Total Irregularity of Indu-Bala Product of Graphs

*Zeynep Nihan Berberler
*Faculty of Science, Department of Computer Science, Dokuz Eylul University, 35160, Izmir/TURKEY, zeynep.berberler@deu.edu.tr,

Research Paper

Received Date: 04.07.2017
Accepted Date: 07.08.2018

Abstract

The total irregularity of a simple undirected graph G is defined as $\operatorname{irr}_{t}(G)=\frac{1}{2} \sum_{u, v \in V(G)}\left|d_{G}(u)-d_{G}(v)\right|$, where $d_{G}(u)$ denotes the degree of a vertex $u \in V(G)$. The Indu-Bala product of G_{1} and G_{2} is denoted by $G_{1} \nabla G_{2}$ and is obtained from two disjoint copies of the join $G_{1} \vee G_{2}$ of G_{1} and ${ }^{G_{2}}$ by joining the corresponding vertices in the two copies of ${ }^{G_{2}}$. In this paper, the total irregularity of $G_{1} \nabla G_{2}$ is obtained in terms of the total irregularities of G_{1} and G_{2}.

Keywords: Irregularity of a graph; Total irregularity of a graph

1. INTRODUCTION

In this paper, finite, simple and undirected graphs $G=(V, E)$ with vertex set V, edge set E are considered.

In [1] the total irregularity of a graph is defined as

$$
\operatorname{irr}_{t}(G)=\frac{1}{2} \sum_{u, v \in V(G)}\left|d_{G}(u)-d_{G}(v)\right|,
$$

where $d_{G}(u)$ denotes the degree of a vertex $u \in V(G)$.
This parameter has attracted much attention. For recent related work on total irregularity, we refer the reader to [2-$3,4-7,8-13$] and the references therein.

Recently, in [14], a new graph operation, so-called Indu-Bala product of graphs, is defined by Indulal and Balakrishnan. The join of two disjoint graphs G_{1} and G_{2} with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ is the graph $G=G_{1}+G_{2}$ with vertex set $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right) \quad$ and edge set $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{(u, v): u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$. Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{2}}\right\}$. The Indu-Bala product $G_{1} \nabla G_{2}$ of G_{1} and G_{2} is obtained by
taking a disjoint copy $G_{1}^{\prime} \vee G_{2}^{\prime}$ of $G_{1} \vee G_{2}$ with vertex sets $V\left(G_{1}^{\prime}\right)=\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n_{1}}^{\prime}\right\}$ and $V\left(G_{2}^{\prime}\right)=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n_{2}}^{\prime}\right\}$ and then making v_{i} adjacent with v_{i}^{\prime} for each $i=1,2, \ldots, n_{2}$

By the definition of Indu-Bala product, for every vertex u_{i}, v_{j}, u_{i}^{\prime}, and $v_{j}^{\prime}\left(1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}\right)$, it holds that $d_{G_{1} \nabla G_{2}}\left(u_{i}\right)=d_{G_{1} \nabla G_{2}}\left(u_{i}^{\prime}\right)=d_{G_{1}}\left(u_{i}\right)+n_{2}$, for $1 \leq i \leq n_{1} ;$
$d_{G_{V} \nabla G_{2}}\left(v_{j}\right)=d_{G_{1} \nabla G_{2}}\left(v_{j}^{\prime}\right)=d_{G_{2}}\left(v_{j}\right)+n_{1}+1$, for $1 \leq j \leq n_{2}$.

In this paper, the total irregularity of Indu-Bala product of graphs are computed and exact formula in terms of the total irregularities of the underlying graphs is derived.

2. MAIN RESULTS

Theorem 2.1. Let G_{1} and G_{2} be graphs with n_{1} and n_{2} vertices, respectively. Then

$$
\operatorname{irr}_{i}\left(G_{1} \nabla G_{2}\right)=4\left(\operatorname{irr_{1}}\left(G_{1}\right)+i r_{t}\left(G_{2}\right)+\sum_{i=1}^{n_{n}} \sum_{j=1}^{n_{3}}\left|d_{G_{1}}\left(u_{i}\right)+n_{2}-\left(d_{G_{2}}\left(v_{j}\right)+n_{1}+1\right)\right|\right) .
$$

Proof. The vertex set of $G_{1} \nabla G_{2}$ can be partitioned into four subsets as
$V_{1}=\left\{u_{i} \in V\left(G_{1} \nabla G_{2}\right): u_{i} \in V\left(G_{1}\right)\right\}\left(1 \leq i \leq n_{1}\right)$,
$V_{2}=\left\{v_{i} \in V\left(G_{1} \nabla G_{2}\right): v_{i} \in V\left(G_{2}\right)\right\}\left(1 \leq i \leq n_{2}\right)$,
$V_{3}=\left\{v_{i}^{\prime} \in V\left(G_{1} \nabla G_{2}\right): v_{i}^{\prime} \in V\left(G_{2}^{\prime}\right)\right\}\left(1 \leq i \leq n_{2}\right)$,
$V_{4}=\left\{u_{i}^{\prime} \in V\left(G_{1} \nabla G_{2}\right): u_{i}^{\prime} \in V\left(G_{1}^{\prime}\right)\right\}\left(1 \leq i \leq n_{1}\right)$.
From the definition of graph total irregularity, it follows that $\operatorname{irr}_{t}\left(G_{1} \nabla G_{2}\right)=\frac{1}{2} \sum_{\substack{u \in V_{v}, v V_{V} V_{1} \\(u, u \in u}}\left|d_{G_{1} \nabla G_{2}}(u)-d_{G_{1} \nabla G_{2}}(v)\right|$.
The contribution of the vertices in V_{1} to the total irregularity of $G_{1} \nabla G_{2}$ is given by
$\operatorname{irr}_{t_{1}}\left(G_{1} \nabla G_{2}\right)=\frac{1}{2} \sum_{\substack{u \in V_{1}, v \in V_{1} \\(B S S)}}\left|d_{G_{1} \nabla G_{2}}(u)-d_{G_{1} \nabla G_{2}}(v)\right|$.
We start to compute with
$\frac{1}{2} \sum_{u, v \in V_{1}}\left|d_{G_{1} \nabla G_{2}}(u)-d_{G_{1} \nabla G_{2}}(v)\right|=\frac{1}{2} \sum_{i=1}^{n_{1}} \sum_{j=1}^{m_{1}}\left|d_{G_{i} \nabla G_{2}}\left(u_{i}\right)-d_{G_{1} \nabla G_{2}}\left(v_{j}\right)\right|$.

By substituting the values of parameters in terms of the degrees of the vertices of G_{1}, we compute
$=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|\left(d_{G_{i}}\left(u_{i}\right)+n_{2}\right)-\left(d_{G_{i}}\left(v_{j}\right)+n_{2}\right)\right|=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|d_{G_{i}}\left(u_{i}\right)-d_{G_{i}}\left(v_{j}\right)\right|$
$=\sum_{u, v \in V\left(G_{1}\right)}\left|d_{G_{1}}(u)-d_{G_{1}}(v)\right|=\operatorname{irr}\left(G_{1}\right)$.
$\frac{1}{2} \sum_{u e \sigma_{v}, v v_{2}}\left|d_{G V G G_{2}}(u)-d_{G V G G_{2}}(v)\right|=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n_{2}}\left|d_{G V V G_{2}}\left(u_{i}\right)-d_{G V V G_{2}}\left(v_{j}\right)\right|$.
By substituting the values of parameters in terms of the degrees of the vertices of G_{1} and G_{2}, we receive
$=\frac{1}{2} \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left|\left(d_{G_{1}}\left(u_{i}\right)+n_{2}\right)-\left(d_{G_{2}}\left(v_{j}\right)+n_{1}+1\right)\right|$.

Since $\quad d_{G_{1} \nabla G_{2}}\left(v_{i}\right)=d_{G_{1} \nabla G_{2}}\left(v_{i}^{\prime}\right)$ for $\quad \forall v_{i} \in V\left(G_{2}\right) \quad$ and $\forall v_{i}^{\prime} \in V\left(G_{2}^{\prime}\right)\left(1 \leq i \leq n_{2}\right)$, we get the same equality in (2).

Since $\quad d_{G_{1} \nabla G_{2}}\left(u_{i}\right)=d_{G_{1} \nabla G_{2}}\left(u_{i}^{\prime}\right) \quad$ for $\quad \forall u_{i} \in V\left(G_{1}\right) \quad$ and $\forall u_{i}^{\prime} \in V\left(G_{1}^{\prime}\right)$, we get the same equality in (1).
$\operatorname{irr}_{r_{1}}\left(G_{1} \nabla G_{2}\right)=2 i r r_{t}\left(G_{1}\right)+\sum_{i=1}^{n_{i}} \sum_{j=1}^{n_{2}}\left|d_{G_{1}}\left(u_{i}\right)+n_{2}-\left(d_{G_{2}}\left(v_{j}\right)+n_{1}+1\right)\right|$.
The contribution of the vertices in V_{2} to the total irregularity of $G_{1} \nabla G_{2}$ is given by
$\operatorname{irr}_{t_{2}}\left(G_{1} \nabla G_{2}\right)=\frac{1}{2} \sum_{\substack{u \in V_{2}, v V_{V} \\(B G E)}}\left|d_{G_{1} \nabla G_{2}}(u)-d_{G_{1} \nabla G_{2}}(v)\right|$.
We start to compute with
$\frac{1}{2} \sum_{u v_{2} v, v v_{1}}\left|d_{G_{i} V G_{2}}(u)-d_{G_{V} V G_{2}}(v)\right|=\frac{1}{2} \sum_{i=1}^{n_{2}} \sum_{j=1}^{n}\left|d_{G_{1} V G_{2}}\left(u_{i}\right)-d_{G_{V} V G_{2}}\left(v_{j}\right)\right|$
$=\frac{1}{2} \sum_{i=1}^{n_{3}} \sum_{j=1}^{n_{1}}\left|\left(d_{G_{2}}\left(u_{i}\right)+n_{1}+1\right)-\left(d_{G_{1}}\left(v_{j}\right)+n_{2}\right)\right|$.
$\frac{1}{2} \sum_{u, v e V_{V}}\left|d_{G_{i} V G_{2}}(u)-d_{G V G_{2}}(v)\right|=\frac{1}{2} \sum_{i=1}^{n_{i}} \sum_{j=1}^{n_{2}}\left|d_{G V G G_{2}}\left(u_{i}\right)-d_{G_{V V G_{2}}}\left(v_{j}\right)\right|$.

By substituting the values of parameters in terms of the degrees of the vertices of G_{2}, we receive
$=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|\left(d_{\sigma_{3}}\left(u_{i}\right)+n_{1}+1\right)-\left(d_{\sigma_{3}}\left(v_{j}\right)+n_{1}+1\right)\right|=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|d_{c_{3}}\left(u_{i}\right)-d_{\sigma_{2}}\left(v_{j}\right)\right|$
$=\frac{1}{2} \sum_{u, v \in v\left(G_{2}\right)}\left|d_{G_{2}}(u)-d_{G_{2}}(v)\right|=\operatorname{irr}_{t}\left(G_{2}\right)$.
$\frac{1}{2} \sum_{u E_{V} v, v v_{i},}\left|d_{G, V G_{i}}(u)-d_{G, V G_{2}}(v)\right|=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n=1}\left|d_{G V, V G_{2}}\left(u_{i}\right)-d_{G V V G_{2}}\left(u_{j}^{\prime}\right)\right|$
$=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|\left(d_{c_{i}}\left(u_{i}\right)+n_{1}+1\right)-\left(d_{c_{i}}\left(u_{j}\right)+n_{i}+1\right)\right|=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|d_{c_{i}}\left(u_{i}\right)-d_{c_{i}}\left(u_{j}\right)\right|$
$=\frac{1}{2} \sum_{u, v \in V\left(G_{2}\right)}\left|\left(d_{G_{2}}(u)-d_{G_{2}}(v)\right)\right|=\operatorname{irr}_{t}\left(G_{2}\right)$.

$=\frac{1}{2} \sum_{i=1}^{n_{2}} \sum_{j=1}^{n_{1}}\left|\left(d_{G_{2}}\left(u_{i}\right)+n_{1}+1\right)-\left(d_{G_{1}}\left(v_{j}\right)+n_{2}\right)\right|$.
By the equations (3), (4), (5) and (6), we compute
$\operatorname{irr}_{r_{2}}\left(G_{1} \nabla G_{2}\right)=2 \operatorname{irr_{t}}\left(G_{2}\right)+\sum_{i=1}^{n_{2}} \sum_{j=1}^{n_{1}}\left|d_{G_{2}}\left(u_{i}\right)+n_{1}+1-\left(d_{G_{1}}\left(v_{j}\right)+n_{2}\right)\right|$.
Also, the contribution of the vertices in V_{3} to the total irregularity of $G_{1} \nabla G_{2}$ is given by

$$
\operatorname{irr}_{t_{3}}\left(G_{1} \nabla G_{2}\right)=\frac{1}{2} \sum_{\substack{u \in V_{3}, v V_{V} \\ \text { (GGU)}}}\left|d_{G_{1} \nabla G_{2}}(u)-d_{G_{1} \nabla G_{2}}(v)\right| .
$$

We start to compute with
$\frac{1}{2} \sum_{u c_{1}, v v_{1} V_{1}}\left|d_{G, V G_{2}}(u)-d_{G, V G_{2}}(v)\right|=\frac{1}{2} \sum_{i=1}^{n_{2}} \sum_{j=1}^{n_{i}}\left|d_{G, V G_{2}}\left(u_{i}^{\prime}\right)-d_{G, V G_{2}}\left(v_{j}\right)\right|$
$=\frac{1}{2} \sum_{i=1}^{n_{3}} \sum_{j=1}^{n_{i}}\left|\left(d_{G_{2}}\left(u_{i}\right)+n_{1}+1\right)-\left(d_{G_{1}}\left(v_{j}\right)+n_{2}\right)\right|$.

$=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|\left(d_{\sigma_{i}}\left(u_{i}\right)+n_{1}+1\right)-\left(d_{\sigma_{i}}\left(u_{j}\right)+n_{1}+1\right)\right|=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|d_{\sigma_{i}}\left(u_{i}\right)-d_{\sigma_{i}}\left(u_{j}\right)\right|$
$=\frac{1}{2} \sum_{u, v \in V\left(G_{2}\right)}\left|d_{G_{2}}(u)-d_{G_{2}}(v)\right|=\operatorname{irr}_{t}\left(G_{2}\right)$.

$$
\begin{align*}
& \frac{1}{2} \sum_{u, v v v_{1}}\left|d_{G V G_{2}}(u)-d_{G V, G_{2}}(v)\right|=\frac{1}{2} \sum_{i=1}^{n_{3}} \sum_{j=1}^{n_{n}}\left|d_{G V, G_{2}}\left(u_{i}^{\prime}\right)-d_{G V G G_{2}}\left(u_{j}^{\prime}\right)\right| \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n_{n}}\left|\left(d_{\sigma_{3}}\left(u_{i}\right)+n_{1}+1\right)-\left(d_{\sigma_{i}}\left(u_{j}\right)+n_{1}+1\right)\right|=\frac{1}{2} \sum_{i=1}^{n_{n}} \sum_{j=1}^{n_{2}}\left|d_{c_{i}}\left(u_{i}\right)-d_{\sigma_{3}}\left(u_{j}\right)\right| \\
& =\frac{1}{2} \sum_{u, v \in V\left(G_{2}\right)}\left|d_{G_{2}}(u)-d_{G_{2}}(v)\right|=\operatorname{irr}_{t}\left(G_{2}\right) . \tag{9}\\
& \frac{1}{2} \sum_{u s \sigma_{V}, v e V_{1}}\left|d_{G, V G_{2}}(u)-d_{G, V G_{2}}(v)\right|=\frac{1}{2} \sum_{i=1}^{n_{2}} \sum_{j=1}^{n}\left|d_{G_{i} V G_{2}}\left(u_{i}^{\prime}\right)-d_{G V G G_{2}}\left(v_{j}^{\prime}\right)\right| \\
& =\frac{1}{2} \sum_{i=1}^{n_{2}} \sum_{j=1}^{n_{1}}\left|\left(d_{G_{2}}\left(u_{i}\right)+n_{1}+1\right)-\left(d_{G_{1}}\left(v_{j}\right)+n_{2}\right)\right| \text {. } \tag{10}
\end{align*}
$$

Hence, we receive
$\operatorname{irr}_{t_{3}}\left(G_{1} \nabla G_{2}\right)=2 i \operatorname{irr}_{t}\left(G_{2}\right)+\frac{1}{2} \sum_{i=1}^{n_{2}} \sum_{j=1}^{n_{1}}\left|d_{G_{2}}\left(u_{i}\right)+n_{1}+1-\left(d_{G_{1}}\left(v_{j}\right)+n_{2}\right)\right|$.
The contribution of the vertices in V_{4} to the total irregularity of $G_{1} \nabla G_{2}$ is given by
$\operatorname{irr}_{t_{4}}\left(G_{1} \nabla G_{2}\right)=\frac{1}{2} \sum_{\substack{u \in V_{1}, v \in V_{V} \\ \text { (BGs) }}}\left|d_{G_{1} \nabla G_{2}}(u)-d_{G_{1} \nabla G_{2}}(v)\right|$.
We start to compute with
$\frac{1}{2} \sum_{u \sigma_{i}, v v_{1}}\left|d_{G, V G_{2}}(u)-d_{G_{i} V G_{2}}(v)\right|=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|d_{G_{V V G_{2}}}\left(u_{i}^{\prime}\right)-d_{G V G_{2}}\left(u_{j}\right)\right|$
$=\frac{1}{2} \sum_{i=1}^{n_{i}} \sum_{j=1}^{n_{i}}\left|\left(d_{G_{i}}\left(u_{i}\right)+n_{2}\right)-\left(d_{G_{i}}\left(u_{j}\right)+n_{2}\right)\right|=\frac{1}{2} \sum_{i=1}^{n_{i}} \sum_{j=1}^{n_{2}}\left|d_{c_{i}}\left(u_{i}\right)-d_{G_{i}}\left(u_{j}\right)\right|$
$=\frac{1}{2} \sum_{u, v \in V\left(G_{1}\right)}\left|d_{G_{1}}(u)-d_{G_{1}}(v)\right|=\operatorname{irr}_{t}\left(G_{1}\right)$.
$\frac{1}{2} \sum_{u s v_{y}, V v_{2}}\left|d_{G V G_{2}}(u)-d_{G V G G_{2}}(v)\right|=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n_{3}}\left|d_{G_{i} V G_{2}}\left(u_{i}^{\prime}\right)-d_{G V V G_{2}}\left(v_{j}\right)\right|$
$=\frac{1}{2} \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left|\left(d_{G_{1}}\left(u_{i}\right)+n_{2}\right)-\left(d_{G_{2}}\left(v_{j}\right)+n_{1}+1\right)\right|$.
$\frac{1}{2} \sum_{u u V_{1} v e V_{1}}\left|d_{G V G G_{2}}(u)-d_{G V G_{2}}(v)\right|=\frac{1}{2} \sum_{i=1}^{n_{i}} \sum_{j=1}^{n_{3}}\left|d_{G V G_{2}}\left(u_{i}^{\prime}\right)-d_{G V G_{2}}\left(v_{j}^{\prime}\right)\right|$.
Since $d_{G_{\square} \nabla G_{2}}\left(v_{j}\right)=d_{G_{1} \nabla G_{2}}\left(v_{j}^{\prime}\right)$ for $\forall v_{j} \in V\left(G_{2}\right)$ and $\forall v_{j}^{\prime} \in V\left(G_{2}^{\prime}\right) \quad\left(1 \leq j \leq n_{2}\right)$, we get the same equality in (12).
$\frac{1}{2} \sum_{u, v v_{V}}\left|d_{G i V G_{2}}(u)-d_{G V V G_{2}}(v)\right|=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|d_{G V G_{2}}\left(u_{i}^{\prime}\right)-d_{G_{i} V G_{2}}\left(u_{j}^{\prime}\right)\right|$
$=\frac{1}{2} \sum_{i=1}^{n_{n}} \sum_{j=1}^{n}\left|\left(d_{G_{i}}\left(u_{i}\right)+n_{2}\right)-\left(d_{G_{i}}\left(u_{j}\right)+n_{2}\right)\right|=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|d_{G_{i}}\left(u_{i}\right)-d_{G_{i}}\left(u_{j}\right)\right|$
$=\frac{1}{2} \sum_{u, v \in V\left(G_{1}\right)}\left|d_{G_{1}}(u)-d_{G_{1}}(v)\right|=\operatorname{irr}_{t}\left(G_{1}\right)$.
Hence,
$\operatorname{irr}_{r_{4}}\left(G_{1} \nabla G_{2}\right)=2 i r_{t}\left(G_{1}\right)+\sum_{i=1}^{n_{i}} \sum_{j=1}^{n_{3}}\left|\left(d_{G_{1}}\left(u_{i}\right)+n_{2}\right)-\left(d_{G_{2}}\left(v_{j}\right)+n_{1}+1\right)\right|$.
Summing the contributions of the vertex sets V_{1}, V_{2}, V_{3} and V_{4}, we finally obtain the desired result of $\operatorname{irr}_{t}\left(G_{1} \nabla G_{2}\right)=\sum_{i=1}^{4} \operatorname{irr}_{t_{i}}\left(G_{1} \nabla G_{2}\right)$. Thus, the proof holds.

3. CONCLUDING REMARKS

Graph products play a significant role in pure and applied mathematics, and computer science and many of the problems can be easily handled if the related underlying graphs are regular or close to regular [4]. Therefore in many applications and problems, it is of great importance to know how irregular a given graph is.

We focus our investigation to the study of how the total irregularity of a graph changes with operations based on graph products. Indu-Bala product of graphs is a novel graph operation. In this paper, we consider the total irregularity of simple undirected graphs under Indu-Bala product. Exact formula is given to compute the total irregularity of InduBala product of graphs in terms of the total irregularities and vertex degrees of underlying graphs.

REFERENCES

[1].H. Abdo, S. Brandt and D. Dimitrov, "The total irregularity of a graph", Discrete Math. Theor. Comput. Sci., vol. 16, no. 1, pp. 201-206, 2014.
[2].B. Zhou, "On irregularity of graphs", Ars Combin., vol. 88, pp. 55-64, 2008.
[3].D. Dimitrov and R. Škrekovski, "Comparing the irregularity and the total irregularity of graphs", Ars Math. Contemp., vol. 9, pp. 45-50, 2015.
[4].H. Abdo and D. Dimitrov, "The irregularity of graphs under graph operations", Discuss. Math. Graph Theo., vol. 34, no. 2, pp. 263-278, 2014.
[5].H. Abdo and D. Dimitrov, "The total irregularity of graphs under graph operations", Miskolc Math. Notes, vol. 15, pp. 3-17, 2014.
[6].H. Abdo and D. Dimitrov. "The Total Irregularity of Some Composite Graphs", International Journal of Computer Applications, vol. 122, no. 21, pp. 1-9, 2015.
[7].H. Abdo, N. Cohen and D. Dimitrov, "Graphs with maximal irregularity", Filomat, vol. 28, no. 7, pp. 13151322, 2014.
[8].M.A. Henning and D. Rautenbach, "On the irregularity of bipartite graphs", Discrete Math., vol. 307, pp. 1467-1472, 2007.
[9].M.O. Albertson, "The irregularity of a graph", Ars Combin, vol. 46, pp. 219-225, 1997.
[10]. M. Tavakoli, F. Rahbarnia and A.R. Ashrafi, "Some new results on irregularity of graphs", J. Appl. Math. Inform., vol. 32, pp. 675-685, 2014.
[11]. W. Luo and B. Zhou, "On the irregularity of trees and unicyclic graphs with given matching number", Util. Math., vol. 83, pp. 141-147, 2010.
[12]. L.H. You, J.S. Yang and Z.F. You, "The maximal total irregularity of unicyclic graphs", Ars Comb., vol. 114, pp. 153-160, 2014.
[13]. L.H. You, J.S. Yang, Y.X. Zhu and Z.F. You, "The maximal total irregularity of bicyclic graphs", Journal of Applied Mathematics 2014, Article ID 785084, http://dx.doi.org/10.1155/2014/785084.
[14]. G. Indulal and R. Balakrishnan, "Distance spectrum of Indu-Bala product of graphs", AKCE International

Journal of Graphs and Combinatorics, vol. 13, pp. 230-234 2016.

