order difference equations was studied [1]. Two new monotonicity
concepts for a nonnegative or nonpositive valued function defined on a discrete
domain were investigated, and examples to illustrate connections between these
new monotonicity concepts and the traditional ones were given [4]. Some impor-
tant results for nabla and delta fractional difference were obtained [5]. Equations
of motion in mass-spring-damper system were solved by applying nabla discrete
fractional operator[19]. Tselios and Simos introduced new symplectic-schemes for
the numerical solution of the radial Shrödinger equation, and developed symplec-
tic integrators for Hamiltonian systems [22]. Exact bound-state solutions in the
generalized harmonic-oscillator elementary were expressed via a broad class of the
regular potentials [25]. The exact solutions of the bound states of the Schrödinger
equation for the modified Kratzer potential plus a new ring-shaped potential were
exhibited analytically by means of the Nikiforov-Uvarov method [9]. Semiclassical
limit of the nonlinear Schrödinger equation was studied in a radial potential [7].
Holmer and Roudenko interested in a sharp condition for scattering of the radial
3D cubic nonlinear Schrödinger equation [14]. Explicit solutions of second-order
linear ordinary differential equations were obtained by using fractional calculus
techniques [23]. The N -method was used for the radial component of the fractional
Schrödinger equation [20]. And, we aim to solve the radial Schrödinger equation by
means of Leibniz rule with nabla discrete fractional calculus operator in this study.

2. Preliminaries

We present some properties of the fractional calculus and discrete fractional
calculus via this section.

Lemma 1. Let F (u) and G(u) be single-valued and analytic functions. If Fν and
Gν exist, Leibniz rule in fractional calculus is given as

(FG)ν =

∞∑
n=0

(
ν

n

)
Fν−nGn

((
ν

n

)
=

Γ(ν + 1)

Γ(ν + 1− n)Γ(n+ 1)

)
, (2.1)

where ν ∈ R, z ∈ C and |
(
ν
n

)
| <∞ [23].

Lemma 2. For a constant k [23],

(eku)ν = kνeku (k 6= 0, ν ∈ R, u ∈ C), (2.2)

(e−ku)ν = e−iπνkνe−ku (k 6= 0, ν ∈ R, u ∈ C), (2.3)

(uk)ν = e−iπν
Γ(ν − k)

Γ(−k)
uk−ν

(
ν ∈ R, u ∈ C,

∣∣∣Γ(ν − k)

Γ(−k)

∣∣∣ <∞). (2.4)
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Definition 1. The rising factorial power un is defined by

un = u(u+ 1)(u+ 2)...(u+ n− 1) (n ∈ N, u0 = 1). (2.5)

If u ∈ R\{...,−2,−1, 0} and ν ∈ R, and so, “u to the ν rising”is

uν =
Γ(u+ ν)

Γ(u)
(0ν = 0), (2.6)

and,

∇(uν) = νuν−1, (2.7)

where ∇F (u) = F (u)− F (u− 1) [3].

Definition 2. Consider m ∈ R and ν ∈ R+ such that 0 < n− 1 ≤ ν < n (n ∈ Z).
The fractional sum of function F with ν-th order is

∇−νm F (u) =

u∑
k=m

[u− f(k)]ν−1

Γ(ν)
F (k), (2.8)

where u ∈ Nm = {m,m+ 1,m+ 2, ...}, and f(u) = u− 1.
The fractional difference of function F with ν-th order is

∇νmF (u) = ∇n∇−(n−ν)
m F (u) = ∇n

u∑
k=m

[u− f(k)]n−ν−1

Γ(n− ν)
F (k), (2.9)

where F : Nm → R [2].

Definition 3. The discrete shift operator t is given by

tnF (u) = F (u+ n), (2.10)

where n ∈ N [19].

Theorem 1. Let ν, ρ > 0 and A,B are scalars. Thus,

∇−ν∇−ρF (u) = ∇−(ν+ρ)F (u) = ∇−ρ∇−νF (u), (2.11)

∇ν [AF (u) +BG(u)] = A∇νF (u) +B∇νG(u), (2.12)

∇∇−νF (u) = ∇−(ν−1)F (u), (2.13)

∇−ν∇F (u) = ∇1−νF (u)−
(
u+ ν − 2

u− 1

)
F (0), (2.14)

where F,G : N0 → R [17].

Lemma 3. The power rule is as follows:

∇−νm (u−m+ 1)ρ =
Γ(ρ+ 1)

Γ(ν + ρ+ 1)
(u−m+ 1)ν+ρ (∀u ∈ Nm, ν > 0), (2.15)

where ν, ρ ∈ R [2].
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Lemma 4. The Leibniz rule with the nabla discrete fractional calculus operator is
defined as

∇ν0(FG)(u) =

u∑
n=0

(
ν

n

)
[∇ν−n0 F (u− n)][∇nG(u)] (ν > 0, u ∈ Z+), (2.16)

where F,G : N0 → R [24].

Lemma 5. Consider F (u) is analytic and single-valued. In the fractional calculus,
the following equalities are available:

[Fν(u)]ρ = Fν+ρ(u) = [Fρ(u)]ν , (2.17)

(ν, ρ ∈ R, u ∈ N, Fν(u) 6= 0, Fρ(u) 6= 0),

where Fν = dνF/duν [20].

3. Main Results

In the x-dimensional space, radial Schrödinger equation is given by

g2(u) +
x− 1

u
g1(u) +

[
2µ

~2

(
E + e2 βc

uc−2

)
− y(y − x− 2)

u2

]
g(u) = 0, (3.1)

where constant βc is βc = Γ(c/2)
2πc/2(c−2)ε0

(c > 2), 1 ≤ x ≤ 3 and 0 ≤ u ≤ ∞.
For Eq. (3.1), we set

v = 2βu, g = uye−βuF, α =
µe2βc
~2

where β2 = −2µE/~2. So, Eq. (3.1) becomes a singular differential equation as
follows:

vF2 + (λ− v)F1 +
(
ωv3−c − λ

2

)
F = 0, (3.2)

where λ = 2y + x− 1, ω = α
23−cβ4−c

[23].

Theorem 2. We get c = 4 in Eq. (3.2), and so, we write

vF2 + (λ− v)F1 +
(ω
v
− λ

2

)
F = 0. (3.3)

Eq. (3.3) has the following discrete fractional solutions:

F I(v) = Av−(a+λ
2 )(vaev)−(1+t−1a), (3.4)

and,

F II(v) = Bv−(b+λ
2 )(vbev)−(1+t−1b), (3.5)

where v ∈ C, F ∈ {F : 0 6=| Fν |<∞, ν ∈ R} and A, B, λ, a, b are constants and,
t is discrete shift operator.
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Proof. Consider F = vηG (v 6= 0, G = G(v)), and so,

vG2 + (2η + λ− v)G1 +
[
(η2 + η(λ− 1) + ω)v−1 − (η +

λ

2
)
]
G = 0. (3.6)

Suppose that η2 + η(λ − 1) + ω = 0 in Eq. (3.6), and so, η = 1−λ±σ
2 where

σ =
√

(λ− 1)2 − 4ω.
(i.) If η = 1−λ+σ

2 , we have

vG2 + (1 + σ − v)G1 −
(1 + σ

2

)
G = 0. (3.7)

When we use Eq. (2.16) (nabla discrete fractional calculus operator) for all of terms
in Eq. (3.7),

vG2+ν + (νt+ 1 + σ − v)G1+ν −
(
νt+

1 + σ

2

)
Gν = 0. (3.8)

Let νt+ 1+σ
2 = 0 in Eq. (3.8). Thus, ν = t−1a

(
a = −

(
1+σ

2

))
, and we obtain

H1 − (av−1 + 1)H = 0
(
H = H(v) = G(1+t−1a), G = H−(1+t−1a)

)
. (3.9)

The solution of Eq. (3.9) is as follows:

H(v) = Avaev,

and, by substituting above assumptions, we write

F (v) = Av−(a+λ
2 )(vaev)−(1+t−1a). (3.10)

(ii.) By applying similar steps, the second discrete fractional solution is

F (v) = Bv−(b+λ
2 )(vbev)−(1+t−1b). (3.11)

where b = −
(

1−σ
2

)
. �

After, the hypergeometric forms of Eq. (3.10) and Eq. (3.11) are exhibited via
the following theorems:

Theorem 3. Let F be the Gauss hypergeometric function and |(va)n| < ∞ (n ∈
N, v 6= 0). Thus, function F (v) in Eq. (3.10) is written as

F (v) = Av−
λ
2 evF

[
1 + t−1a,−a;

1

v

] (∣∣∣1
v

∣∣∣ < 1
)
. (3.12)

Proof. We first apply Eq. (2.1) to Eq. (3.10), and so,

F (v) = Av−(a+λ
2 )
∞∑
n=0

Γ(−t−1a)

Γ(−t−1a− n)n!
(va)n(ev)−(1+t−1a+n). (3.13)

And, the following form is written by means of (2.2) and (2.4):

F (v) = Av−
λ
2 ev

∞∑
n=0

Γ(n+ 1 + t−1a)

Γ(1 + t−1a)

Γ(n− a)

Γ(−a)

1

n!

(1

v

)n
.
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Finally, we have

F (v) = Av−
λ
2 ev

∞∑
n=0

(1 + t−1a)n(−a)n
1

n!

(1

v

)n
,

and,

F (v) = Av−
λ
2 evF

[
1 + t−1a,−a;

1

v

]
.

�
Theorem 4. Let F be the Gauss hypergeometric function and |(vb)n| < ∞ (n ∈
N, v 6= 0). Thus, function F (v) in Eq. (3.11) is written as

F (v) = Bv−
λ
2 evF

[
− a, 1 + t−1a;

1

v

] (∣∣∣1
v

∣∣∣ < 1
)
. (3.14)

Conclusion

We first transform radial part of the Schrödinger equation that is the most im-
portant equation of quantum physics into a singular differential equation in order
to apply the nabla discrete fractional calculus operator. After, we obtain hyperge-
ometric forms of the discrete fractional solutions by using some properties of the
fractional calculus. Thus, we introduce a new method for these kind of equations
and exhibit different forms of the solutions.
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