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Abstract

The total irregularity of a simple undirected graph G is defined as
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denotes the degree of a vertex uev (G) The Indu-Bala product of G, and G, is denoted by G.VG, and is obtained from two

disjoint copies of the join G, vG

2 of G, and G, by joining the corresponding vertices in the two copies of GZ. In this paper, the

total irregularity of G,VG, is obtained in terms of the total irregularities of G, and GZ.
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1. INTRODUCTION

In this paper, finite, simple and undirected graphs
G =(V,E) with vertex set V , edge set E are considered.

In [1] the total irregularity of a graph is defined as

1 (6) =~ X, ()~ (v)]

where d, (u) denotes the degree of a vertex u eV (G).

This parameter has attracted much attention. For recent
related work on total irregularity, we refer the reader to [2-
3,4-7,8-13] and the references therein.

Recently, in [14], a new graph operation, so-called Indu-Bala
product of graphs, is defined by Indulal and Balakrishnan.

The join of two disjoint graphs G, and G, with disjoint
vertex sets V (G,) and V (G,) and edge sets E(G,) and
E(G,) is the graph G=G, +G, with vertex set
V(G)=V(G,)uV(G,) and edge set
E(G)=E(G,)UE(G,)u{(u,v):ueV(G),veV(G,)}.

Let V (G,) :{ul,uz,...,un]} and V (G,) = {vl,vz,...,v%}.
The Indu-Bala product G VG, of G, and G, is obtained by

taking a disjoint copy G, v G, of G, v G, with vertex sets

V(Gl'):{ul',uz',...,un]'} and V(Gz'):{vl',vz',...,vnz'}

and then making v, adjacent with vi' foreach i=1,2,...,n,

By the definition of Indu-Bala product, for every vertex u,,

v,, u’,and vj' (1<i<n, 1< j<n,),itholds that

dG,vc—;2 (ui ) = dG]vGZ (Ui’) = dGl (Ui)+ n,, forl<i< n;
dG,VGQ (Vj ) = de,VGQ (V,-,) = dez (Vj)+ n+1,forl<j<n,.
In this paper, the total irregularity of Indu-Bala product of

graphs are computed and exact formula in terms of the total
irregularities of the underlying graphs is derived.

2. MAIN RESULTS

Theorem 2.1. Let G, and G, be graphs with n_and n,
vertices, respectively. Then

i (G,VG, ) = 4(irrl (G,)+ir, (GZ)+ii

[ERE

d (u)+n, (4, (v.)+n1+1)\]-

Proof. The vertex set of G, VG, can be partitioned into four
subsets as
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V. ={u eV(GVG,):u eV (G)} (1<i<n),
V,={v, eV(GVG,):v, eV (G,)} (1<i<n,),
V,={v ev(6vG,):v ev(c) )} (1<i<n,),

V,={u ev(6ve,):u ev (6 )} (1<i<n).

From the definition of graph total irregularity, it follows that
1
o ZUEVI,VEV‘ dG,VG2 (U ) - dGIVGz (V)| '

irr (GVG,) =
2 (1=ij=4)
The contribution of the vertices in V, to the total irregularity

of G,VG, is given by

ir; (GG, ) =%Zu o

<<<<<

ave, (W)= (V)]

We start to compute with

1 LY
Ezu,vaﬁ doyve, (u)-d ZZ|d01VGz

i=1 j=1
i

NII—‘

Ao, (V; )|

avs, ( |

By substituting the values of parameters in terms of the
degrees of the vertices of G, , we compute

- 1,1(‘* ) #n)-(0, () e ) =) XTP. ()9, ()
=20 io)lde (W) =dg (V)[=im (G) . ®
2% e (0= 0] =222 ()l (0,)

i1 j=1

By substituting the values of parameters in terms of the
degrees of the vertices of G, and G, , we receive

——ZZK (ui)+n2)—(dez (vj)+n1+1)|. 2)
3 Tl )0, )= T )0 ()

Since  d,. (V) =0 (vi') for wv, eV(G,) and
w, eV (Gz') (1<i<n,),we get the same equality in (2).
1 1388 ,

gzmﬂ EZZ : (“, )

Since g, (U) =0, (ui’) for vu eV(G,) and

de,vsz (U) - dG,x(;Z (V)‘ = dG,x(;Z (u| )_ dG‘VG

vu' eV (Gl') , we get the same equality in (1).

irr. (GVG,) =2irr (G,)+ ii]ds (u,)+n, —(dGz (v,)+n, +1)|.

=1 j=1

The contribution of the vertices in V, to the total irregularity

of G,VG, is given by
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. 1
II’I’[Z (61VG2):EZuV vev, GVG (U) dGVG (V)|

We start to compute with

Tl ()=t =2 (1) (4)
——ZZ|(d (u)+n,+1)=(dg (v,)+n,)- @3)
X e (0)- %4@\——2@ ove, (4) =0, (¥,)]

By substituting the values of parameters in terms of the
degrees of the vertices of G,, we receive

:%ii}‘(ds (u)+n, +1)—(dGZ (vJ )+n1 +1)‘ :%22‘% (u‘)—dez (vl )‘

1 .
:EZu,VE\/(GZ) dG2 (u)_dc2 (V)| = ”’r; (Gz) (4)
STl ()=t )= T s (0) - (1)
=%”2]:21‘(ds (u‘)+n]+1)—(d67 (u,)+n, +1 ‘ Zz‘d )‘

1 .
=2 2olds (-d, ) =irr(G,). ©
ST e ()= =2 T D e (1) (1))
=—ZZ|(d (u)+n, +1) ( ( ) 2). (6)

By the equations (3), (4), (5) and (6), we compute
S |)+n1+1_(d6\(vj)+n2)'

Also, the contribution of the vertices in V, to the total

irregularity of G VG, is given by

1
E Zueva‘ve\/‘ dGNGZ (u) - dG]VG2 (V)| *

(1<i<a)

ir, (G,VG, ) =

We start to compute with

STl )-8 0= S (o) (4)
XA @) (o ()en) @
3 Tl 00 = X (0) 0 ()

S Ef o), () en 1) < 3. ()6 (o)

- EZMJ d, (u)-dg (V)] =i (G,). ®
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fz o (W) =0y (V)] = ggsmp)emmd

2 11(d (u)+n, +1) ( Z(uj)+nﬁl)‘=2P1 2. I)—dGZ(uJ)
:EZU:VEV(GZ) dG2 (u)_de2 (V)| = il’l" (Gz) (9)
Pl (-0 =TT ()0 ()
3 (e @)en ) -(, (v)+n). a0

i=1 j=1

Hence, we receive
"y

% 12 )+ +1- (dl( j)+n2).

=1

ire, (G\VG, ) =2irr,(

The contribution of the vertices in V, to the total irregularity
of GVG, is given by

i (GVG,) = %Z

(asi<e)

We start to compute with

dcs,ve2 (u)_dqve2 (V)| '

izﬁM%mw»%mwkiii%m@qwme
finw(wm)(() e 2; -4, (u)

1 ]
- EZU‘VE\/(GI) dg (u)—dsl (v)| =irr (G,). (11)
EO N S (VR I) (-5 3) o R () R O

i1 j=1

——Z}JZ;K (ui)+n2)—(dez(vj)+n1+1)|.
ZZ o (07) oo (V)

1
— d

since d.,. (v,)=d.. (vj') for wv, eV (G,) and

(12)

e, () =0 (V)] =

W, eV (GZ') (1< j<n,), we get the same equality in
(12).

=% e () ()] ;;wJJ 0o (v))
550, )00, ) o) 255, )0, ()
= 1Zuysv(el) dG1 (u)_dG1 (V)| = irrl (Gl) (13)

2
Hence,

i, (G,VG,) = 2irr, (Gl)+nznzz‘(dG‘ (u)+ nz)—(dez (vI )+ n, +1)‘.

i1 j=1

Summing the contributions of the vertexsets V,, V,, V, and
V 1

,» we finally obtain the desired result of

i (G,VG,) = z irr, (G,VG,). Thus, the proof holds.

i=1
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3. CONCLUDING REMARKS

Graph products play a significant role in pure and applied
mathematics, and computer science and many of the
problems can be easily handled if the related underlying
graphs are regular or close to regular [4]. Therefore in many
applications and problems, it is of great importance to know
how irregular a given graph is.

We focus our investigation to the study of how the total
irregularity of a graph changes with operations based on
graph products. Indu-Bala product of graphs is a novel graph
operation. In this paper, we consider the total irregularity of
simple undirected graphs under Indu-Bala product. Exact
formula is given to compute the total irregularity of Indu-
Bala product of graphs in terms of the total irregularities and
vertex degrees of underlying graphs.
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