Advances in the Theory of Nonlinear Analysis and its Applications 2 (2018) No. 3, 113-127.
https://doi.org/10.31197 /atnaa.380970
Available online at www.atnaa.org

Research Article

Advances in the Theory of Nonlinear Analysis

and its Applications -

ISSN: 2587-2648 Peer-Reviewed Scientific Journal

Stability and Hopf Bifurcation for an SEIR Epidemic
Model with Delay

Liancheng Wang?, Xiaoqin WuP

@Department of Mathematics, Kennesaw State University, Marietta, GA 30060, USA.
bDepartment of Mathematics, Computer and Information Sciences, Mississippi Valley State University, Itta Bena, MS 39762, USA.

Abstract

In this paper, first a third degree transcendental polynomial is studied and the distribution of its zeros is
established. Then the results are applied to study an SEIR model with a time delay. We show that, under
some conditions, as the time delay increases, a stable endemic equilibrium will become unstable and periodic
solution emerges by Hopf bifurcation. By finding the normal form of the system, the direction and the
stability of the periodic solution are established. Numerical simulations are performed to demonstrate the
theoretical results.
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1. Introduction

SEIR epidemiological models have been extensively studied by many researchers for last few years. Typ-
ically, an SEIR model describes the dynamics of population that is divided into compartments which are
susceptible, exposed, infectious, and recovered, respectively. An individual starts off susceptible, infected by
infectious individual through direct contact to become exposed (not yet infectious), after a period of incuba-
tion time becomes infectious, and then finally recover with permanent immunity. The transfer diagram for
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SEIR models can be depicted in the following figure
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where S(t), E(t), I(t), and R(t) represent the densities of the susceptible, the exposed (in the latent period),
the infectious, and the recovered, respectively. The natural birth rate and death rate are assumed to be
identical and denoted by p. The disease is assumed not to cause extra death on the infected hosts so that
the total population density is constant; i.e., S(t) + E(t) + I(t) + R(t) = 1. The incidence term AIS is of
the standard mass-action form. The parameter ¢ > 0 is the rate at which the exposed individuals become
infectious, and v > 0 is the rate at which the infectious individuals recover. For details of SEIR models and
diseases they describe, see [II, 2, 3, [4, [5, [6l, [7, 8, 9, 10] and reference therein.
The transfer diagram leads to the following system of differential equations

S’ (t

(t) = p — M(t)S(t) — pS(t)
E'(f) = M()S(t) — (e + p)E(1) )
I'(t) = eB(t) — (v + p)I(t) '
R(t) = vI(t) — pR(t).
For system , let
€
Bo= ot (12)

be the basic reproduction number. Then Li et al. [7] (p = ¢ = 0) proved that if Ry < 1, then Py = (1,0,0,0)
is the only equilibrium and it is globally asymptotically stable, whereas if Ry > 1, then Py is unstable and
there exists a unique endemic equilibrium P* = (S*, E*, I*, R*) where S*, E*, I*, R* > 0 and it is globally
asymptotically stable in the interior of the feasible region. This means that the reproduction number Ry
completely determines the global dynamics of system . If Ry < 1, the disease dies out over time, whereas
if Ry > 1, the disease persists.

Various authors have previously studied SIR or SEIR models containing one or two time delays. Basically,
the introduction of time delays will change the dynamics of the system, especially the stability property of
the endemic equilibrium when Ry > 1. The time delays may sometimes destabilize the unique endemic
equilibrium if the time delay is large enough and periodic solutions can arise from it by Hopf bifurcation. In
their series of papers, Hethcote along with his collaborators [111, 12} [13], 14} [15] [16] considered SIR and SEIR
type models with constant time delays. Cooke and van den Driessche [17] investigated an SIS model with
variable population size and a delay and an SEIRS model with two delays. Thieme [I8], [19] studied SEIRS
models with delays. More recently, Khan and Greenhalgh [20], Tchuenche et al. [21], Rost and Wu [22] also
studied SIR or SEIR type models with different delays.

In this paper, assuming that the infectious individuals start recovering after a period of time 7 > 0, we
introduce and study the following system with a time delay.

S'(t) = p — M(1)S(t) — pS(t)
E(t) = I() (t) = (e+mE(t) (1.3)
I'(t) = eB(t) — (v +wI(t—7) |

R(t) = 7I(t—7) — pR(1).
Our interest is to find out the dynamical behavior for this new system and see how the introduction of
the delay causes the behavior change from the old system (1.1)) without any delays.
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We first study the distribution of zeros of a third degree transcendental polynomial in Section [2 Then
in Section 3, using the results we get from Section 2, we show that the introduction of the delay 7 may or
may not change the dynamics of the system depending upon the regions where the parameter values lie
in. When Ry > 1, we show that under some conditions the unique endemic equilibrium P* of system (|1.3))
becomes unstable as 7 increases and periodic solutions arise from it by Hopf bifurcation. The normal form
is derived in Section [4 and the stability and direction of the periodic solution are established. In Section [3]
numerical simulations are provided in this section to illustrate our theoretical results. Finally, a discussion
of our results is given in Section [f]

2. A third degree transcendental polynomial

In this section, we study the distribution of zeros of a third degree transcendental polynomial.
Consider the following third degree transcendental polynomial

M4 a2+ b4 c+ (AN + e+ fle T =0, (2.1)

where a, b, c,d, e, and f are real numbers. Clearly, iw(w > 0) is a root of equation ({2.1)) if and only if

3

—iw® — aw? + ibw + ¢ + (—dw? + iew + f)(coswT — isinwr) = 0.

Separating the real and the imaginary parts, we have

aw? — ¢ = (f — dw?) cos wt 4 ew sin wr, (2.2)

w® — bw = —(f — dw?) sinwr 4 ew cos wr. (2.3)

Adding up the squares of both equations (2.2)) and ({2.3|) gives
wd + (a® — 2b — d*)w* + (b? — 2ac — € + 2df )w? + (¢* — £%) = 0. (2.4)

Let z = w? and denote p = a? — 2b — d?, ¢ = b? — 2ac — € + 2df, and r = ¢ — f2. Then equation (2.4) can
be rewritten as
B4 p4qz+r=0. (2.5)

The following result is due to Ruan and Wei [23] 24].

Lemma 2.1. For equation , we have

(a) Ifr <0, then it has at least one positive Toot.
(b) Ifr >0 and A = p?> — 3q < 0, then it has no positive roots.
(¢) If r >0, then it has positive roots if and only if

1
A >0, z:§(—p+x/5)>o and  h(z) <0,

where h(z) = 23 + p2% + qz + .

Suppose that equation ([2.5) has positive roots. Without loss of generality, we assume that it has three
positive roots, denoted by z1, z2, and z3, respectively. Then equation (2.4)) has three positive roots,

W1 = V721, W2 =4/22, W3 =+/23.
Solving equations (2.2)) and (2.3) for sinw7 and coswT, we get

dw® + (ae — db — f)w3 + (bf — ec)w
e2w? + (f — dw?)?

= fl(w)v

sinwr =
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(e — ad)w! + (dc+ af — be)w? — cf _

COSWT = 2 + (f = dw2)2 91(w).
Define
n L (arccos g1 (w)) it  fi(wg) >0,
T =4 Y
k wik(%r —arccos g1(wg)) if  fi(wg) <0,

where k = 1,2, 3. It follows that T,j > 0 and equation |’ has a pair of purely imaginary roots +iw; when
+
T=1., k=123

Let

T():T’:B :min{T;,kzl,Q,?)} >0, Wo = Wky, 20 = Zky- (26)

Lemma 2.2. Let p,q,r,z,h(z), and 79 be defined above. Suppose that
a+d>0, c+f>0, (a+d)(b+e)—(c+[f)>0. (2.7)

Then the following results hold.

(a) Ifr >0 and A = p? — 3q < 0, then all roots of equation have negative real parts for all T > 0.

(b) If r <0 orr>0,A>0,zZ>0 and h(z) <0, then all roots of equation have negative real parts
when T € [0,79), and it has a pair of purely imaginary roots tiwy and all other roots have negative real
parts when T = Tq.

Proof. When 7 = 0, equation (2.1)) becomes
Mr(@+dA+b+e)d+ (c+ f) =0. (2.8)

By the Routh-Hurwitz Theorem, all roots of equation have negative real parts if and only if holds.

If r >0and A =p? -3¢ <0, Lemma (b) shows that equation has no roots with zero real parts
for all 7 > 0. By continuity, all zeros of equation have negative real parts for all 7 > 0. When r < 0
orr>0,A>0,z>0and h(z) <0, Lemma[2.1] (a) or (c) implies that if 7 € [0, 7)), equation has no
roots with zero real parts and 79 is the minimum value of 7 such that equation has purely imaginary
roots. Claim (b) follows from condition , continuity and Lemma 1, completing the proof. O

Next we will try to establish the transversality condition for Hopf bifurcations. For 7 > 0, let
A7) = a(r) +iw(T)
be the root of equation satisfying
a(my) =0, w(m) = wo,
where 79 and wg are defined in . Differentiating both sides of equation with respect to 7 gives

dX
df[:u? +2a\ + b+ (2d\ + e)e™ — 7(dN\? + eX + e N = AdA2 + e+ fle M.
=

Notice that
M+ a 2+ A+ c=—(d\2+ el + fle V,

we have

dr

d\\7T' 3N 420\ +b L 2t T
AN+ aN2+bA+e)  ANdN2+ed+f) A

_ L[ 2dAte 3X2 4 20\ + b
A A2 +ed+f MNM+aN2+bh+c/)]’
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Substituting 7 = 7y into the equality above, we get

A\ -1 [ <g’(z‘wo> f’(iwo))]
—_— = — |70 — . - - ) 2.9
<dr>T:m iwy [* \gliwn) — f(iwo) 2
where f(A) = A% + a2 + bA + c and g()\) = d\? + e + f.
Lemma 2.3. Let condition (10) hold. If Re(%);:lm # 0, then %Tm) > 0.

Proof. 1t is clear that
A AN\
Sign Re [ — | = Sign Re [ — .
dr dr

It follows that Re(%)T:TO = do‘(m # 0 when Re( ) # 0. If do( TO) < 0, then d—o‘ < 0 for 7 < 19 and
close to 79. This implies that equatlon ([2.1) has a root )\( ) = a(1) —|— zw( ) satlsfylng a(t) >0 for 7 < 79
and close to 79, which contradicts Lemma [2.2] completing the proof. (I

Remark 2.4. From , we see that if Im(ggl(%"g)) J}l( ) % 0, then Re(d—)‘) 7& 0, and therefore
da(To 7& 0.

3. An SEIR epidemiological model with delay

In this section, we study the dynamics of the delay system (3). Notice that R does not appear in the
first three equations, therefore we analyze the following subsystem
S"=p — BIS — s,
E' = BIS — (e+pn)E, (3.1)
I'=¢E — pl — ~I(t—T).

The basic reproduction number Ry for system (3.1]) is defined by (2).
It can be shown [7] that if Ry > 1, the system has two equilibria: the disease free equilibrium Py = (1,0, 0)

and the endemic equilibrium P* = (S*, E*, I*), where

g _ prep+y) 1
B Be Ry’

1
=t (1—),
JI Ry

= 1 (1 = )
(n+e)(p+7) Ry)’
The disease-free equilibrium Py is unstable and P* is asymptotically stable when Ry > 1 and 7 = 0. The
following theorem shows that the introduction of a delay 7 will not change the instability of Py.

Theorem 3.1. If Ry > 1, then Py is unstable for all 7 > 0.

Proof. The characteristic equation associated with the system at Py is
A+ )N+ u+ )N+ u(p+e) —Be+y A+ p+ee =0
and A = —p is a root. The other roots are determined by the equation
M+ 2u+ N+ pulp+e) — Be+ vy A+ p+e)e ™ = 0.

Define

FON) =M+ @2u+r+pu(p+e) —Be+y A+ p+e)e .
Obviously, F'(0) = (u+€)(up+v) —Be < 0if Rg > 1, and F(A) — oo as A — oo. Thus, there always exists a
positive root regardless of the delay, that proves Py is unstable. [l
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We now study the stability of the endemic equilibrium P* when Ry > 1.
Let up =S — S*,ug = E — E*, and ug = I — I'**. Then system (3.1)) becomes

uy = —(p+ BIM)uy — BS™uy — fuyus,
uy = BIur — (p+ €)ug + BS™uz + fuius,
uhy = eug — puz — yug(t — 7).
The linearization of the system at (0,0, 0) is
uy = —(p+ BIMYur — S us,
uhy = BI*uy — (1 + €)uz + BS*us,
us = 3eug — pus — yug(t — 7).

The characteristic equation associated with the system (3.3) at (0,0,0) is

M+ a 2+ +c+ (dN2+er+ fle ™ =0

where
a=3u+e+ BI,

b= (2u+e)(u+BI") —v(u+e),
c= plp+e)(BI" =),

d=r,

e=v(2u+e+BI"),
f=(u+e)(u+BIY).

Consequently, We have
a+d=3u+e+BI*+~v>0,

b+e=Q2u+e+y)(pn+pI) >0,
ct+f=(u+e(p+v)BI" >0,

and obviously one can see that

(a+d)(b+e)—(c+ [)=0Cu+te+BI"+7)2u+e+7)(n+BI") = (n+e)(u+7)8I" > 0.

That is, condition (10) always holds when Ry > 1.
We can also get

p=a’=2—d" = (u+BI) + 2+ +2v(nte) -7

q="b*—2ac— e+ 2df
=[2u+e)® = (u+ BI*)°
—2(p+e)y2u+e)(p+ BI7) + puBu + e+ BI7) (BT — )]
and
r=c— f2 =8I (u+e)*(n+ ) — 7B = 2p7).

Applying Lemmas from the previous sections we obtain the following theorem.

Theorem 3.2. Let p,q,r be defined above. Then

(3.4)

(a) If r > 0 and A = p? — 3q < 0, then all roots of equation have negative real parts for all T > 0.

Therefore, the equilibrium point P* = (S*, E*, I*) is locally asymptotically stable for all T > 0.

(b) Ifr <0 orr>0,A>0,z>0, and h(z) <0, then there exists a 1o > 0 defined by (9) such that all roots
of equation have negative real parts for T € [0,79), the equilibrium P* is locally asymptotically
stable. When T = 19, equation has a pair of purely imaginary roots +iwg and all other roots have
negative real parts. In addition, if Re(%)T:TO £ 0, then the system ) undergoes a Hopf bifurcation

as T passes the critical value 7.
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4. Normal form of Hopf bifurcation

From Section [3], we know that the characteristic equation of linearized system at the endemic
equilibrium point P* = (S*, E*, I'*) has a pair of purely imaginary roots +iwy if 7 = 79 under some conditions
from part (b) of Theorem . As the delay 7 passes the critical values 7y, Hopf bifurcation occurs and periodic
solution emerges. In this section, using center manifold reduction, we study the direction and the stability
of the bifurcating periodic solutions. We first normalize the delay in system by rescaling t — t/7 to get
the following system

uy = 7[—(p+ BI*)uy — S us — Bujus),
u/2 = 1[I u1 — (u+ €)ug + BS*usz + Buyus], (4.1)
uy = Tleus — pus — yus(t —1)].
Let 7 = 19 + &. Then ¢ is the bifurcation parameter for system (4.1)) which can be rewritten as
1= (10 + [ (u+ BI")ur — BS™uz — Buyus),
uh = (10 + &)[BIMur — (1 + €)ug + BS uz + Luqus], (4.2)
uy = (1o +&)leus — puz — yuz(t —1)].
The linearization of system (4.2)) at (0,0,0) is
uy = To[—(p+ BI")ur — BS™ug),
uh = 1B u1 — (u + €)us + BS*usg), (4.3)

us = Tpleus — pug — yus(t — 1)].

Let
n(@) = Ad(0) + Bo(O+ 1)

where
—(u+p)I* 0 —B5* 00 O
A= BI* —(u+e BS* |, B=71|0 0 0
0 € —u 0 0 —v

Let C' = C([—1,0],C3) and define a linear operator £ on C as
0
Lo~ [ an(0)p() = Ap(0) + Be(-1), Vg e C.
Then system (4.2]) can be transformed into
U(t) = LU + F(Uy) + O(IENIU?),
where U = (u1,ug,u3)?, Uy = U(t+0), 6 € [-1,0], and F(Uy) = (F*, F?, F3)T where
F' = &[—(u+ BI")ur — BS us] — Tofurus,
F? = €[Bl'u — (p+ e)uz + S us) + Burua,
F3 = (leus — pug — yuz(t —1)].
Write
F(p) = 5Fa(e) + 57
$) = 512 ¥ 31

where F(p) represents the terms with degree k of ¢ and “h.o.t.” high order terms. Clearly F5(¢) = 0.
Take the enlarged space of C

Fg(gﬁ) + h.o.t.

BC = {p:[-1,0] = C*: ¢ is continuous on [~1,0), Eleli%l ©(0) € C?}.
o
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Then the elements of BC can be expressed as ¢ = ¢ + Xov, p € C,v € C? and

0, -1<6<0,
XO(O):{ I,0=0

where [ is the identity matrix on C' and the norm of BC'is |+ Xov| = |¢|eo +|v|. Let C! = C1([-1,0),C?).
Then the infinitesimal generator A : C! — BC' associated with £ is given by
Ap = @+ Xo[Le —¢(0)]
&, if —1<6<0,
ff)l dn(t)¢(t)7 if 0 = 07

and its adjoint

__— —ah, if0<s<1,
A w B { fi)l ¢(—t)d77(t>a if s = 07

for Vip € O, where C** = C((0,1],C?*). Let C' = C((0,1],C?*) and define a bilinear inner product
between C and C’ by

0 0
(o) = &mww>—/¥1;¢@—emmw¢@mg

B 0
= B(0)p(0) + /_ W+ DER(E)E,

From Section [3] we know that +itgwg are eigenvalues of A and A*. Now we compute eigenvectors of A
associated with impwg and eigenvectors of A* associated with —imgwg. For simplicity and convenience, we
will use w, instead of wy, in all the following calculations. Let q(8) = (p, o, 1,0)Tei™“% be an eigenvector of
A associated with itow. Then Aq(0) = iTowq(f). It follows from the definition of A that

W+ iTow 0 B
u((v+u)g€+u)—ﬁe) €+ 1+ iTow M q(0) = 0.
0 —€ eIy 1 + iTow

We can obviously choose ¢(8) = (p,o,1)7e™%% where

i+ m*p+o? (v + ) (w — ip) (p + €)?
e(w(y +p)(p+e) —iBue)’  e(p+iw+e)(wly +p)(u+e) —iBue)

IO =
Similarly, we can find an eigenvector p(s) of A* associated with —impw
pls) = (6,0, )™
D 9 9

where

5 pue (—Be + v + ve + p? + pe) L
T (p—iw + ) (Bue — ivpw — inwe — iplw — juwe)’ p—iw + €

and D being a constant to be determined such that (p(s),¢(#)) = 1. In fact,

D =65+ va — y1e ™ + 1.
Let P be spanned by ¢,q and P* by p,p. Then C can be decomposed as

C=Pa&Q where Q={p € C:(,p) =0,V € P*}.
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Let Q' = QN C'. Let ®() = (¢(h),3(0)) and ¥(s) = (p(s),p(s))”. Then ® = &J and ¥ = —J¥ where
J = diag(itow, —iTow, 0). Let u = ®x + y, namely

u(0) = ™ pwy + e 0y 4y (9),
up(0) = €0z + e 0500 4 ys(6),
us(0) = ™y ey 4 y(f),

Then system (4.3) can be decomposed as

{?I; = Jz+ U(0)F(®z +y),
d%{ = AQ1y+(I_7T)X0F((I)x+y)’

This can be rewritten as

{gg = Jaz+ifi(z,y,k) + 3 f4(z,y,5) + hot., 44
&= Agy+ 3 f3(x,y, k) + 3 f3(2,y, k) + h.o.t.

where

fjl(xvya’%) = \I/(O)F]((I)x +Y), fj2(x7y7 k)= — W)Xon(q)CC +y).

Let x = (x1,22). Then on the center manifold, system (4.4) can be transformed as the following normal
form:

dx 1 1
i Jx + 595(@',0, k) + gg% (x,0,k) + h.o.t. (4.5)

where 9]1 (z,0,k) is a homogeneous polynomial of degree j in (z, k) and

g%(m,O, K) = PI“OjSQle(l’, 0,k), g%(m, 0,k) = Projsgf?}(:v, 0,0) + (9(/@2|x|).

s () ()} s=sm{(57) (29}

Let us compute g%(ac, 0, k) first. Since

Here

1
1
§f2 (.’E, 07 ﬁ) = _ _ _ 2 _ 2
a2kX1 + A1KT2 + Gp2T] + A11X1T2 + A20X5

a1kT1 + agkTo + +agr? + a1 1T + aozfﬁ%)
)

a] =

[e 9 (=0e"™ (1 (€ (Bp + 1) + 1° + 2u°€) + 77 (1 + €)* + 2yu(p + €)°)
+0e™ (1 (2 (Bp + p(—p) — 20 + ) + p* — 0€® — pPe(p + o — 2))
2+ )2 —y(p+e) (26 + e+ pe(p+ 0 —2))) —ely + p)(u+e)
(v + pe™NeD(y + p) (1 + €)],

ag =

[0 (Bue®p + (v + m)*(n+ €)*) + (v + 1) (1 + €)* (—ea + v + p)
—pep((y + p) (i + €) = Be)) — e(y + p) (1 + €) (u+7e'™)]

[eD(y+ )+ e)l; ) )
_ Bpro (v —9) _ Bro(p+p) (6 -D) _ Brop (7 —0)
GQO—#,G - - D 70’02_#7
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we obtain
L@ 0 = Lprojg fie, 0, = (940
2 2 y YUy 2 SoJ2 sy Yy alu$2 .
Next we compute %g% (2,0, ). Note that
§g3 (x,0,n) = gPrOJSng (2,0,0) + ZPIOJS3[(Dxf2)(l‘, 0,0)Us (z,0)

+(Dyfy)(,0,0)U3 (2,0)] + O(k|al).

Step 1. Compute 5 Projg, f1 (a? 0,0). Since fi(z,0,0) = 0, we have ag; = 0.
Step 2. Compute Projg, [Dy f3 (z,0,0)Us (x,0)]. The elements of the canonical basis of V#(C?) are

l‘% 12 33% HT1 ,U,CCQ ,u2
0/’ 0 J7\0/) "\ 0 0
0 0 0 0 0
x3) \wixe) \x3) " \pay) \pxa)’ \p2)’
whose images under ﬁle are, respectively
x% (T2 3 x% 0 o U2 u2
0)’ 0 )’ 0/)'\0)’ 0 /)'\0)’
0 0 0 0 0 0
(1) (e (3) 2 ) G)- i)
x] 129 5 J1%31 0 W

Hence 9 1 2
e = & (e~ ot
ww \ 3A02T] + A1171T2 — d20T5
and 1 C 2
§Pr0j53 [Dxf21(l‘, 0, 0)U21($a 0)] = (Cizig)
where
o, 2% (0 = v) (3dp(p+p) (5 ) —d (8pp + 30 +3p%) (0 —v))

3DwD?

Step 3. Compute Projg, [(Dy f3)(x,0,0)UZ(x,0)], where UZ(x,0) is a homogeneous polynomial of order 2 in
(w1, 22) with coefficient in Q'. Let

h(x) = U3 (x,0) = hoox? + hiiz129 + hogas.
The coefficients hjj, = (hg}ﬁ), hgk), h(.:,?) are determined by MZh(z) = f2(x,0,0) or
Dzh(l')BIL‘ — AQI (h(l’)) = (I — W)XoFQ((I)IL‘,O)

which is equivalent to

h(x) — Dyh(z)Bx = ®U(0)Fy(dz,0),
h(w)(0) — Lh(z) = Fy(®z,0),

where h denotes the derivative of h(z)(6) with respect to 6. Note that

Fy(®x,0) = Agowt + Apzia + Agars
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where
Ao = (07 25P7'0, 0, O)T7 Ay = (O, Q,BTo(p +p,0, O)Tu Ap2 = (07 2557-07 0, O)T'

Comparing the coefficients of x%, T1xo, x% of these equations, it is not hard to verify that hgs = hag, h11 = hi1
and that hgg, h11 satisfy the following equations

{ }:LQO — 2iwh20 = q)\II(O)AQ(), (4 6)
hao(0) — Lhgy = Aoy, '
and
hip = ®U(0)Aq1,
. 4.7
{ h11(0) — Lhi1 = Aqn, (47)

respectively. From this, we deduce

. Cga}23?2
PI’OJS3 [(Dyf21)h] (.f, O? O) = <C’2$1$%> s
where
; Bro(0 = 7) (hS () + B (0)p + b} (0) + iy (0))
2 = —_ —

D Y
where hgg, h11 are determined by system (4.6 and system (4.7)). After long but basic calculations, we obtain
hiy (0) = ) )
28 (54 p) (v + 1) (1 + )€ (Do (5 = 7) + D (5(6 — v) + D))
—e ™ (+€) (D(6 — v)e™ (=1 + y79e' ™) — D (6 — ) (—y10 + €™)))]
/1D pe((y + ) (1 + €) = Be),

hiy (0) =

[28p(y + 1) ™ (n+€)(D (8 — ) (v* (=1 +e¥™) (1 + €) (1 + 2iw + ¢)
Ty (1 (=1 + €370%9) — i (— 2% 4 BT 4 1) 4 42 eBimow)

+é2 (1 (-1+ 62”(“) — 2iwe’™% (—p+(p+o+ 1)62i70w)) + 2€ (1 (-1+ 62”0“’)
g ((p+ 0 + 2)€¥T + p (—eW) — 29 | 1) 22l (= p 4 209
—2iwed ™ (1% (1 + 2iw) + €2 (uo + p — 2ipw) + e(u’(o + 2)

—2ip(2p — )w + 4pw?))) + De'™* (—2wep(§ — v) (v(ip (=1 + ¥ ™) + 2w

+ie (—1 4 €*7%)) + 2we* ™ (2 + 2iw + €)) — i(2wea (v + 1) (6 — v)e* ™ (u
+6€) + (1 + 2w + €) (—iy(v + p) (8 = )™ (n+ €) + iy (y + ) (6 — v)e* ™ (u
1)+ 206HM (5 (5 — V) (s + )+ (0 — ) (1 + €) + De(p + 2iw)) + 29 Dwe))))]
JIDPwe(iBue(p + 2iw + €) (v + (1 + 2iw)e™ ™) + (y + ) (1 + €) (2w
)T (3t €) + i — 2ipo + A+ e — 2iw)) — (i + 20 + ),

n{7(0) =
[28€ (54 p) e~ ™“(De' ™ (=p(8 — v)(Be — (v + p) (1 + €)) + Bea (v — 9)



L. Wang and X. Wu, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 113-127. 124

—(u+e€) (D(’y +p)— B0 —v) (—1 + 'yToe”O“’))) - D (5 — 17) (=By1o(p+¢€)
+e™(B(p+e(p+ o+ 1)) + p(—y — 1) (e + )N/ IIDP (v + ) (1 + €) (v
+p) (1 + €) — Be)],

3
hg (0) =
Qefwwﬁp(emﬂucz(_46170.)5002’“3 4 46”‘”1/&]2/1,3 _ 21‘62”0‘)"}/(50&#3 + 22-,)/5&)”3
+2iDeimew,u,3 + 2ie* ™y — 2iypwp® — 8ie™ w3 u? 4 8ie ™ vw? u?
ZTw,_y(sw + 4€2iTw’)/5w2/L2 _ 4,)/5(‘}2”2 _ 4dei'rw€w2lu2 _ 8€i7—w5€w2[t2
+e ZTW’W/W ,U 4€2iTW’7Vw2M2 + 477/(«02#2 + 86i7’weyw2u2 _ 62”(‘)5’7(56#2
+B7v8ep? + 2 Byevp® — Brevp® + 2ide’ ™ Ewp® — 2ie? T2 swp’
+2ir25wp? + 2ide’™ vewpu? + 2ieimﬁéew,u — 4ie*™ ySewp® + diydewp?
+2ie?™ 2 pwp? — 2y uwp® — 2i imﬁeyw,f + 4ie® ™ yevwp? — diyevwp®
—8ie ™y swd u — 8ie'™ Sew3 4 8ie™ yvwip + 8ie ™ evw i — 2T fyie
+6v0€2pu — ADe ™ 2w — 45X i 4 4eX T2 5w — 4720w
—4De™ yew? u — 4eY Bew? 1 — 86”“’75&02# + 4e¥ ™y 5ew? 1L — dydew

_de 2iTw ITW 2

Vv i + 4y vt i + de vw?p 4 4™ Bevw? i 4+ 8™ yevw?

— 42 yevw? 4+ dyevw? i + €2 Byelvp — Bretvp + 2idel ™ velwp
—&—2@6””6(56 wit — 26?7 elwp 4 2ivde2wp — 4ie* T2 fewp + 4iy Sewp
—2ie?T BrySewp + 2ifydewp — 2ie' ™ Bl vwp + 2ie* Ty vwp — 2ivelvwp
+4ie? ™2 evwp — i evwu + 2ie? ™ Byevwp — QZﬂweuwu — 2ie™e((vy
+1) (e + p) — Be) (6 — v)wpp — Sie ™ ydew? + Sie ™ yerw? — dde'™ yelw?

— 452w 4 42T Sew? — 472 0ew? 4 4eTTVyelvw? — 462”“7261/(,‘)2
+4y2evw? — 2ie?™N2 52w + 2iy2 062w + 2ie® ™2 2w — 2iv e uw
—26"e(8 — v)w(2(y + p)(e + p)w — iBep)d) — D(Bep((—1 + €¥7) y(e
1+ 2iw) — 23 (n+ e(p+ o + 1) + 2iw)w) + 2(y + p) (e + pw(i(—1
+eXT) (€ + p+ 2iw) + 3T (2(p + 2iw)w + €e(ipp + 2(0 + 1)w)))) (8
/1D P (iBepn(y + B (g + 2iw)) e + o+ 2i) + (7 + ) e + 1) (€2 (2w
—ip) (B — 2iwp + 4w® + y(e + p) + €(p — 2iw)) — 2y(e + p + 2iw)w))].

Collecting the results above, we obtain

1 bo1 2229
@00 = () 4 0,

3! b21x1x2

where by; = ao1 + = (C’1 + C3). Let z1 = wy + dwa, x9 = w1 — twe and wy = rcos (,wy = rsin(. Then l)
can be further ertten as

% = Kikr+ Kor3+h.ot.,
% = 79w + h.o.t.,

where K1 = Re[a1] and Ky = Re[b2;]. Hence the first Lyapunov coefficient is l; (k) = K2+ O(k), see [25, 26].

Theorem 4.1. Let K; and Ky be given above. Then

(a) the bifurcating periodic solution is stable if Ko < 0 and unstable if Ko > 0;
(b) the Hopf bifurcation is supercritical if K1Ks < 0 and subcritical if K1K9 > 0.
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5. Numerical simulations

In this section, we give an example to verify the results we obtained in Sections [3] and [l Let pu =
0.03, =1, e=0.5, v=0.2. Then Ry =4.10172 > 1, and P* = (0.2438,0.0428,0.093). Then we have

a=0.59, b=-0.0892, ¢ =0.008163, d =0.2, e =0.1, f =0.00318

and
p = 0.0.4865, ¢ = —0.0104037, r = 0.0000565222.

It is easy to see that A = p? — 3¢ = 0.267893 > 0 and z = 0.0103614 > 0 and hence h(2) = 2.06762 % 1076 >
0, 70 = 4.5456906564876425.

If we take T = 4 < 79, according to (b) of Theorern the equilibrium point P* is asymptotically stable
and solutions converge to P*. See Figure [I] for stability of P*.

S(b), E(®), I(t)

840 \/\/\/\/\M__

L L L L L Lt
50 100 150 200 250 300

Figure 1: 7 = 4. Solution converges to P*.

If we take 7 = 4.5457906564876425 = 79, according to (b) of Theorem then the equilibrium point P*
is unstable and there is a limit cycle bifurcating from it. Moreover using the algorithm in Section [4] we have

a1 = 0.00575658 + 0.2466177, by = 47.9 — 124771

from which we can obtain that K; = 0.00575658 > 0,Ky = 47.9 > 0 in Theorem [f.I] Therefore the
bifurcating limit cycle is unstable and subcritical. See Figure [2| for the periodic solution and the instability
of it. Figure 3 shows a three dimensional unstable periodic solution.

S(t), E(t), I(t) S(t), E(®), I(t)

L L L L L L L Lt
200 400 600 800 200 400 600 800

(a) The existence of periodic solution. (b) The instability of the periodic solution.

Figure 2: 7 = 4.5457906564876425, The existence of periodic solution and its instability.
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Figure 3: 7 = 4.5457906564876425. The instability of the periodic solution.

6. Discussion

In this paper, we first studied the distribution of zeros of a degree three transcendental equation in the

form of
A a0+ et (a)? + el +ep)e ™ = 0.

The conditions are established under which the the equation may have pure imaginary roots. Then we applied
these results to an SEIR model with a time delay. We show that indeed the introduction of a time delay
may or may not change the dynamics of the system totally depending upon the regions where the system
parameters lie in. Using the same basic reproduction number Ry derived in [7], we obtained that if Ry > 1,
the delay system has two equilibria: disease free equilibrium Py = (1,0,0) and the endemic equilibrium
P* = (S*, E*, I*) where S*, E*, I* > 0. P is always unstable. We show that under some conditions the
endemic equilibrium P* is locally asymptotically stable for all delays. We found the parameter regions in
which P* will only locally asymptotically stable for the delay 7 being less than a critical value 7y > 0 and
unstable if 7 > 79. A Hopf bifurcation occurs and periodic solutions bifurcate from P* as 7 passes through
the critical value 9. By finding the normal form using the center manifold theory we are able to determine
the direction and the stability of the periodic solution bifurcated from the Hopf bifurcation.
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