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Abstract

The focus of the current paper is to prove nonexistence results for the following Cauchy problem of a wave
equation with fractional damping and non linear memory

utt −∆u+Dσ
0|tut =

∫ t

0
(t− τ)−γ |u(τ, ·)|p dτ, (1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ RN , (2)

where p > 1, 0 < γ < 1 and ∆ is the usual Laplace operator, σ ∈]0, 1[ and Dσ
0|t is the right hand side

fractional operator of Riemann-Liouville. Our method of proof is based on suitable choices of the test
functions in the weak formulation of the sought solutions.
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1. Introduction

The classical heat equation with nonlinear memory (1.1) bellow was studied by Cazenave and al [4] in
2008 when they have generalized some results obtained by Fujita [3] in 1966

ut(t, x)−∆u(t, x) =

∫ t

0
(t− τ)−γ |u|p−1 u(τ, x)dτ, (1.1)
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where 0 ≤ γ < 1 and u0 ∈ C0(RN ). Their results are the following. Put

pγ = 1 +
2(2− γ)

(N − 2 + 2γ)+
and p∗ = max

(
pγ ,

1

γ

)
with (N − 2 + 2γ)+ = max(N − 2 + 2γ, 0),

hence

1. If γ 6= 0, p ≤ p∗ and u0 > 0, then the solution u of (1.1) blows up in finite time.
2. If γ 6= 0, p > p∗ and u0 ∈ Lq∗(RN ) (where q∗ = (p−1)N

4−2γ ) with small data, that is ‖u0‖Lq∗ small enough,
then u exists globally.
In particular, they proved that the critical exponent in Fujita’s sense p∗ is not the one predicted by
scaling, and this is not a surprising result since it is well known that scaling is efficient only for parabolic
equations and not for pseudo-parabolic ones. To show this, it is sufficient to note that equation (1.1)
can be formally converted into

Dα
0|tut −D

α
0|t∆u = Γ(α) |u|p−1 u,

where α = 1−γ andDα
0|t is the fractional derivative operator of order α (α ∈ ]0, 1[) of Riemann-Liouville

defined by

Dα
0|tu =

d

dt
I1−α

0|t u, (1.2)

and I1−α
0|t is the fractional integral of order 1− α defined by (2.3) bellow.

3. In the case of γ = 0, Souplet has showed in [18] that nonzero positive solution blows -up in finite time.

After that, the damped wave equation with nonlinear memory was treated by Fino [5] in 2010, when he
investigated the global existence and blow-up of solutions for the following equation

utt(t, x)−∆u(t, x) + ut(t, x) =

∫ t

0
(t− τ)−γ |u (τ, x)|p dτ. (1.3)

He used as a main tool in his work for the existence and uniqueness of solution to problem (1.3) the
weighted energy method similar as the one introduced by G. Todorova an B. Yardanov [9] in 2001, while
he employed the test function method to show the blow-up results. One can found his results in [5]. In
particular he found the same pγ and so the same critical exponent p∗ founded by Cazenave and al in [4].
Our purpose of this work is to generalize some of the above results.

Remark 1.1. Throughout this work, the constants will be denoted C and are different from one place to
another one.

2. Statement of the problem

In this section, we will prove blow-up results of the problem (1)-(2).

The method which we will use is the test function method considered by Mitidieri and Pohozaev ([13],
[14]), Pohozaev and Tesei [12], Fino [5], Berbiche and Hakem [6] and by Zhang [10].

Before that, one can show, easily, that the problem (1)-(2) can be written as follows

utt −∆u+Dσ
0|tut = Γ(α)Iα0|t(|u|

p), (2.1)

with the initial data
u(0, x) = u0(x), ut(0, x) = u1(x) for all x ∈ Rn, (2.2)
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where α = 1− γ , σ ∈]0, 1[, p > 1 and Iα0|t is the fractional integral of order α (α ∈ ]0, 1[) defined (See [15]),
for all v ∈ L1

loc(R), by

Iα0|tv(t) =
1

Γ(α)

∫ t

0

v(s)

(t− s)1−αds, (2.3)

and ∆ is the usual Laplace operator defined, for all v ∈ C2(Rn) by

∆v =
∂2v

∂x2
1

+ ...+
∂2v

∂x2
n

.

2.1. Notations and definitions
Definition 2.1 (Weak solution). Let T > 0 and γ ∈]0, 1[. A weak solution for the Cauchy problem (2.1)-(2.2)
on R+ ×Rn with the initial data u0, u1 ∈ L1

loc

(
RN
)
is a locally integrable function u ∈ Lp

(
(0, T ), Lploc(R

N )
)

such that

Γ(α)

∫ T

0

∫
Rn
Iα0|t(|u|

p)ϕ(t, x)dtdx+

∫
Rn
u1(x)ϕ(0, x)dx

−
∫
Rn
u0(x)ϕt(0, x)dx+

∫
Rn
u0(x)Dσ

t|Tϕ(t, x)|t=0dx

=

∫ T

0

∫
Rn
u(t, x)ϕtt(t, x)dtdx+

∫ T

0

∫
Rn
u(t, x)Dσ+1

t|T ϕ(t, x)dtdx

−
∫ T

0

∫
Rn
u(t, x)∆ϕ(t, x)dtdx,

(2.4)

for all non-negative test function ϕ ∈ C2([0, T ] × RN ) such that ϕ(T, ·) = ϕt(T, ·) = Dσ
t|Tϕ(T, ·) = 0 and

α = 1− γ.

3. Main result

Our main result is the following. For all γ, σ ∈]0, 1[ and N ∈ N, we put

pγ(σ) = 1 +
2(2− γ) + 2σ

(N − 2 + 2γ + (N − 2)σ)+
, (3.1)

and
p∗ = max{pγ(σ), γ−1}. (3.2)

Theorem 3.1. Let 0 < γ < 1, p ∈ (1,∞) for N = 1, 2 and 1 < p < N
N−2 for N ≥ 3. Assume that

(u0, u1) ∈ Hs(RN )× L2(RN ) and satisfy∫
Rn
u0(x)dx > 0,

∫
Rn
u1(x)dx > 0. (3.3)

Then, if p ≤ p∗ then the solutions of the Cauchy problem (2.1)-(2.2) does not exist globally in time.

Proof. The theorem 3.1 will be demonstrated by absurd. So suppose that u is a global non trivial weak
solution for problem (2.1)-(2.2). To prove Theorem 3.1 we need also to some results we will give them in the
following section.
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3.1. Preliminary results
As the principle of the method is the right choice of the test function, we chose it, for some T > 0, as

follows:
ϕ(t, x) = Dα

t|Tψ(t, x) = ϕr1(x)Dα
t|Tϕ2(t), (t, x) ∈ R+ × RN , (3.4)

where r > 1 and Dα
t|T is the right fractional derivative operator of order α in the sense of Riemann-Liouville

defined by

Dα
t|T v(t) = − 1

Γ(1− α)

∂

∂t

∫ T

t

v(s)

(s− t)α
ds, (3.5)

and the functions ϕ1 and ϕ2 are given by

ϕ1(x) = φ

(
x2

T θ

)
and ϕ2(t) =

(
1− t

T

)β
+

, (3.6)

with β > 1, θ is a positive constant which will be chosen suitably later and φ is a cut-off non increasing
function such that

φ(s) =

{
1 if 0 ≤ s ≤ 1
0 if s ≥ 2

, 0 ≤ φ ≤ 1 and |φ′(s)| ≤ C

s
. (3.7)

We also denote by ΩT for the support of ϕ1, that is

ΩT = suppϕ1 =
{
x ∈ RN , |x|2 ≤ 2T θ

}
, (3.8)

and by ∆T for the set containing the support of ∆ϕ1 which is defined as follows

∆T =
{
x ∈ RN , T θ ≤ |x|2 ≤ 2T θ

}
. (3.9)

We will also use the fractional version of integration by parts (See [15])∫ t

0
f(t)Dα

t|T g(t)dt =

∫ t

0

(
Dα

0|tf(t)
)
g(t)dt, (3.10)

for all f, g ∈ C([0, T ]) such that Dα
0|t
(
f(t)

)
and Dα

t|T g(t) exist and are continuous. The identities (See [15])(
Dα

0|t ◦ I
α
0|t
)
(u) = u for all u ∈ Lq ([0, T ]) , (3.11)

and
Dσ
t|T
(
Dα
t|T
)

= Dσ+α
t|T , (3.12)

and also the following identity (see [15])

(−1)n ∂nt D
α
t|Tu(t) = Dα+n

t|T u(t), n ∈ N, α ∈ ]0, 1[ , (3.13)

which happens for all u ∈ Cn [0, T ] ;T > 0, where ∂nt is the n−times ordinary derivative with respect to t,
will be strongly used in this work.

A simple and immediate calculation, using (3.5) and the identity (3.13) serves to the following proposition:

Proposition 3.2. Given β > 1. Let ϕ2 be the function defined by

ϕ2(t) =

(
1− t

T

)β
+

,

then for all α ∈ ]0, 1[ , we have

Dα
t|Tϕ2(t) =

Γ(β + 1)

Γ(β − α+ 1)
T−β(T − t)β−α+ =

Γ(β + 1)

Γ(β − α+ 1)
T−α

(
1− t

T

)β−α
+

,
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and

Dα+1
t|T ϕ2(t) =

Γ(β + 1)

Γ(β − α)
T−β(T − t)β−α−1

+ =
Γ(β + 1)

Γ(β − α)
T−α−1

(
1− t

T

)β−α−1

+

,

also

Dα+2
t|T ϕ2(t) =

Γ(β + 1)

Γ(β − α− 1)
T−β(T − t)β−α−2

+ =
Γ(β + 1)

Γ(β − α− 1)
T−α−2

(
1− t

T

)β−α−2

+

.

Therefore, for all α, σ ∈]0, 1[, we have

Dσ+α
t|T ϕ2(t) =

Γ(β + 1)

Γ(β + 1− σ − α)
T−β(T − t)β−α−σ+ =

Γ(β + 1)

Γ(β + 1− σ − α)
T−σ−α

(
1− t

T

)β−α−σ
+

.

Proof. The proof of the proposition 3.2 is a simple and immediate verification. We have by definition (3.5)

Dα
t|Tϕ2(t) = − 1

Γ(1− α)

∂

∂t

∫ T

t

ϕ2(s)

(s− t)α
ds,

using the Euler’s change of variable
s 7→ y =

s− t
T − t

.

1. We deduce, using formula (3.14) bellow,

Dα
t|Tϕ2(t) =

1

Γ (1− α)

∂

∂t

∫ T

t

(
1− s

T

)β
(s− t)α

ds

=
T−β

Γ (1− α)

∂

∂t

(
(T − t)β−α+1

∫ 1

0
y−α(1− y)βdy

)
=

(β − α+ 1)B(1− α, β + 1)

Γ (1− α)
T−β (T − t)β−α

=
Γ (β + 1)

Γ(β − α+ 1)
T−β (T − t)β−α ,

where B is the famous Beta’s function defined by

B(u, v) =

∫ 1

0
tu−1 (1− t)v−1 dt,

and satisfies in particular

B(u, v) =
Γ(u)Γ(v)

Γ(u+ v)
. (3.14)

2. We apply directly formula (3.13) to show that

∀t ∈ [0, T ] : Dα+1
t|T ϕ2(t) = −∂tDα

t|Tϕ2 (t) et Dα+2
t|T ϕ2(t) = ∂2

tD
α
t|Tϕ2(t),

hence the result is conclude.
3. We apply the identity (3.12) and formula (3.14) we get directly the desired result.
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3.2. Treatment of the weak formulation (2.4)
3.2.1. Treatment of the left-hand side

Introducing the test function defined by (3.4), we get using the formula of integration by parts (3.10)
and the identity (3.11)∫ T

0

∫
Rn
Iα0|t(|u|

p)ϕ(t, x)dtdx =

∫ T

0

∫
Rn
Iα0|t(|u|

p)Dα
t|Tψ(t, x)dtdx

=

∫ T

0

∫
Rn
Dα

0|T I
α
0|T (|u|p)ψ(t, x)dtdx =

∫ T

0

∫
Rn
|u|pψ(t, x)dtdx.

(3.15)

For the 2nd term of the left-hand side of equality (2.4), we use the Proposition 3.2 to obtain∫
Rn
u1(x)ϕ(0, x)dx =

∫
Rn
u1(x)ϕr1(x)Dα

t|Tϕ2(t)|t=0dx

= C1T
−α
∫
Rn
u1(x)ϕr1(x)dx,

(3.16)

since
Dα
t|Tϕ2(t)|t=0 =

Γ(β + 1)

Γ(β − α+ 1)
T−α = C1T

−α.

For the 3rd term, noting that

ϕt (t, x) =
∂ϕ

∂t
(t, x) = −ϕr1(x)Dα+1

t|T ϕ2(t),

using always the Proposition 3.2 we get the following estimate∫
Rn
u0(x)ϕt(0, x)dx = C2T

−α−1

∫
Rn
u0(x)ϕr1(x)dx, (3.17)

since
Dα+1
t|T ϕ2(t)|t=0 =

Γ(β + 1)

Γ(β − α)
T−α−1 = C2T

−α−1.

Always by Proposition 3.2, the following estimate will be obtained for the 4th term of the left hand-side of
the weak formulation(2.4)∫

Rn
u0(x)Dσ

t|Tϕ(t, x)|t=0dx = CT−σ−α
∫
Rn
u0(x)ϕr1(x)dx, (3.18)

since
Dσ
t|Tϕ(t, x)|t=0 =

Γ(β + 1)

Γ(β − σ − α+ 1)
T−σ−αϕr1(x) = CT−σ−αϕr1(x). (3.19)

3.2.2. Treatment of the right-hand side
Taking into account the formula (3.13) we easily get

ϕtt(t, x) =
∂2ϕ

∂t2
(t, x) = ϕr1(x)∂2

tD
α
t|Tϕ2(t) = ϕr1(x)Dα+2

t|T ϕ2(t),

and then ∫ T

0

∫
Rn
u(t, x)ϕtt(t, x)dtdx =

∫ T

0

∫
Rn
u(t, x)ϕr1(x)Dα+2

t|T ϕ2(t)dtdx. (3.20)

Using formula (3.12) and (3.13) we show firstly that

Dσ+1
t|T ϕ(t, x) = ϕr1(x)Dσ+α+1

t|T ϕ2(t),
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and then ∫ T

0

∫
Rn
u(t, x)Dσ+1

t|T ϕ(t, x)dtdx

=

∫ T

0

∫
Rn
u(t, x)ϕr1(x)Dσ+α+1

t|T ϕ2(t)dtdx.

(3.21)

Finally for the third term of the right-hand side of the formulation (2.4), using the following identity

∆(ϕr1) = rϕr−1
1 ∆ϕ1 + r(r − 1)ϕr−2

1 |∇ϕ1|2,

we get ∫ T

0

∫
Rn
u(t, x)∆ϕ(t, x)dtdx =∫ T

0

∫
Rn
u(t, x)

(
rϕr−1

1 ∆ϕ+ r(r − 1)ϕr−2
1 |∇ϕ1|2

)
Dα
t|Tϕ2(t)dtdx.

(3.22)

Inserting formulas (3.15), (3.16), (3.17), (3.18), (3.20), (3.21) and (3.22) in the formulation (2.4) we
obtain

Γ (α)

∫ T

0

∫
Rn
|u|p ψ(t, x)dtdx+ C1T

−α
∫
Rn
u1(x)ϕr1(x)dx

+ C2T
−α−1

∫
Rn
u0(x)ϕr1(x)dx+ CT−σ−α

∫
Rn
u0(x)ϕr1(x)dx

=

∫ T

0

∫
Rn
u(t, x)ϕr1(x)Dα+2

t|T ϕ2(t)dtdx

−
∫ T

0

∫
Rn
u(t, x)

[
rϕr−1

1 ∆ϕ1

+ r(r − 1)ϕr−2
1 |∇ϕ1|2

]
(x)Dα

t|Tϕ2(t)dtdx

+

∫ T

0

∫
Rn
u(t, x)ϕr1(x)Dσ+α+1

t|T ϕ2(t)dtdx.

(3.23)

The facts that ϕ1 ≤ 1 and∣∣∣rϕr−1
1 ∆ϕ+ r(r − 1)ϕr−2 |∇ϕ1|2

∣∣∣ ≤ ϕr−2
(
|∆ϕ1|+ |∇ϕ1|2

)
,

allows us to deduce from the formula (3.23) the following inequality∫ T

0

∫
Rn
|u|p ψ(t, x)dtdx+ CT−α

∫
Rn
u1(x)ϕr1(x)dx

+ CT−α−1

∫
Rn
u0(x)ϕr1(x)dx+ CT−σ−α

∫
Rn
u0(x)ϕr1(x)dx

≤ C
∫ T

0

∫
Rn
|u(t, x)|ϕr1(x)|Dα+2

t|T ϕ2(t)|dtdx

+ C

∫ T

0

∫
Rn
|u(t, x)|ϕr−2

1

(
|∆ϕ1|+ |∇ϕ1|2

)
|Dα

t|Tϕ2|(t)dtdx

+

∫ T

0

∫
Rn
|u(t, x)|ϕr1(x)|Dσ+α+1

t|T ϕ2(t)|dtdx,

(3.24)

for some constant C > 0. Next, applying the following ε− Young inequality

AB ≤ εAp + C(ε)Bq, pq = p+ q,
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to the terms of the right-hand side of inequality (3.24) we get∫ T

0

∫
Rn
|u(t, x)|ϕr1(x)|Dα+2

t|T ϕ2(t)|dtdx

=

∫ T

0

∫
Rn
|u(t, x)|ψ

1
pψ
− 1
pϕr1(x)|Dα+2

t|T ϕ2(t)|dtdx

≤ ε
∫ T

0

∫
Rn
|u|p ψdtdx+ C(ε)

∫ T

0

∫
Rn
ϕr1ϕ

− 1
p−1

2

∣∣∣Dα+2
t|T ϕ2

∣∣∣ p
p−1

dtdx.

(3.25)

Similarly, we have ∫ T

0

∫
Rn
|u|ϕr−2

1

(
|∆ϕ1|+ |∇ϕ1|2

)
|Dα

t|Tϕ2|dtdx ≤ ε
∫ T

0

∫
Rn
|u|p ψdtdx

+ C(ε)

∫ T

0

∫
Rn
λ(ϕ1)ϕ

r−2 p
p−1

1 ϕ
− 1
p−1

2 |Dα
t|Tϕ2|

p
p−1dtdx,

(3.26)

with
λ(ϕ1) = |∆ϕ1|q + |∇ϕ1|2q .

For the third term of the right-hand side we obtain∫ T

0

∫
Rn
|u(t, x)|ϕr1(x)|Dσ+α+1

t|T ϕ2(t)|dtdx

≤
∫ T

0

∫
Rn
|u(t, x)|pψ(t, x)dtdx

+

∫ T

0

∫
Rn
ϕr1(x)ϕ

− 1
p−1

2 |Dσ+α+1
t|T ϕ2(t)|

p
p−1dtdx.

(3.27)

Using the fact that (3.3) implies that∫
Rn
ui(x)ϕr(x)dx > 0, i = 1, 2,

we conclude from (3.24), (3.25), (3.26) and (3.27), for ε small enough∫ T

0

∫
Rn
|u|pψ(t, x)dtdx ≤ C

(∫ T

0

∫
Rn
ϕr1ϕ

− 1
p−1

2 |Dα+2
t|T ϕ2|

p
p−1dtdx

+

∫ T

0

∫
Rn
λ(ϕ1)ϕ

r−2 p
p−1

1 ϕ
− 1
p−1

2 |Dα
t|Tϕ2|

p
p−1dtdx

+

∫ T

0

∫
Rn
ϕr1(x)ϕ

− 1
p−1

2 |Dσ+α+1
t|T ϕ2(t)|

p
p−1dtdx

)
≤ C (I1 + I2 + I3) ,

(3.28)

for some positive constant C. Now, to estimate integrals I1, I2 and I3 we consider the scaled variables

x = T
θ
2 y and t = Tτ, (3.29)

and noting that they are null outside ΩT (defined by (3.8)), then, using Fubini’s theorem, we get, for I1∫ T

0

∫
ΩT

ϕr1ϕ
− 1
p−1

2 |Dα+2
t|T ϕ2|

p
p−1dtdx == J11J12

=

(∫
ΩT

ϕr1dx

)(∫ T

0
ϕ
− 1
p−1

2 |Dα+2
t|T ϕ2|

p
p−1dt

)
.

(3.30)
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We have

J11 =

∫
ΩT

ϕr1dx = T
Nθ
2

∫ 2

0
φr(y2)dy = CT

Nθ
2 , (3.31)

and using Proposition 3.2, we get

J12 =

∫ T

0
ϕ
− 1
p−1

2 |Dα+2
tT ϕ2|

p
p−1dt = CT

1−(α+2) p
p−1 . (3.32)

Combining (3.31) and (3.32) into (3.30) we obtain then∫ T

0

∫
ΩT

ϕr1ϕ
− 1
p−1

2 |Dα+2
t|T ϕ2|

p
p−1dtdx = CT

−(α+2) p
p−1

+Nθ
2

+1
. (3.33)

By the same way we have for I2∫ T

0

∫
ΩT

λ(ϕ1)ϕr−2q
1 ϕ

− 1
p−1

2 |Dα
t|Tϕ2|qdtdx = J21J22

=

(∫
ΩT

λ(ϕ1)ϕr−2q
1 dx

)(∫ T

0
ϕ
− 1
p−1

2 |Dα
t|Tϕ2|qdt

)
.

(3.34)

So, if we replace q by its value p
p−1 we get

J21 =

∫
ΩT

(
|∆ϕ1|

p
p−1 + |∇ϕ1|2

p
p−1

)
ϕ
r−2 p

p−1

1 dx = CT
−θ p

p−1
+Nθ

2 , (3.35)

and

J22 =

∫ T

0
ϕ
− 1
p−1

2 |Dα
t|Tϕ2|

p
p−1dt = CT

−α p
p−1

+1
. (3.36)

We replace (3.35) and (3.36) into (3.34) we find∫ T

0

∫
ΩT

λ(ϕ1)ϕr−2q
1 ϕ

− 1
p−1

2 |Dα
t|Tϕ2|qdtdx = CT

−(α+θ) p
p−1

+Nθ
2

+1
. (3.37)

For I3 we have ∫ T

0

∫
Rn
ϕr1(x)ϕ

− 1
p−1

2 |Dσ+α+1
t|T ϕ2(t)|

p
p−1dtdx = J31J32

=

(∫
ΩT

ϕr1dx

)(∫ T

0
|ϕ2|−

1
p−1 |Dσ+α+1

t|T ϕ2(t)|
p
p−1dt

)
.

(3.38)

Then we find for J31

J31 = J11 = CT
Nθ
2 , (3.39)

and as usual

J32 =

∫ T

0
|ϕ2|−

1
p−1 |Dσ+α+1

t|T ϕ2(t)|
p
p−1dt = CT

1−(σ+α+1) p
p−1 . (3.40)

Hence by inserting (3.39) and (3.40) in 3.38 we get∫ T

0

∫
Rn
ϕr1(x)ϕ

− 1
p−1

2 |Dσ+α+1
t|T ϕ2(t)|

p
p−1dtdx = CT

−(σ+α+1) p
p−1

+1+Nθ
2 . (3.41)
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Finally, we replace (3.33),(3.37) and (3.41) into (3.28) we obtain∫ T

0

∫
ΩT

|u|pψ(t, x)dtdx ≤ C
(
T
−(α+2) p

p−1
+Nθ

2
+1

+ T
−(α+θ) p

p−1
+Nθ

2
+1

+ T
−(σ+α+1) p

p−1
+1+Nθ

2

)
.

(3.42)

Now, since θ is arbitrary and it must only be positive, we choose it as follows

θ = σ + 1 > 0 since σ ∈]0, 1[.

This choice of θ allows us to have

− (α+ θ)
p

p− 1
+
Nθ

2
+ 1 = −(σ + α+ 1)

p

p− 1
+ 1 +

Nθ

2
, (3.43)

with this choice of θ, and by (3.43) we get from (3.42)∫ T

0

∫
ΩT

|u|p ψ(t, x)dtdx ≤ CT δ, (3.44)

where

δ = max

(
−(α+ 2)

p

p− 1
+
Nθ

2
+ 1,−(σ + α+ 1)

p

p− 1
+
Nθ

2
+ 1

)
= −(σ + α+ 1)

p

p− 1
+
Nθ

2
+ 1 = −(σ + α+ 1)

p

p− 1
+ (σ + 1)

N

2
+ 1.

At this stage, to prove the first result in Theorem.3.1, we distinguish two cases.
Case of p ≤ pγ(σ)

This case itself is divided into two subcases as follows
1. i. Subcase of p < pγ(σ).

In this case, one can remark that the condition p < pγ(σ) is equivalent to δ < 0, then we pass to the limit
as T →∞ in (3.44), we get

lim
T→+∞

∫ T

0

∫
ΩT

|u|p ψ(t, x)dtdx = 0. (3.45)

Using the dominated convergence theorem of Lebesgue (Theorem 1.1.4 in [1]), the continuity of u with
respect to t and x and the fact that

lim
T→+∞

ψ(t, x) = 1, (3.46)

we obtain ∫ +∞

0

∫
RN
|u|pdtdx = 0,

and this implies that u = 0, which is a contradiction because we have supposed that the solution u is not
trivial.

1. ii. Subcase of p = pγ(σ).
Firstly, we remark that the condition p = pγ(σ) is equivalent to δ = 0. Next, taking the limit as T →∞

in (3.44) with the consideration δ = 0 we get∫ +∞

0

∫
RN
|u|p dtdx < +∞,
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from which we can deduce that

lim
T→∞

∫ +∞

0

∫
∆T

|u|p ψdtdx = 0, (3.47)

where ∆T is defined by (3.9). Fixing arbitrarily R in ]0, T [ for some T > 0 such that when T →∞ we don’t
have R→∞ at the same time and choosing ϕ1 as

ϕ1(x) = φ

(
|x|2

T
θ
2R−

θ
2

)
, (3.48)

with θ is an arbitrary positive constant and φ is the cut-off function defined by (3.7). Using the following
Hölder’s inequality∫

X
uvdµ ≤

(∫
X
updµ

) 1
p
(∫

X
vqdµ

) 1
q

; u ∈ Lp(X), v ∈ Lq(X), p, q > 0, pq = p+ q,

instead of the ε−Young’s one to estimate integral I2 in (3.28) on the set

ΩTR−1 =
{
x ∈ RN : |x|2 ≤ 2T θR−θ

}
= suppϕ1,

and noting that supp∆ϕ1 ⊂ ∆TR−1 ⊂ ΩTR−1 where

∆TR−1 =
{
x ∈ RN : T θR−θ ≤ |x|2 ≤ 2T θR−θ

}
, (3.49)

we get ∫ T

0

∫
ΩTR−1

|u|ϕr−2
1

[
|∆ϕ1|2 + |∇ϕ1|2

] ∣∣∣Dα
t|Tϕ2

∣∣∣ dtdx
≤
(∫ T

0

∫
∆TR−1

|u|p ψdtdx
) 1
p
(∫ T

0

∫
∆TR−1

ψ
q
pϕr−2q

1

(
|∆ϕ1|q + |∇ϕ1|2q

) ∣∣∣Dα
t|Tϕ2

∣∣∣q dtdx) 1
q

.

Recalling Integrals I1, I3 in page 231 and Ĩ2 such that

Ĩ2 =

(∫ T

0

∫
∆TR−1

ψ
q
pϕr−2q

1

(
|∆ϕ1|q + |∇ϕ1|2q

) ∣∣∣Dα
t|Tϕ2

∣∣∣q dtdx) 1
q

.

To estimate them, we use at this stage the change of variables x = T
θ
2R−

θ
2 y, and t = Tτ on the set ΩTR−1 .

We have firstly

I1 + I3 ≤ C
(
T
−(α+2) p

p−1
+N θ

2
+1

+ T
−(σ+α+1) p

p−1
+Nθ

2
+1
)
R−Nθ, (3.50)

and using the hypothesis δ = 0 we conclude from (3.50)

I1 + I3 ≤ CR−Nθ/2. (3.51)

Calculating the integral Ĩ2 using the same change of variables and the same form of function ϕ1 and
using (3.51) we obtain from (3.28)∫ T

0

∫
ΩTR−1

|u|p ψdtdx ≤ CR−Nθ/2

+ CR
θ−Nθ

2q

(∫ T

0

∫
∆TR−1

|u|p ψdtdx
) 1
p

.

(3.52)
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Now taking the limit as T → +∞ in (3.52) and using (3.47) and the fact that lim
T→+∞

ψ(t, x) = 1, we

arrive at ∫ ∞
0

∫
RN
|u|p dtdx ≤ CR−Nθ/2,

which means that necessarily R→ +∞ and this is a contradiction.
Case of p ≤ 1

γ .

Even this case is divided into two subcases as follows
2. i. Subcase of p < 1

γ .

In this case we recall (3.28), we take ϕ1(x) = φ

(
|x|2
Rθ

)
where φ is the function defined by (3.7) and R is

a fixed positive number. Trying to calculate generalized integrals I1, I2 and I3 (page 231) with respect to x
on the set

ΣR =
{
x ∈ RN : |x| ≤ 2Rθ/2

}
= suppϕ1.

Employing the scaled variables
x = R

θ
2 y and t = Tτ,

for the first integral we have∫ T

0

∫
ΣR

ϕr1ϕ
− 1
p−1

2 |Dα+2
t|T ϕ2|

p
p−1dtdx

=

(∫
ΣR

ϕr1dx

)(∫ T

0
ϕ
− 1
p−1

2 |Dα+2
t|T ϕ2|

p
p−1dt

)
=

(
RNθ/2

∫ 1

0
φr(y2)dy

)
×
(
T

1−(α+2) p
p−1

∫ T

0
(1− τ)

− β
p−1

+(β−α−2) p
p−1dτ

)
= CR

Nθ
2 T

1−(α+2) p
p−1

(3.53)

By the same way, we obtain∫ T

0

∫
ΣR

λ(ϕ1)ϕr−2q
1 ϕ

− 1
p−1

2 |Dα
t|Tϕ2|qdtdx

=

(∫
ΣT

λ(ϕ1)ϕr−2q
1 dx

)(∫ T

0
ϕ
− 1
p−1

2 |Dα
t|Tϕ2|qdt

)
= CR

Nθ
2
−θ p

p−1T
1−α p

p−1 .

(3.54)

Finally, for the third integral, we have∫ T

0

∫
Rn
ϕr1(x)ϕ

− 1
p−1

2 |Dσ+α+1
t|T ϕ2(t)|

p
p−1dtdx = CR

Nθ
2 T
−(σ+α+1) p

p−1
+1
. (3.55)

Using formula (3.53), (3.54) and (3.55) we get∫ T

0

∫
ΣR

|u|p ψ(t, x)dtdx = CR
Nθ
2

(
T

1−(α+2) p
p−1 + T

−(σ+α+1) p
p−1

+1
)

+ CR

(
N
2
− p
p−1

)
θ
T

1−α p
p−1 .

(3.56)
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Firstly, we note that p < 1
γ implies that 1 − α p

p−1 < 0. So, the facts that (α + 2) p
p−1 > α p

p−1 and
(σ + α+ 1) p

p−1 > α p
p−1 allow us the fact that

lim
T→+∞

ψ(t, x) = ϕr1(x), (3.57)

hence, by taking the limit as T → +∞ in (3.56), we arrive at∫ +∞

0

∫
ΣR

|u|p ϕr1(x)dtdx = 0. (3.58)

Next, taking the limit in (3.58) as R→ +∞ and taking into account the fact that lim
R→+∞

ϕr1(x) = 1, we get

∫ +∞

0

∫
RN
|u|p dtdx = 0.

This implies that u = 0 which is a contradiction.
2. ii. Subcase of p = 1

γ .
In this case, we assume furthermore that

p <
N

N − 1
. (3.59)

First, we observe that (3.59) implies that
N

2
− p

p− 1
< 0. (3.60)

Under these assumptions, we have

1− (α+ 2)
p

p− 1
= − 2

α
< 0, 1− α p

p− 1
= 0,

1− (σ + α+ 1)
p

p− 1
= −(σ + 1)

p

p− 1
< 0.

(3.61)

Hence, taking the limit as T →∞ in (3.56) with the considerations (3.61) and (3.57) we obtain∫ ∞
0

∫
ΣR

|u|pϕr1(x)dtdx = CR
(N
2
− p
p−1

)θ
. (3.62)

Finally, one can remark easily that if N = 1, 2 then N
2 −

p
p−1 < 0 for all p > 1, then by taking the limit

as R→∞ in (3.62) and using the facts that θ > 0 and lim
R→+∞

ϕr1(x) = 1, we get

∫ ∞
0

∫
RN
|u|p dtdx = 0, (3.63)

which implies that u = 0 and this is a contradiction.

If N ≥ 3 then N
2 −

p
p−1 will be negative and we can get (3.63) by letting R→∞ in (3.62), if we assume

furthermore that (3.59) or equivalently (3.60) is satisfied. This achieved the proof of Theorem 3.1.

Remark 3.3. We remark that the condition (3.59) is needed only in the case of p = 1
γ and N ≥ 3 and not

otherwise. We, also, point out that the condition (3.59) is equivalent to

N − 2

N
< γ < 1.
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4. Conclusion

First, one can show that if σ → 0 then pγ(σ) → pγ , and we find the same critical exponent obtained
by Fino ([5]), and this is reasonable because if σ = 0 then Dσ

0|tut = ut. In other word, our result is a
generalization of the result of ([5]). Also, thanks to the presence of the term ut in the model of ([5]), one
can show using Fourier transform, for example, or by scaling argument, that this model is parabolic like and
then it tends to the model of Cazenave and al ([4]) as t→ +∞. For this reason, the two problems have the
same critical exponent p∗.
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