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Abstract: In this paper the solutions of the following difference equation is examined, 
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where the initial conditions are positive real numbers. 

Keywords: Difference equation, period 2k+2 solution 
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Rasyonel Fark Denkleminin Çözümleri 
 

Özet: Aşağıdaki Rasyonel fark denkleminin çözümlerini incelendi. 
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1. INTRODUCTION 

Recently there has been a lot of interest in studying the periodic nature of  non-linear difference 

equations. For some recent results concerning among other problems, the periodic nature of 

scalar nonlinear difference equations see, [1-24]. 

Cinar, studied the following problems with positive initial values 
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for  n 0,1,2,...  in [2,3,4], respectively. 

In [18] Stevic assumed that 1   and solved the following problem 
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 for  n 0,1,2,...  

 

Where 1 0, (0, ).x x    Also, this results was generalized to the equation of the following form:  
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Where 1 0, (0, ).x x     

 

Simsek et. al., studied the following problems with positive initial values 
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for  n 0,1,2,...  in [19,20] respectively. 

In this paper we investigated the folloving nonlinear difference equation 
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where 3 2 1 0, , , (0, ).x x x x       
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2. MAİN RESULT 

Let x  be the unique positive equilibrum of Eq. (1), then clearly 

2 2
0 0

1

x
x x x x x x

x
       

  

We can obtain 0x  . 

Theorem 1. Consider the difference equation (1). Then the following statements are true. 

a)  The sequences (2 2) (2 1) (2 2) (2 ) (2 2)( ),  ( ),  ... , ( )k n k k n k k nx x x       are decreasing and there 

exist 1 2 2 2, ,..., 0ka a a    such that  
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b) 1 2 2 2 1 2 2 2( , ,..., , , ,..., ,...)k ka a a a a a   is a solution of equation (1) of period 2 2k  . 
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e)  The following formulas hold: 
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f)  If (2 2) 1 1 0k nx a     then (2 2) 2 0 as ,...,k n kx n     .If (2 2) 1 1 0k n k kx a      then 

(2 2) 2 2 0 as k n kx n      

Proof. a) Firstly, we consider the equation (1). From this equation we obtain 

1 (2 1)(1 )n n k n kx x x     . 

If (0, )n kx    , then (1 ) (1, )n kx    . Since 1 (2 1) ,  n n kx x n N    , we obtain that 
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b) 1 2 2 2 1 2 2 2( , ,..., , , ,..., ,...)k ka a a a a a   is a solution of equation (1) of period 2 2k  . 

c) In view of the equation (1), we obtain 
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Taking limit as n  on both sides of the above equality, we get 
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Then 

(2 2) 1 (2 2) 1lim lim 0 or . 0k n k n k k
n n

x x a a   
 

  . 

Similarly, 

(2 2) 1 (2 2) 2 2 1 2 2lim lim 0 or . 0k n k k n k k k
n n

x x a a       
 

  . 

d) If there exist 0n N  such that 1n k nx x   for all 0n n , then 

1 1 2 2 1... ,..., ...k k k ka a a a a       . Since 1 1 2 2. 0,..., . 0k k ka a a a    we obtain the result. 

e) Subracting (2 1)n kx    from the left and right-hand sides of equation (1) we obtain 
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holds. Replacing n   by 2 j   in (2) and summing from 0j   to j n  we obtain 
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Also, replacing n   by 2 1j   in (2) and summing from 0j   to j n  we obtain  

2 1

(2 2) 2 1 (2 1)
0 1

( 1)

2 1

(2 2) 2 2 0 1 ( 1)
0 1

( 1)

1
( )   ( 0,1,2,...)

1

1
( )   ( 0,1,2,...)

1

jn

k n k k k
j i

k i k

jn

k n k k k
j i

k i k

x x x x n
x

x x x x n
x



     
 

 



     
 

 

 

 

   


   


 (4) 
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From the equations (7) and (8), 
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thus, (2 1)k kx x   . 

Suppose that 1 2 2 0.k ka a   From the equation (10) in e)  follows, Proof of the equation (9) is 

similar and will be omitted. 
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thus, ( 1) 0kx x   . 

From here we obtain (2 1) 2 1 0...k kx x x x       . We arrive at a contradiction which completes 

the proof of theorem. 

3. EXAMPLES 

Example 3.1: Consider the following equation 3
1
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n
n

n

x
x

x









 which is special case of 1k  .  

If the initial conditions are selected as follows: 

𝑥[−3]=2;𝑥[−2]=3;𝑥[−1]=4;𝑥[0]=5; 

The following solutions are obtained: 

x(n)={ 0.0327869, 1.81188, 3.08397, 4.22581, 0.0013321, 1.78096, 3.05336, 4.19542, 

0.000055937, 1.77969, 3.05208, 4.19414, 2.35212x10
-6

, 1.77963, 3.05203, 4.19409, 9.89108x10
-

8
, 1.77963, 3.05203, 4.19409, 4.15939x10

-9
, 1.77963, 3.05203, 4.19409, 1.7491x10

-10
, 1.77963, 

3.05203, 4.19409, 7.35532x10
-12

, 1.77963, 3.05203, 4.19409, 3.09306x10
-13

,1.77963,3.05203, 

4.19409,…} 

 

The graph of the solutions is given below. 

 

 

Figure 3.1.  x(n) graph of the solutions. 
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Example 3.2: Consider the following equation 3
1

11

n
n

n

x
x

x









 which is special case of 1k  .  

If the initial conditions are selected as follows: 

𝑥[−3]=2;𝑥[−2]=0.1;𝑥[−1]=0.01;𝑥[0]=0.001; 

The following solutions are obtained: 

x(n)={2, 0.099998, 0.009998, 0.000998004, 2, 0.099996, 0.00999601, 0.000996013, 1.99999, 

0.099994, 0.00999401, 0.000994027, 1.99999, 0.099992, 0.00999203, 0.000992044, 1.99999, 

0.09999, 0.00999005, 0.000990066, 1.99999, 0.0999881, 0.00998807, 0.000988093, 1.99999, 

0.0999861, 0.0099861, 0.000986123, 1.99998, 0.0999841, 0.00998413, 0.000984159, 1.99998, 

0.0999822, 0.00998216, 0.000982198, …} 

The graph of the solutions is given below. 

 

Figure 3.2.  x(n) graph of the solutions. 

 

Example 3.3: Consider the following equation 5
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 which is special case of 2k  .  

If the initial conditions are selected as follows: 

𝑥[−5]=2;𝑥[−4]=3;𝑥[−3]=4;𝑥[−2]=5;𝑥[−1]=6;𝑥[0]=7; 

The following solutions are obtained: 

x(n)={ 0.333333, 0.428571, 0.5,3.75, 4. 2, 4.66667, 0.0701754, 0.0824176, 0.0882353, 3.5041, 

3.8802, 4.28829, 0.0155804, 0.0168881, 0.016685, 3.45034, 3.81576, 4.21791,         0.00350093, 
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0.00350685, 0.00319765, 3.4383, 3.80243, 4.20447, 0.0007888, 0.000730224, 0.000614404, 

3.43559, 3.79965, 4.20189, 0.000177834, 0.000152141, 0.000118112,3 .43498,3.79907,…} 

The graph of the solutions is given below. 

 

 

Figure 3.3.  x(n) graph of the solutions 

 

Example 3.4: Consider the following equation 5
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21
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n

n

x
x

x









 which is special case of 2k  .  

If the initial conditions are selected as follows: 

𝑥         𝑥          𝑥           𝑥       𝑥       𝑥             

The following solutions are obtained: 

x(n)={ 0.0333333, 0.002, 0.000999999, 1.93548, 3.99202, 9.99001x10
-7

, 0.0113553, 

0.00040064, 0.000999998, 1.91375, 3.99042, 9.98003x10
-7 

,0.00389714, 0.0000802818, 

0.000999997, 1.90632, 3.9901, 9.97006x10
-7

, 0.00134092, 0.0000160882, 0.000999996, 

1.90377, 3.99003, 9.9601x10
-7

, 0.000461785, 3.22407x10
-6

, 0.000999995, 1.90289, 3.99002, 

9.95015x10
-7

, 0.000159078, 6.46104x10
-7

, 0.000999994, 1.90259, 3.99002, 9.94021x10
-7

, …} 

The graph of the solutions is given below. 
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Figure 3.4.  x(n) graph of the solutions. 
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