Solutions of the Rational Difference Equations

$$
x_{n+1}=\frac{x_{n-(2 k+1)}}{1+x_{n-k}}
$$

Dağıstan Şimşek ${ }^{*, 2}$, Burak Oğul ${ }^{1}$
${ }^{1}$ Department of Applied Mathematics and Informatics, Kyrgyz - Turkish Manas University, Bishkek, Kyrgyzstan
${ }^{2}$ Faculty of Engineering, Selcuk University, Konya, Turkey

Received: 03-04-2017 ; Accepted: 14-11-2017
Abstract: \quad In this paper the solutions of the following difference equation is examined,

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-(2 k+1)}}{1+x_{n-k}}, \quad \mathrm{n}=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where the initial conditions are positive real numbers.
Keywords: Difference equation, period $2 k+2$ solution

$$
x_{n+1}=\frac{x_{n-(2 k+1)}}{1+x_{n-k}}
$$

Rasyonel Fark Denkleminin Çözümleri

Özet: \quad Aşağıdaki Rasyonel fark denkleminin çözümlerini incelendi.

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-(2 k+1)}}{1+x_{n-k}}, \quad \mathrm{n}=0,1,2, \ldots \tag{1}
\end{equation*}
$$

Burada başlangıç şartları reel sayılardır.
Anahtar
Kelimeler: Fark denklemleri, $2 k+2$ periyotlu çözümler

[^0]
1. INTRODUCTION

Recently there has been a lot of interest in studying the periodic nature of non-linear difference equations. For some recent results concerning among other problems, the periodic nature of scalar nonlinear difference equations see, [1-24].

Cinar, studied the following problems with positive initial values

$$
\begin{aligned}
& x_{n+1}=\frac{x_{n-1}}{1+a x_{n} x_{n-1}} \\
& x_{n+1}=\frac{x_{n-1}}{-1+a x_{n} x_{n-1}} \\
& x_{n+1}=\frac{a x_{n-1}}{1+b x_{n} x_{n-1}}
\end{aligned}
$$

for $\mathrm{n}=0,1,2, \ldots$ in $[2,3,4]$, respectively.
In [18] Stevic assumed that $\beta=1$ and solved the following problem

$$
x_{n+1}=\frac{x_{n-1}}{1+x_{n}} \quad \text { for } \mathrm{n}=0,1,2, \ldots
$$

Where $x_{-1}, x_{0} \in(0, \infty)$. Also, this results was generalized to the equation of the following form:

$$
x_{n+1}=\frac{x_{n-1}}{g\left(x_{n}\right)} \quad \text { for } \mathrm{n}=0,1,2, \ldots
$$

Where $x_{-1}, x_{0} \in(0, \infty)$.

Simsek et. al., studied the following problems with positive initial values

$$
\begin{aligned}
& x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}} \\
& x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}}
\end{aligned}
$$

for $\mathrm{n}=0,1,2, \ldots$ in $[19,20]$ respectively.
In this paper we investigated the folloving nonlinear difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-(2 k+1)}}{1+x_{n-k}}, \quad \mathrm{n}=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where $x_{-3}, x_{-2}, x_{-1}, x_{0} \in(0, \infty)$.

2. MAİN RESULT

Let \bar{x} be the unique positive equilibrum of Eq. (1), then clearly

$$
\bar{x}=\frac{\bar{x}}{1+\bar{x}} \Rightarrow \bar{x}+\bar{x}^{2}=\bar{x} \Rightarrow \bar{x}^{2}=0 \Rightarrow \bar{x}=0
$$

We can obtain $\bar{x}=0$.
Theorem 1. Consider the difference equation (1). Then the following statements are true.
a) The sequences $\left(x_{(2 k+2) n-(2 k+1)}\right),\left(x_{(2 k+2) n-(2 k)}\right), \ldots,\left(x_{(2 k+2) n}\right)$ are decreasing and there exist $a_{1}, a_{2}, \ldots, a_{2 k+2} \geq 0$ such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} x_{(2 k+2) n-(2 k+1)}=a_{1}, \lim _{n \rightarrow \infty} x_{(2 k+2) n-(2 k)}=a_{2}, \ldots, \lim _{n \rightarrow \infty} x_{(2 k+2) n-(k)-1}=a_{k-1}, \\
& \lim _{n \rightarrow \infty} x_{(2 k+2) n-(k)}=a_{k}, \lim _{n \rightarrow \infty} x_{(2 k+2) n-(k)+1}=a_{k+1}, \ldots, \lim _{n \rightarrow \infty} x_{(2 k+2) n}=a_{2 k+2} .
\end{aligned}
$$

b) $\left(a_{1}, a_{2}, \ldots, a_{2 k+2}, a_{1}, a_{2}, \ldots, a_{2 k+2}, \ldots\right)$ is a solution of equation (1) of period $2 k+2$.
c) $\lim _{n \rightarrow \infty} x_{(2 k+2) n-(2 k+1)} \cdot \lim _{n \rightarrow \infty} x_{(2 k+2) n-(k)}=0, \ldots, \lim _{n \rightarrow \infty} x_{(2 k+2) n-(k)-1} \lim _{n \rightarrow \infty} x_{(2 k+2) n}=0$
or

$$
a_{1} a_{k}=0, \ldots, a_{k-1} a_{2 k+2}=0 .
$$

d) If there exist $n_{0} \in N$ such that $x_{n-k} \geq x_{n+1}$ for all $n \geq n_{0}$, then $\lim _{n \rightarrow \infty} x_{n}=0$.
e) The following formulas hold:

$$
\begin{gathered}
x_{(2 k+2) n+1}=x_{-(2 k+1)}\left(1-\frac{x_{-k}}{1+x_{-k}} \sum_{j=0}^{n} \prod_{i=1}^{2 j} \frac{1}{1+x_{(k+1) i-k}}\right) \\
\cdot \\
\cdot \\
x_{(2 k+2) n+k+1}=x_{-(k+1)}\left(1-\frac{x_{0}}{1+x_{0}} \sum_{j=0}^{n} \prod_{i=1}^{2 j} \frac{1}{1+x_{(k+1) i}}\right)
\end{gathered}
$$

$$
x_{(2 k+2) n+k+2}=x_{-k}\left(1-\frac{x_{-(2 k+1)}}{1+x_{-k}} \sum_{j=0}^{n} \prod_{i=1}^{2 j+1} \frac{1}{1+x_{(k+1) i-k}}\right)
$$

$$
x_{(2 k+2) n+2 k+2}=x_{0}\left(1-\frac{x_{-(k+1)}}{1+x_{0}} \sum_{j=0}^{n} \prod_{i=1}^{2 j+1} \frac{1}{1+x_{(k+1) i}}\right) .
$$

f) If $x_{(2 k+2) n+1} \rightarrow a_{1} \neq 0$ then $x_{(2 k+2) n+k+2} \rightarrow 0$ as $n \rightarrow \infty, \ldots$, .If $x_{(2 k+2) n+k+1} \rightarrow a_{k+1} \neq 0$ then $x_{(2 k+2) n+2 k+2} \rightarrow 0$ as $n \rightarrow \infty$

Proof. a) Firstly, we consider the equation (1). From this equation we obtain

$$
x_{n+1}\left(1+x_{n-k}\right)=x_{n-(2 k+1)} .
$$

If $x_{n-k} \in(0,+\infty)$, then $\left(1+x_{n-k}\right) \in(1,+\infty)$. Since $x_{n+1}<x_{n-(2 k+1)}, n \in N$, we obtain that

$$
\lim _{n \rightarrow \infty} x_{(2 k+2) n-(2 k+1)}=a_{1}, \lim _{n \rightarrow \infty} x_{(2 k+2) n-(2 k)}=a_{2}, \ldots, \lim _{n \rightarrow \infty} x_{(2 k+2) n-(k)-1}=a_{k-1},
$$

$$
\lim _{n \rightarrow \infty} x_{(2 k+2) n-(k)}=a_{k}, \lim _{n \rightarrow \infty} x_{(2 k+2) n-(k)+1}=a_{k+1}, \ldots, \lim _{n \rightarrow \infty} x_{(2 k+2) n}=a_{2 k+2} .
$$

b) $\left(a_{1}, a_{2}, \ldots, a_{2 k+2}, a_{1}, a_{2}, \ldots, a_{2 k+2}, \ldots\right)$ is a solution of equation (1) of period $2 k+2$.
c) In view of the equation (1), we obtain

$$
x_{(2 k+2) n+1}=\frac{x_{(2 k+2) n-(2 k+1)}}{1+x_{(2 k+2) n-k}} .
$$

Taking limit as $n \rightarrow \infty$ on both sides of the above equality, we get

$$
\lim _{n \rightarrow \infty} x_{(2 k+2) n+1}=\lim _{n \rightarrow \infty} \frac{x_{(2 k+2) n-(2 k+1)}}{1+x_{(2 k+2) n-k}} .
$$

Then

$$
\lim _{n \rightarrow \infty} x_{(2 k+2) n+1} \lim _{n \rightarrow \infty} x_{(2 k+2) n-k}=0 \text { or } a_{1} \cdot a_{k}=0 .
$$

Similarly,

$$
\lim _{n \rightarrow \infty} x_{(2 k+2) n-k-1} \lim _{n \rightarrow \infty} x_{(2 k+2) n+2 k+2}=0 \text { or } a_{k-1} \cdot a_{2 k+2}=0
$$

d) If there exist $n_{0} \in N$ such that $x_{n-k} \geq x_{n+1}$ for all $n \geq n_{0}$, then $a_{1} \leq \ldots \leq a_{k}, \ldots, a_{k-1} \leq \ldots \leq a_{2 k+2} \leq a_{k-1}$. Since $a_{1} \cdot a_{k}=0, \ldots, a_{k-1} \cdot a_{2 k+2}=0$ we obtain the result.
e) Subracting $x_{n-(2 k+1)}$ from the left and right-hand sides of equation (1) we obtain

$$
x_{n+1}-x_{n-(2 k+1)}=\frac{1}{1+x_{n-k}}\left(x_{n-k}-x_{n-(3 k+2)}\right)
$$

and the following formula

$$
n \geq k+1 \text { for }\left\{\begin{array}{c}
x_{(k+1) n-\left[(k+1)^{2}-1\right]}-x_{(k+1) n-\left[(k+2)^{2}-2\right]}=\left(x_{1}-x_{-(2 k+1)}\right)^{n-(k+1)} \frac{1}{\prod_{i=1}} \frac{1}{1+x_{(k+1) i-k}} \tag{2}\\
\vdots \\
x_{(k+1) n-\left[(k+1)^{2}-(k+1)\right]}-x_{(k+1) n-\left[(k+2)^{2}-(k+2)\right]}=\left(x_{k+1}-x_{-(k+1)}\right)_{i=1}^{n-(k+1)} \frac{1}{1+x_{(k+1) i}}
\end{array}\right.
$$

holds. Replacing n by $2 j$ in (2) and summing from $j=0$ to $j=n$ we obtain

$$
\begin{gather*}
x_{(2 k+2) n+1}-x_{-(2 k+1)}=\left(x_{1}-x_{-(2 k+1)}\right) \sum_{j=0}^{n} \prod_{i=1}^{2 j} \frac{1}{1+x_{(k+1) i-k}}(n=0,1,2, \ldots) \\
\vdots \tag{3}\\
x_{(2 k+2) n+k+1}-x_{-(k+1)}=\left(x_{k+1}-x_{-(k+1)}\right) \sum_{j=0}^{n} \prod_{i=1}^{2 j} \frac{1}{1+x_{(k+1) i-k}}(n=0,1,2, \ldots)
\end{gather*}
$$

Also, replacing n by $2 j+1$ in (2) and summing from $j=0$ to $j=n$ we obtain

$$
\begin{gather*}
x_{(2 k+2) n+k+2}-x_{-k}=\left(x_{1}-x_{-(2 k+1)}\right) \sum_{j=0}^{n} \prod_{i=1}^{2 j+1} \frac{1}{1+x_{(k+1) i-k}} \quad(n=0,1,2, \ldots) \\
\vdots \tag{4}\\
x_{(2 k+2) n+2 k+2}-x_{0}=\left(x_{k+1}-x_{-(k+1)}\right) \sum_{j=0}^{n} \prod_{i=1}^{2 j+1} \frac{1}{1+x_{(k+1) i-k}} \quad(n=0,1,2, \ldots)
\end{gather*}
$$

Now, we obtained of the above formulas,

$$
\begin{gathered}
x_{(2 k+2) n+1}=x_{-(2 k+1)}\left(1-\frac{x_{-k}}{1+x_{-k}} \sum_{j=0}^{n} \prod_{i=1}^{2 j} \frac{1}{1+x_{(k+1) i-k}}\right) \\
\cdot \\
\cdot \\
x_{(2 k+2) n+k+1}=x_{-(k+1)}\left(1-\frac{x_{0}}{1+x_{0}} \sum_{j=0}^{n} \prod_{i=1}^{2 j} \frac{1}{1+x_{(k+1) i}}\right)
\end{gathered}
$$

$$
\begin{gathered}
x_{(2 k+2) n+k+2}=x_{-k}\left(1-\frac{x_{-(2 k+1)}}{1+x_{-k}} \sum_{j=0}^{n} \prod_{i=1}^{2 j+1} \frac{1}{1+x_{(k+1) i-k}}\right) \\
\cdot \\
\cdot \\
x_{(2 k+2) n+2 k+2}=x_{0}\left(1-\frac{x_{-(k+1)}}{1+x_{0}} \sum_{j=0}^{n} \prod_{i=1}^{2 j+1} \frac{1}{1+x_{(k+1) i}}\right) .
\end{gathered}
$$

f) Suppose that $a_{1}=a_{k+2}=0$. By e) we have

$$
\begin{gather*}
\lim _{n \rightarrow \infty} x_{(2 k+2) n+1}=\lim _{n \rightarrow \infty} x_{-(2 k+1)}\left(1-\frac{x_{-k}}{1+x_{-k}} \sum_{j=0}^{n} \prod_{i=1}^{2 j} \frac{1}{1+x_{(k+1) i-k}}\right) \\
a_{1}=x_{-(2 k+1)}\left(1-\frac{x_{-k}}{1+x_{-k}} \sum_{j=0}^{\infty} \prod_{i=1}^{2 j} \frac{1}{1+x_{(k+1) i-k}}\right) \\
a_{1}=0 \Rightarrow \frac{1+x_{-k}}{x_{-k}}=\sum_{j=0}^{\infty} \prod_{i=1}^{2 j} \frac{1}{1+x_{(k+1) i-k}} \tag{7}
\end{gather*}
$$

Similarly,

$$
\begin{gather*}
\lim _{n \rightarrow \infty} x_{(2 k+2) n+k+2}=\lim _{n \rightarrow \infty} x_{-k}\left(1-\frac{x_{-(2 k+1)}}{1+x_{-k}} \sum_{j=0}^{n} \prod_{i=1}^{2 j+1} \frac{1}{1+x_{(k+1) i-k}}\right) \\
a_{k+2}=x_{-k}\left(1-\frac{x_{-(2 k+1)}}{1+x_{-k}} \sum_{j=0}^{\infty} \prod_{i=1}^{2 j+1} \frac{1}{1+x_{(k+1) i-k}}\right) \\
a_{k+2}=0 \Rightarrow \frac{1+x_{-k}}{x_{-(2 k+1)}}=\sum_{j=0}^{\infty} \prod_{i=1}^{2 j+1} \frac{1}{1+x_{(k+1) i-k}} \tag{8}
\end{gather*}
$$

From the equations (7) and (8),

$$
\begin{equation*}
\frac{1+x_{-k}}{x_{-k}}=\sum_{j=0}^{\infty} \prod_{i=1}^{2 j} \frac{1}{1+x_{(k+1) i-k}}>\frac{1+x_{-k}}{x_{-(2 k+1)}}=\sum_{j=0}^{\infty} \prod_{i=1}^{2 j+1} \frac{1}{1+x_{(k+1) i-k}} \tag{9}
\end{equation*}
$$

thus, $x_{-(2 k+1)}>x_{-k}$.
Suppose that $a_{k+1}=a_{2 k+2}=0$. From the equation (10) in e) follows, Proof of the equation (9) is similar and will be omitted.

$$
\begin{equation*}
\frac{1+x_{0}}{x_{-0}}=\sum_{j=0}^{\infty} \prod_{i=1}^{2 j} \frac{1}{1+x_{(k+1) i-k}}>\frac{1+x_{-0}}{x_{-(k+1)}}=\sum_{j=0}^{\infty} \prod_{i=1}^{2 j+1} \frac{1}{1+x_{(k+1) i-k}} \tag{10}
\end{equation*}
$$

thus, $x_{-(k+1)}>x_{0}$.
From here we obtain $x_{-(2 k+1)}>x_{-2 k}>\ldots>x_{-1}>x_{0}$. We arrive at a contradiction which completes the proof of theorem.

3. EXAMPLES

Example 3.1: Consider the following equation $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}$ which is special case of $k=1$.
If the initial conditions are selected as follows:

$$
x[-3]=2 ; x[-2]=3 ; x[-1]=4 ; x[0]=5 ;
$$

The following solutions are obtained:
$\mathrm{x}(\mathrm{n})=\{\quad 0.0327869,1.81188,3.08397,4.22581,0.0013321,1.78096,3.05336,4.19542$, $0.000055937,1.77969,3.05208,4.19414,2.35212 \times 10^{-6}, 1.77963,3.05203,4.19409,9.89108 \times 10^{-}$ ${ }^{8}, 1.77963,3.05203,4.19409,4.15939 \times 10^{-9}, 1.77963,3.05203,4.19409,1.7491 \times 10^{-10}, 1.77963$, 3.05203, 4.19409, $7.35532 \times 10^{-12}, 1.77963,3.05203,4.19409,3.09306 \times 10^{-13}, 1.77963,3.05203$, 4.19409,...\}

The graph of the solutions is given below.

Figure 3.1. $x(n)$ graph of the solutions.

Example 3.2: Consider the following equation $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}$ which is special case of $k=1$.
If the initial conditions are selected as follows:

$$
x[-3]=2 ; x[-2]=0.1 ; x[-1]=0.01 ; x[0]=0.001 ;
$$

The following solutions are obtained:
$x(n)=\{2,0.099998,0.009998,0.000998004,2,0.099996,0.00999601,0.000996013,1.99999$, 0.099994, 0.00999401, 0.000994027, 1.99999, 0.099992, 0.00999203, 0.000992044, 1.99999, 0.09999, 0.00999005, 0.000990066, 1.99999, 0.0999881, 0.00998807, 0.000988093, 1.99999, $0.0999861,0.0099861,0.000986123,1.99998,0.0999841,0.00998413,0.000984159,1.99998$, $0.0999822,0.00998216,0.000982198, \ldots\}$

The graph of the solutions is given below.

Figure 3.2. $x(n)$ graph of the solutions.

Example 3.3: Consider the following equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}}$ which is special case of $k=2$.
If the initial conditions are selected as follows:

$$
x[-5]=2 ; x[-4]=3 ; x[-3]=4 ; x[-2]=5 ; x[-1]=6 ; x[0]=7 ;
$$

The following solutions are obtained:
$x(n)=\{0.333333,0.428571,0.5,3.75,4.2,4.66667,0.0701754,0.0824176,0.0882353,3.5041$, $3.8802,4.28829,0.0155804,0.0168881,0.016685,3.45034,3.81576,4.21791$, 0.00350093 ,
$0.00350685,0.00319765,3.4383,3.80243,4.20447,0.0007888,0.000730224,0.000614404$, $3.43559,3.79965,4.20189,0.000177834,0.000152141,0.000118112,3.43498,3.79907, \ldots\}$

The graph of the solutions is given below.

Figure 3.3. $x(n)$ graph of the solutions

Example 3.4: Consider the following equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}}$ which is special case of $k=2$.
If the initial conditions are selected as follows:

$$
x[-5]=0.1 ; x[-4]=0.01 ; x[-3]=0.001 ; x[-2]=2 ; x[-1]=4 ; x[0]=0.000001
$$

The following solutions are obtained:
$x(n)=\left\{\quad 0.0333333, \quad 0.002, \quad 0.000999999, \quad 1.93548, \quad 3.99202, \quad 9.99001 \times 10^{-7}, 0.0113553\right.$, $0.00040064,0.000999998,1.91375,3.99042,9.98003 \times 10^{-7}, 0.00389714,0.0000802818$, $0.000999997,1.90632,3.9901,9.97006 \times 10^{-7}, 0.00134092,0.0000160882,0.000999996$, $1.90377,3.99003,9.9601 \times 10^{-7}, 0.000461785,3.22407 \times 10^{-6}, 0.000999995,1.90289,3.99002$, $\left.9.95015 \times 10^{-7}, 0.000159078,6.46104 \times 10^{-7}, 0.000999994,1.90259,3.99002,9.94021 \times 10^{-7}, \ldots\right\}$
The graph of the solutions is given below.

Figure 3.4. $x(n)$ graph of the solutions.

REFERENCES:

[1] Amleh A. M., Grove E. A., Ladas G., Georgiou D. A., On the recursive sequence $x_{n+1}=\alpha+\frac{x_{n-1}}{x_{n}}$, J. Math. Anal. Appl., 233, no. 2, (1999),790-798.
[2] Cinar C., On the positive solutions of the difference equation $x_{n+1}=\frac{x_{n-1}}{1+a x_{n} x_{n-1}}$, Appl. Math. Comp., 158 (3), (2004), 809-812.
[3] Cinar C., On the positive solutions of the difference equation $x_{n+1}=\frac{x_{n-1}}{-1+a x_{n} x_{n-1}}$, Appl. Math. Comp., 158 (3), (2004), 793-797.
[4] Cinar C., On the positive solutions of the difference equation $x_{n+1}=\frac{a x_{n-1}}{1+b x_{n} x_{n-1}}$, Appl. Math. Comp., 156 (3), (2004), 587-590.
[5] Elabbasy E. M., El-Metwally H., Elsayed E. M., On the difference equation $x_{n+1}=a x_{n}-\frac{b x_{n}}{c x_{n}-d x_{n-1}}$, Advances in Difference Equation, (2006), 1-10.
[6] Elabbasy E. M., El-Metwally H., Elsayed E. M., Qualitative behavior of higher order difference equation, Soochow Journal of Mathematics, 33(4), (2007), 861-873.
[7] Elabbasy E. M., El-Metwally H., Elsayed E. M., Global attractivity and periodic character of a fractional difference equation of order three, Yokohama Mathematical Journal, 53, (2007), 89-100.
[8] Elabbasy E. M., El-Metwally H., Elsayed E. M., On the difference equation $x_{n+1}=\frac{\alpha x_{n-k}}{\beta+\gamma \prod_{i=0}^{k} x_{n-i}}$, J. Conc. Appl. Math., 5(2), (2007), 101-113.
[9] Elabbasy E. M. and Elsayed E. M., On the Global Attractivity of Difference Equation of Higher Order, Carpathian Journal of Mathematics, 24 (2), (2008), 45-53.
[10] Elsayed E. M., On the Solution of Recursive Sequence of Order Two, Fasciculi Mathematici, 40, (2008), 5-13.
[11] Elsayed E. M., Dynamics of a Recursive Sequence of Higher Order, Communications on Applied Nonlinear Analysis, 16 (2), (2009), 37-50.
[12] Elsayed E. M., Solution and atractivity for a rational recursive sequence, Discrete Dynamics in Nature and Society, (2011), 17.
[13] Elsayed E. M., On the solution of some difference equation, Europan Journal of Pure and Applied Mathematics, 4 (3), (2011), 287-303.
[14] Elsayed E. M., On the Dynamics of a higher order rational recursive sequence, Communications in Mathematical Analysis, 12 (1), (2012), 117-133.
[15] Elsayed E. M., Solution of rational difference system of order two, Mathematical and Computer Modelling, 55, (2012), 378-384.
[16] Gibbons C. H., Kulenović M. R. S. and Ladas G., On the recursive sequence $x_{n+1}=\frac{\alpha+\beta x_{n-1}}{\chi+x_{n}}$, Math. Sci. Res. Hot-Line, 4, 2, (2000), 1-11.
[17] Kulenović M.R.S., Ladas G., Sizer W.S., On the recursive sequence $x_{n+1}=\frac{\alpha x_{n}+\beta x_{n-1}}{\chi x_{n}+\delta x_{n-1}}$ Math. Sci. Res. Hot-Line, 2, 5, (1998), 1-16.
[18] Stevic S., On the recursive sequence $x_{n+1}=\frac{x_{n-1}}{g\left(x_{n}\right)}$, Taiwanese J. Math., 6, 3, (2002), 405414.
[19] Şimşek D., Çınar C. and Yalçınkaya İ., On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}$, Int. J. Contemp. Math. Sci., 1, 9-12, (2006), 475-480.
[20] Şimşek D., Çınar C., Karataş R., Yalçınkaya İ., On the recursive sequence $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}}$, Int. J. Pure Appl. Math., 27, 4, (2006), 501-507.
[21] Şimşek D., Çınar C., Karataş R., Yalçınkaya İ., "n the recursive sequence $x_{n+1}=\frac{x_{n-5}}{1+x_{n-1} x_{n-3}}$, Int. J. Pure Appl. Math., 28, 1, (2006), 117-124.
[22] Şimşek D., Çınar C., Yalçınkaya İ., On The Recursive Sequence $x(n+1)=x[n-(5 k+9)] /$ $1+x(n-4) x(n-9) x[n-(5 k+4)]$, Taiwanese Journal of Mathematics, Vol. 12, 5, (2008), 10871098.
[23] Şimşek D., Doğan A., On A Class of Recursive Sequence, Manas Journal of Engineering, 2, 1, (2014), 16-22.
[24] Şimşek D., Eröz M., Solutions of The Rational Difference Equations $x_{n+1}=\frac{x_{n-3}}{1+x_{n} x_{n-1} x_{n-2}}$, Manas Journal of Engineering, 4, 1, (2016), 12-20.

[^0]: ${ }^{1 *}$ Corresponding Author: Şimşek D., email: dagistan.simsek@manas.edu.kg, dsimsek@selcuk.edu.tr

