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Abstract

We build an example of a system S of similarities in R2 whose attractor is a plane dendrite K ⊃ [0, 1] which
satisfies one point intersection property, while the post-critical set of the system S is a countable set whose
natural projection to K is dense in the middle-third Cantor set.
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1. Introduction

Let S = {S1 . . . Sm} be a system of contraction maps of a complete metric space X. A non-empty
compact set K ∈ X satisfying K = S1(K) ∪ · · · ∪ Sm(K) is called invariant set, or attractor defined on the
system S. The uniqueness and existence of the attractor K is provided by Hutchinson’s Theorem [3].

Let I = {1, 2, . . . ,m}, I∗ =
⋃∞

n=1 I
n be the set of all finite I-tuples and I∞ = {α = α1α2 . . . , αi ∈ I} be

the index space and π : I∞ → K be the address map.

A system S satisfies open set condition (OSC) if there is non-empty open O such that Si(O)⊂O and Si(O)∩
Sj(O) = ∅ for any i, j ∈ I, i 6= j [3, 5]. We say that the system S satisfies one point intersection property
[1] if for any i, j ∈ I, i 6= j, #(Si(K) ∩ Sj(K)) ≤ 1.

Let C be the union of all Si(K) ∩ Sj(K), i, j ∈ I, i 6= j. The post-critical set P of the system S is the set of
all α ∈ I∞ such that for some j ∈ I∗, Sj(α) ∈ C . In other words, P = {σk(α)|α ∈ C, k ∈ N}, where the map
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σk : I∞ → I∞ is defined by σk(α1α2 . . .) = αk+1αk+2 . . ..

A system S is called post-critically finite(pcf) [4] if its post-critical set is finite. This obviously implies finite
intersection property.

Our aim is to show that the converse need not be true even in the case of plane dendrites. We construct an
example of non-pcf system S, whose attractor is a dendrite K⊂R2, satisfying one point intersection property.

So we prove the following

Theorem 1.1. There is a system S = {S1, S2, S3, Sh} in R2, whose attractor K is a dendrite, which satisfies
OSC and 1-point intersection property and has infinite post-critical set whose projection to K is dense in the
middle-third Cantor set.

2. Construction

Take a system S = {S0, S1, S2, Sh} of contraction similarities of R2, defined by

Sj(x, y) = ((x+ j)/3, y/3), j = 0, 1, 2 and Sh(x, y) = (−hy + c, hx) (2.1)

and let K be the attractor of S. Here c is infinite base-3 fraction beginning with 0.11 and containing all
finite tuples, consisting of 0 and 2: c = 0.110200220020222 . . .

We will show that if h is sufficiently small, then all the images Si1i2...inh(K), ik = 0, 1, 2, are disjoint.

Put I = {0, 1, 2} and denote by I∗ =
⋃∞

n=1 I
n the set of all tuples formed by {0, 1, 2}. Consider the images of

c under the maps Sj, j ∈ I∗. Using base-3 fractions, we can write them as Sj(c) = 3−nc+0.j1 . . . jn, j ∈ I∗,
so (cj)k = jk for k ≤ n and (cj)k = ck−n for k > n.
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Fig. 1.

Let D be a triangle with vertices {(0, 0), (1, 0), (c, h)} and ∆ = Sh(D). Since c is not rational, the point
cj = Sj(c) is not equal to c for any j ∈ I∗. So either cj < c or cj > c.

For cj < c, ∆j ∩∆ 6= ∅ if Aj(cj , h3−n) lies in ∆. To avoid this, the slope of the line Bc has to be steeper
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than that of Ajc (See Fig 1.):
3−nh

(c− cj)
<
ch

h2
or h2 < 3n(c− cj)c (1)

similarly, for c < c′j, we have to require that Sj(B) does not lie in ∆

h2

3n
< (c′j − c) or h2 < 3n(c′j − c) (2)

So we need to estimate 3n(c− cj) and 3n(c′j − c).
Case 1. If cj < c, there are the following possibilities:

(a) j1 . . . jn = i1 . . . in. Then (n + 1)-th entry (cj)n+1 = i1 = 1 . Since in+1 > 1, then in+1 = 2. So
cj < 0.i1 . . . in12, c > 0.i1 . . . in20, then c− cj > 3−n−2.

(b) j1 . . . jk = i1 . . . ik for some k < n and jk+1 < ik+1. Since the only entries allowed here are 0 and 2, so
jk+1 = 0 and ik+1 = 2. So c > 0.i1 . . . ik2 and cj < 0.i1 . . . ik1, therefore c− cj < 3−k−1.

Case 2. c < c′j, then
(a) j1 . . . jn = i1 . . . in. Since (cj)n+1 = i1 = 1 , c < c′j implies in+1 = 0, so c′j > 0.i1 . . . in1102, c <
0.i1 . . . in0(2), then c− c′j > 3−n−2.

(b) j1 . . . jk = i1 . . . ik for some k < n and jk+1 > ik+1. Then jk+1 = 2, ik+1 = 0, so c′j > 0.i1 . . . ik2,
c < 0.i1 . . . ik1, so c′j − c > 3−k−1.

(c) if n = 1 and j1 = 1 i.e. cj = 0.11102002 . . ., then cj − c > 0.0001121.
Therefore (cj − c)3n > 4/81.

(d) if n = 2 and j1j2 = 11, i.e. cj = 0.11110200, we similarly get cj − c > 0.000201. Thus, (cj − c)3n > 2/9.

So if h ≤ 2/9 the inequalities (1) and (2) are satisfied. Further we show that if h ≤ 2/9, the system S
satisfies open set condition(OSC) and one point intersection property and the attractor K is a dendrite.

3. Proof of the Theorem.

Lemma 3.1. If h ≤ 2/9, for any i, j ∈ I∗, ∆i
⋂

∆j = ∅.

Proof. Let i = i1 . . . in, j = j1 . . . jm. If j1 . . . jk = i1 . . . ik for some k < n and jk+1 6= ik+1, then
∆i

⋂
∆j = Si1...ik(∆ik+1...in

⋂
∆jk+1...jm). It follows from ∆ik+1...in⊂Sik+1

(D) and ∆jk+1...jm⊂Sjk+1
(D) that

∆ik+1...in and ∆jk+1...jm are disjoint. Thus ∆i ∩∆j = ∅.
If m > n and is = js for s = 1, . . . ,m, then ∆i

⋂
∆j = Si(∆

⋂
∆jn+1...jm). By the construction, if h ≤ 2/9,

∆
⋂

∆jn+1...jm = ∅. �
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Fig. 2.

Lemma 3.2. The system S satisfies one point intersection property and open set condition(OSC).

Proof. Let Ḋ, ∆̇ be the interiors of D and ∆. Define O = ∆̇ ∪
⋃

i∈I∗ Si(∆̇). Obviously, for i ∈ I,
Oi = Si(O)⊂O. Moreover, Oh = Sh(O)⊂∆̇⊂O.
Observe that with the only exception S1(Ḋ) ∩ Sh(Ḋ) 6= ∅, the sets S0(Ḋ), S1(Ḋ), S2(Ḋ) and Sh(Ḋ) are
disjoint. Since O⊂Ḋ, the same is true for the sets O0, O1, O2 and Oh. But Oh⊂∆̇, so Oh

⋂
O1 = ∅ too,

therefore O0, O1, O2, Oh are disjoint and (OSC) is fulfilled.
It follows from Lemma 2 that ∆

⋂
S1(O) = {c} and therefore S1(K)

⋂
Sh(K) = {c}, which implies one point

intersection property.�



P. Singh and A. Tetenov, Adv. Theory Nonlinear Anal. Appl. 2 (2018) , 81-84. 84

Lemma 3.3. The system S is post critically infinite and its post critical set is dense in the middle-third
Cantor set C.

Proof. Let y = .y1y2..., yi ∈ {0, 2} be base 3 representation for some point from the middle-third Cantor
set C. Since the representation of c contains all possible tuples of symbols 0 and 2, then for any n ∈ N there
is k = k(n) such that ck+i = yi for i = 1, . . . , n. Therefore |σk(c) − y| < 3−n. So, the sequence σk(n)(c),
converges to the point y ∈ C. �

To finish the proof of the Theorem 1, we need only to check that the set K is a dendrite. Let ∆0 =⋃
i∈I∗

Sj(∆) ∪∆ ∪ [0, 1]. This set is compact and it is simply-connected, because the sets Sj(∆) are disjoint.

It is a strong deformation retract of the set D. Define ∆k+1 =
⋃
i∈I∗

Sj ∗ Sh(∆k) ∪ Sh(∆k) ∪ [0, 1]. The sets

∆k form a nested sequence of compact simply-connected sets, each being a strong deformation retract of the

previous one. Then the intersection
∞⋂
k=1

∆k = K is a strong deformation retract of the set D. By Kigami’s

theorem [4] it is locally connected and arcwise connected. Since the interior of K is empty, it contains no
simple closed curve, therefore it is a dendrite [2, Theorem 1.1]. �
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