

On Some Properties of Δ^m -Statistical Convergence in a Paranormed Space

Çiğdem Asma BEKTAŞ^{1*}, Emine ÖZÇELİK²

¹ Fırat Üniversitesi, Fen Fakültesi, Matematik Bölümü, Elazığ, Türkiye. ² Fırat Üniversitesi, Fen Fakültesi, Matematik Bölümü, Elazığ, Türkiye. *cbektas@firat.edu.tr

Abstract

In this study, we introduce the concepts of strongly (Δ^m, p) -Cesàro summability, Δ^m -statistical Cauchy

sequence and Δ^m -statistical convergence in a paronormed space. We give some certain properties of these concepts and some inclusion relations between them.

Keywords: Statistical convergence, statistical Cauchy, paranormed space, difference sequence.

1. BACKGROUND AND PRELIMINARIES

Fast [1] and Steinhaus [2] introduced the concept of statistical convergence for sequences of real numbers. Several authors studied this concept with related topics [3-5].

The asymptotic density of $K \subset N$ is defined as,

$$\delta(K) = \lim_{n \to \infty} \frac{1}{n} \Big| \big\{ k \le n : k \in K \big\} \Big|$$

where K be a subset of the set of natural numbers N and denoted by $\delta(K)$. |.| indicates the cardinality of the enclosed set.

A sequence (\mathbf{x}_k) is called statistically covergent to L provided that

$$\lim_{n\to\infty}\frac{1}{n}\Big|\big\{k\leq n: \big|x_{_k}-L\big|>\epsilon\big\}\big|=0$$

for each $\varepsilon > 0$. It is denoted by $st - \lim_{k \to \infty} x_k = L$.

A sequence (x_k) is called statistically Cauchy sequence provided that there exist a number $N = N(\varepsilon)$ such that

$$\lim_{n \to \infty} \frac{1}{n} \Bigl| \bigl\{ k \leq n : \bigl| \boldsymbol{x}_{_{\boldsymbol{k}}} - \boldsymbol{x}_{_{\boldsymbol{N}}} \bigr| \geq \epsilon \bigr\} \Bigr| = 0$$

for every $\varepsilon > 0$.

Definition 1.1 $f:[0,\infty) \to [0,\infty)$ is called the modulus function which satisfies the following conditions. For $\forall x, y \in [0,\infty)$

- **i**) $f(x) = 0 \Leftrightarrow x = 0$,
- **ii)** $f(x+y) \le f(x) + f(y)$,
- **iii**) *f* is increasing function,
- iv) f is continuous from the right at 0.

Definiton 1.2 [1] (x_k) is called convergent (or g-convergent) to L in a paranormed space (X,g) provided that $k_0 \in \mathbb{Z}^+$ such that $g(x_k - L) < \varepsilon$ for $k \ge k_0$ for every $\varepsilon > 0$.

It is written by $g - \lim_{k \to \infty} x_k = L$ and L is called the g-limit of the sequence (x_k) .

Definiton 1.3 [1] (\mathbf{x}_k) is called statistically covergent to *L* in a paranormed space (X,g) if for each $\varepsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{n}\Big|\big\{k\leq n:g(x_k-L)>\varepsilon\big\}\big|=0.$$

It is written by $g(st) - \lim_{k \to \infty} x_k = L$. The set of these sequences is indicated by S_g .

Definiton 1.4 [1] A sequence (\mathbf{x}_k) is called statistically Cauchy sequence in a paranormed space (X,g) provided that there is a number $\mathbf{N} = \mathbf{N}(\varepsilon)$ such that

$$\lim_{n\to\infty}\frac{1}{n}\left|\left\{j\le n:g(x_j-x_N)\ge \varepsilon\right\}\right|=0$$

for every $\varepsilon > 0$. In brief we called such as these sequences g(st)-Cauchy.

2. MAIN RESULTS

Definiton 2.1 (x_k) is called Δ^m -convergent (or $g(\Delta^m)$ -convergent) to L in a paranormed space (X,g) provided that $k_0 \in \mathbb{Z}^+$ such that $g(\Delta^m x_k - L) < \varepsilon$ for $k \ge k_0$ and for every $\varepsilon > 0$.

In this case it is written by $g(\Delta^m) - \lim_{k \to \infty} x_k = L$ and L is called the $g(\Delta^m)$ -limit of the sequence (x_k) .

Definiton 2.2 [6] (\mathbf{x}_k) is called Δ^m -statistically convergent to L in a paranormed space (X,g) if for each $\varepsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{n}\Big|\big\{k\le n:g(\Delta^m x_k-L)>\varepsilon\big\}\Big|=0.$$

In this case, we write $g(st, \Delta^m) - \lim_{k \to \infty} x_k = L$. The set of these sequences is indicated by $S_g(\Delta^m)$.

Definiton 2.3 (\mathbf{x}_k) is called Δ^m -statistically Cauchy (or $g(st, \Delta^m)$ -Cauchy) sequence in a paranormed space (X, g) provided that there exists a number $\mathbf{N} = \mathbf{N}(\varepsilon)$ such that

$$\lim_{n\to\infty}\frac{1}{n}\Big|\big\{k\le n:g(\Delta^m x_k-\Delta^m x_N)\ge \varepsilon\big\}\Big|=0$$

for every $\varepsilon > 0$.

Theorem 2.4 If (\mathbf{x}_k) is Δ^m -statistically convergent in a paranormed space (X,g), then its $g(st,\Delta^m)$ limit value is unique.

Theorem 2.5 If $g(\Delta^m) - \lim_{k \to \infty} x_k = L$ then $g(st, \Delta^m) - \lim_{k \to \infty} x_k = L$ But converse case is not true.

Proof. Assume that $g(\Delta^m) - \lim_{k \to \infty} x_k = L$. Then for every $\varepsilon > 0$, there is $N \in \mathbb{Z}^+$ such that $g(\Delta^m x_n - L) < \varepsilon$ for all $n \ge N$. We have

$$A(\varepsilon) = \left\{ k \in \mathbb{N} : g(\Delta^m x_k - L) \ge \varepsilon \right\} \subset \left\{ 1, 2, 3, \ldots \right\}$$

and $\delta(\mathbf{A}(\varepsilon)) = 0$. Hence, $g\left(st, \Delta^{m}\right) - \lim_{k \to \infty} x_{k} = L$.

Let us show the converse case is not true with an example.

Example 2.1

Let choose $p_k = \frac{1}{k}$ for all $k \in \mathbb{N}$. Then, we have

$$\ell\left(\Delta^{\mathrm{m}}, p\right) = \left\{ x = (x_{k}) : \sum_{k=0}^{\infty} \left| \Delta^{\mathrm{m}} x_{k} \right|^{\frac{1}{k}} < \infty \right\}.$$

The paranorm on this space is

$$g(\mathbf{x}) = \left(\sum_{k=0}^{\infty} \left| \Delta^m \mathbf{x}_k \right|^{\frac{1}{k}} \right).$$

If (x_k) defined by

$$\Delta^{m} x_{k} = \begin{cases} k, & \text{if } k = n^{2}, n \in \mathbb{N} \\ 0, & \text{otherwise} \end{cases}$$

we have

$$\mathbf{K}(\varepsilon) = \left| \left\{ \mathbf{k} \le \mathbf{n} : \mathbf{g}(\Delta^m \mathbf{x}_k) \ge \varepsilon \right\} \right| \quad , 0 < \varepsilon < 1 \, .$$

So we see that

$$g(\Delta^{m} x_{k}) = \begin{cases} k^{\frac{1}{k}}, & k = n^{2}, n \in \mathbb{N} \\ 0, & otherwise \end{cases}$$

and

$$\lim_{k \to \infty} g(\Delta^m x_k) = \begin{cases} 1, & \text{if } k = n^2, n \in \mathbb{N} \\ 0, & \text{otherwise} \end{cases}$$

Therefore (x_k) is not Δ^m -convergent to a number in (X,g). Since $\delta(\mathbf{K}(\varepsilon)) = 0$, (x_k) is Δ^m -statistically convergent to 0 in (X,g).

Theorem 2.6 Let
$$g(st, \Delta^m) - \lim_{k \to \infty} x_k = L_1$$
 and $g(st, \Delta^m) - \lim_{k \to \infty} x_k = L_2$. Then
i) $g(st, \Delta^m) - \lim_{k \to \infty} (x_k \mp y_k) = L_1 \mp L_2$,
ii) $g(\Delta^m, st) - \lim_{k \to \infty} \alpha x_k = \alpha L_1, \ \alpha \in \mathbb{R}$.

Theorem 2.7 (\mathbf{x}_k) in a paranormed space (X, \mathbf{g}) is Δ^m -statistically convergent to L if and only if provided that

$$\mathbf{K} = \{ \mathbf{k}_1 < \mathbf{k}_2 < \mathbf{k}_3 < \dots < \mathbf{k}_n < \dots \} \subseteq \mathbb{N} \text{ with } \delta(\mathbf{K}) = 1$$

and $g(\Delta^m x_{k_n} - L) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Assume that (x_k) is Δ^m -statistically convergent to L, that is, $g(st, \Delta^m) - \lim_{k \to \infty} x_k = L$. Now, write

$$K_r = \left\{ n \in \mathbb{N} : g\left(\Delta^m x_{k_n} - L\right) \ge \frac{1}{r} \right\}, \quad M_r = \left\{ n \in \mathbb{N} : g\left(\Delta^m x_{k_n} - L\right) < \frac{1}{r} \right\} \quad \text{for} \quad r = 1, 2, \dots \quad \text{. Then}$$

 $\delta(K_r) = 0$. Hence,

$$M_1 \supset M_2 \supset M_3 \supset \dots \supset M_i \supset M_{i+1} \supset \dots$$
(1)

and

$$\delta(M_r) = 1, r = 1, 2, \dots$$
 (2)

We need to prove (x_{k_n}) is $g(\Delta^m)$ -convergent to L for $n \in M_r$. On contrary suppose that (x_{k_k}) is not $g(\Delta^m)$ -convergent to L. Therefore, there is $\varepsilon > 0$ such that $g(\Delta^m x_{k_n} - L) \ge \varepsilon$ for infinitely many terms. Let $M_{\varepsilon} = \left\{ n \in \mathbb{N} : g(\Delta^m x_{k_n} - L) < \varepsilon \right\}$ and $\varepsilon > 1/r$, $r \in \mathbb{N}$. Then $\delta(M_{\varepsilon}) = 0$ and by (1), $M_r \subset M_{\varepsilon}$. Hence, $\delta(M_r) = 0$. This contradicts (2). Consequently (x_{k_n}) is $g(\Delta^m)$ -convergent to L. Now we assume that there is a set $\mathbf{K} = \{\mathbf{k}_1 < \mathbf{k}_2 < \mathbf{k}_3 < \dots < \mathbf{k}_n < \dots\}$ with $\delta(\mathbf{K}) = 1$, such that $g(\Delta^m) - \lim_{n \to \infty} x_{k_n} = L$. Then, $N \in \mathbb{Z}^+$ such that $g(\Delta^m x_{k_n} - L) < \varepsilon$ for n > N. We choose $K_{\varepsilon} = \{n \in \mathbb{N} : g(\Delta^m x_n - L) \ge \varepsilon\}$ and $\mathbf{K}^c = \{\mathbf{k}_{N+1}, \mathbf{k}_{N+2}, \dots\}$. $\delta(\mathbf{K}^c) = 1$ and $\mathbf{K}_{\varepsilon} \subseteq \mathbb{N} - \mathbf{K}^c$. This implies that $\delta(K_{\varepsilon}) = 0$. Hence, $g(st, \Delta^m) - \lim_{k \to \infty} x_k = L$.

Theorem 2.8 (x_k) in a paranormed space (X,g) is Δ^m -statistically convergent if and only if it is Δ^m -statistically Cauchy.

2. STRONGLY SUMMABILITY IN A PARANORMED SPACE WITH A MODULUS FUNCTION

Definition 3.1 (x_k) is called strongly (Δ^m, p) -Cesàro summable to L in a paranormed space (X, g)(0 if

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n \left(g\left(\Delta^m x_j-L\right)\right)^p=0.$$

This definition is a special case of Definition 3.5 which was given by Altundağ in [6]. In this case, we write

$$x_k \to L[C_1, g, \Delta^m]_p.$$

L is called the $[C_1, g, \Delta^m]_p$ -limit of (x_k) .

Theorem 3.2 If $x_k \to L[C_1, g, \Delta^m]_p$ $(0 , then <math>(x_k)$ is Δ^m -statistically convergent to L in a paranormed space (X, g).

Proof. Let $x_k \to L[C_1, g, \Delta^m]_p$. We have the inequality

$$\frac{1}{n}\sum_{k=1}^{n} \left(g\left(\Delta^{m} x_{k}-L\right)\right)^{p} \geq \frac{1}{n}\sum_{\substack{k=1\\\left(g\left(\Delta^{m} x_{k}-L\right)\right)^{p} \geq \varepsilon}}^{n} \left(g\left(\Delta^{m} x_{k}-L\right)\right)^{1}$$
$$\geq \frac{\varepsilon^{p}}{n} |K_{\varepsilon}|$$

as $n \to \infty$. Since $\frac{1}{n} \sum_{k=1}^{n} \left(g\left(\Delta^{m} x_{k} - L \right) \right)^{p} \to 0$, we have $\lim_{n \to \infty} \frac{1}{n} |K_{\varepsilon}| = 0$ and so $\delta(K_{\varepsilon}) = 0$, where $K_{\varepsilon} = \left\{ k \le n : g\left(\left(\Delta^{m} x_{k} - L \right) \right)^{p} \ge \varepsilon \right\}$. So (x_{k}) is Δ^{m} -statistically convergent to L in a paranormed space (X, g).

Theorem 3.3 If Δ^m -statistically convergent to L in a paranormed space (X,g) and $(x_k) \in \ell_{\infty}$, then $x_k \to L[C_1, g, \Delta^m]_p$.

Proof. Suppose that $(x_k) \in \ell_{\infty}$ and Δ^m -statistically convergent to L in a paranormed space (X,g). Then, we have $\delta(\mathbf{K}_{\varepsilon}) = 0$ for $\varepsilon > 0$. Since $(\mathbf{x}_k) \in \ell_{\infty}$, there is a M > 0 such as $g(\Delta^m \mathbf{x}_k - \mathbf{L}) \leq \mathbf{M}$ (k = 1, 2, 3, ...). We obtain the equality

$$\begin{split} \frac{1}{n}\sum_{k=1}^{n} & \left(g\left(\Delta^{m} x_{k}-L\right)\right)^{p} = \frac{1}{n}\sum_{k=1}^{n} \left(g\left(\Delta^{m} x_{k}-L\right)\right)^{p} + \frac{1}{n}\sum_{k=1}^{n} \left(g\left(\Delta^{m} x_{k}-L\right)\right)^{p} \\ & = S_{1}(n) + S_{2}(n) \end{split}$$

where

$$S_1(n) = \frac{1}{n} \sum_{\substack{k=1\\k \notin K_{\varepsilon}}}^n \left(g\left(\Delta^m x_k - L \right) \right)^p$$

and

$$\mathbf{S}_{2}(\mathbf{n}) = \frac{1}{n} \sum_{\substack{k=1\\k \in K_{\varepsilon}}}^{n} \left(g\left(\Delta^{m} \mathbf{x}_{k} - L \right) \right)^{p}.$$

If $k \notin K_{\varepsilon}$, then $S_1(n) < \varepsilon^p$. Moreover, we have

$$S_2(n) \leq \left(\sup \left(g \left(\Delta^m \mathbf{x}_k - L \right) \right) \right) \cdot \left(\frac{|\mathbf{K}_{\varepsilon}|}{n} \right) \leq \mathbf{M} \cdot \frac{|\mathbf{K}_{\varepsilon}|}{n} \to 0$$

as $n \to \infty$ and for $k \in K_{\varepsilon}$. Since $\delta(K_{\varepsilon}) = 0$, $x_k \to L[C_1, g, \Delta^m]_p$.

Definition 3.4 (x_k) is called strongly (Δ^m, p) -Cesàro summable to L with respect to a modulus function f in a paranormed space (X,g) provided that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\left(g\left(\Delta^{m} x_{k} - L \right) \right)^{p} \right) = 0 \quad \left(0$$

and we write $x_k \to L(w(f, g, \Delta^m, p))$. We note that if we choose $p_k = p$ in Definition 3.5 which was given in [6] we obtain the definition of strong (Δ^m, p) -Cesàro summability.

Corollary 3.5

i) Let $x_k \to L(w(f, g, \Delta^m, p))$ and f be any modulus function. Then, (x_k) is Δ^m -statistically convergent to L in a paranormed space (X, g).

ii) A modulus function f is bounded if and only if $S_{p}(\Delta^{m}) = w(f, g, \Delta^{m}, p)$.

4. CONCLUSION

In this paper, the concepts of strongly (Δ^m, p) -Cesàro summability, Δ^m -statistical Cauchy sequence and $\Delta^{\rm m}$ -statistical convergence in a paronormed space are examined. Some new properties of these concepts in paranormed spaces are obtained.

REFERANSLAR

- [1] Fast, H., 1951. Sur la convergence statistique, Colloq. Math., 2, 241-244.
- [2] Steinhaus, H., 1951. Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2, 73-74.
- [3] Fridy, J. A., 1985. On statistical convergence, Analysis, 5, 301-313.
- [4] Šalát, T., 1980. On statisticaly convergent sequences of real numbers, Math. Slovaca, 30, 139-150.
- [5] Kolk, E., 1991. The Statistical convergence in Banach spaces, Tartu Ül. Toimetised, 928, 41-52.
- [6] Altundağ, S., 2013. On generalized difference lacunary statistical convergence in paranormed space, J. Inequal. Appl., 2013:256.
- [7] Ercan, S., 2018. On weighted weak statistical convergence, Konuralp Journal of Mathematics, 6, 194-199.
- [8] Alotaibi, A., Alroqi, M. A. 2012. Statistical convergence in a paranormed space, J. Inequal. Appl., 2012:39, 6 pp.
- [9] Mohammed, A., Mursaleen, M. 2013. λ-statistical convergence in paranormed space, Abstr. Appl. Anal. Art. ID 264520, 5 pp.
- [10] Ercan, S., 2018. On the statistical convergence of order α in paranormed space, Symmetry, 10, 483.
- [11] Colak, R., Bektas, C. A., Altınok, H., Ercan, S., On inclusion relations between some sequence spaces, Int. J. Anal. 2016, Art. ID 7283527, 4 pp.
- [12] Nakano, H. 1953. Concave modulars, J. Math. Soc. Japan 5, 29-49.
- [13] Ercan, S., Altın, Y., Bektaş, Ç., 2018. On weak λ -statistical convergence of order α , U.P.B. Sci. Bull., Series A, 80(2), 215-226.
- [14] Et, M., Colak, R. 1995. On some generalized difference sequence spaces, Soochow J. Math., 21(4) 377-386.
- [15] Ercan, S., Bektaş, Ç., 2015. Some generalized difference sequence spaces of non absolute type, General Mahematics Notes, 27(2), 37-46.
- [16]F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monograph, İstanbul-2012, ISBN: 978-1-60805-420-6.
- [17] Ercan, S., 2018. Some Cesaro-type summability and statistical convergence of sequences generated by fractional difference operator, AKU J. Sci. Eng., 18, 011302 (125-130)

Geliş/Received: 31 Ağu 2018/31 Aug 2018 Kabul Ediliş/Accepted: 3 Ara 2018/3 Dec 2018