Conference Proceedings of Science and Technology, 1(1), 2018, 11-15

Conference Proceeding of 7th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2018).

Compactness of Matrix Operators on the Banach Space $\ell_p(T)$

ISSN: 2651-544X

http://dergipark.gov.tr/cpost

Merve İlkhan¹* Emrah Evren Kara²

¹ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, ORCID:0000-0002-0831-1474

² Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, ORCID: 0000-0002-6398-4065 * Corresponding Author E-mail: merveilkhan@duzce.edu.tr

Abstract: In this study, by using the Hausdorff measure of non-compactness, we obtain the necessary and sufficient conditions for certain matrix operators on the spaces $\ell_p(T)$ and $\ell_{\infty}(T)$ to be compact, where $1 \leq p < \infty$.

Keywords: Compact operators, Hausdorff measure of non-compactness, Sequence spaces.

1 Introduction

By ω , we denote the space of all real sequences. Any subset of ω is called a sequence space. Let Ψ, ℓ_{∞}, c and c_0 denote the sets of all finite, bounded, convergent and null sequences, respectively and $\ell_p = \{u = (u_n) \in \omega : \sum_n |u_n|^p < \infty\}$ for $1 \le p < \infty$. Throughout the study, we assume that $p, q \ge 1$ and $\frac{1}{p} + \frac{1}{q} = 1$.

A B-space is a complete normed space. A topological sequence space in which all coordinate functionals π_k , $\pi_k(u) = u_k$, are continuous is called a K-space. A BK-space is defined as a K-space which is also a B-space, that is, a BK-space is a Banach space with continuous coordinates. A BK-space $\lambda \supset \psi$ is said to have AK if every sequence $u = (u_k) \in \lambda$ has a unique representation $u = \sum_k u_k e^{(k)}$, where $e^{(k)}$ is the sequence whose only non-zero term is 1 in the nth place for each $k \in \mathbb{N}$. For example, the space ℓ_p $(1 \le p < \infty)$ is a BK-space with the norm $||u||_p = (\sum_k |u_k|^p)^{1/p}$ and c_0 and ℓ_∞ is a BK-space with the norm $||u||_\infty = \sup_k |u_k|$. Also, the BK-spaces c_0 and ℓ_p have AK but cand ℓ_{∞} do not have AK.

The β -dual of a sequence space λ is defined by

$$\lambda^{\beta} = \{ z = (z_k) \in \omega : zu = (z_k u_k) \in cs \text{ for all } u = (u_k) \in \lambda \}.$$

Let \mathcal{A} be the sequence of n^{th} row of an infinite matrix $\mathcal{A} = (\mathfrak{a}_{nk})$ with real numbers \mathfrak{a}_{nk} for each $n \in \mathbb{N}$. For a sequence $u = (u_k) \in \omega$, the A-transform of u is the sequence $Au = (A_n(u))$, where

$$\mathcal{A}_n(u) = \sum_{n=0}^{\infty} \mathfrak{a}_{nk} u_k$$

provided that the series is convergent for each $n \in \mathbb{N}$.

 (λ, μ) stands for the class of all infinite matrices from a sequence space λ into another sequence space μ . Hence, $\mathcal{A} \in (\lambda, \mu)$ if and only if $\mathcal{A}_n \in \lambda^\beta$ for all $n \in \mathbb{N}$.

Let λ be a normed space and S_{λ} be the unit sphere in λ . For a BK-space $\lambda \supset \psi$ and $z = (z_k) \in \omega$, we use the notation

$$\|z\|_{\lambda}^* = \sup_{u \in S_{\lambda}} \left| \sum_k z_k u_k \right|$$

under the assumption that the supremum is finite. In this case observe that $z \in \lambda^{\beta}$.

Lemma 1. [1, Theorem 1.29] $\ell_1^{\beta} = \ell_{\infty}$, $\ell_p^{\beta} = \ell_q$ and $\ell_{\infty}^{\beta} = \ell_1$, where $1 . If <math>\lambda \in \{\ell_1, \ell_p, \ell_{\infty}\}$, then $||z||_{\lambda}^* = ||z||_{\lambda^{\beta}}$ holds for all $z \in \lambda^{\beta}$, where $||.||_{\lambda^{\beta}}$ is the natural norm on λ^{β} .

By $\mathcal{B}(\lambda, \mu)$, we denote the set of all bounded (continuous) linear operators from λ to μ .

Lemma 2. [1, Theorem 1.23 (a)] Let λ and μ be BK-spaces. Then, for every $\mathcal{A} \in (\lambda, \mu)$, there exists a linear operator $L_{\mathcal{A}} \in \mathcal{B}(\lambda, \mu)$ such that $L_{\mathcal{A}}(u) = \mathcal{A}u$ for all $u \in \lambda$.

Lemma 3. [1] Let $\lambda \supset \psi$ be a BK-space and $\mu \in \{c_0, c, \ell_\infty\}$. If $\mathcal{A} \in (\lambda, \mu)$, then

$$\|L_{\mathcal{A}}\| = \|\mathcal{A}\|_{(\lambda,\mu)} = \sup_{n} \|\mathcal{A}_{n}\|_{\lambda}^{*} < \infty.$$

The Hausdorff measure of noncompactness of a bounded set Q in a metric space λ is defined by

$$\chi(Q) = \inf\{\varepsilon > 0 : Q \subset \bigcup_{i=1}^{n} B(x_i, r_i), x_i \in \lambda, r_i < \varepsilon, n \in \mathbb{N}\},\$$

where $B(x_i, r_i)$ is the open ball centered at x_i and radius ε for each i = 1, 2, ..., n.

The following theorem is useful to compute the Hausdorff measure of non-compactness in ℓ_p for $1 \le p < \infty$.

Theorem 1. [2] Let Q be a bounded subset in ℓ_p for $1 \le p < \infty$ and $P_r : \ell_p \to \ell_p$ be the operator defined by $P_r(u) = 0$ $(u_0, u_1, u_2, ..., u_r, 0, 0, ...)$ for all $u = (u_k) \in \ell_p$ and each $r \in \mathbb{N}$. Then, we have

$$\chi(Q) = \lim_{r} \left(\sup_{u \in Q} \| (I - P_r)(u) \|_{\ell_p} \right),$$

where I is the identity operator on ℓ_p .

Let λ and μ be Banach spaces. Then, a linear operator $L: \lambda \to \mu$ is is said to be compact if the domain of L is all of λ and L(Q) is a totally bounded subset of μ for every bounded subset Q in λ . Equivalently, we say that L is compact if its domain is all of λ and for every bounded sequence $u = (u_n)$ in λ , the sequence $(L(u_n))$ has a convergent subsequence in μ .

The idea of compact operators between Banach spaces is closely related to the Hausdorff measure of non-compactness. For $L \in \mathcal{B}(\lambda, \mu)$, the Hausdorff measure of non-compactness of L denoted by $||L||_{\chi}$ is given by

$$||L||_{\chi} = \chi(L(S_{\lambda}))$$

and we have

L is compact if and only if $||L||_{\chi} = 0$.

Several authors have studied compact operators on the sequence spaces and given very important results related to the Hausdorff measure of non-compactness of a linear operator. For example [3]-[9].

The main purpose of this study is to obtain necessary and sufficient conditions for some matrix operators to be compact. For this purpose, we use the Banach spaces $\ell_p(T)$ and $\ell_{\infty}(T)$ introduced in [10] as

$$\ell_p(T) = \left\{ u = (u_n) \in \omega : \sum_n \left| t_n u_n - \frac{1}{t_n} u_{n-1} \right|^p < \infty \right\} \quad (1 \le p < \infty)$$

and

$$\ell_{\infty}(T) = \left\{ u = (u_n) \in \omega : \sup_{n} \left| t_n u_n - \frac{1}{t_n} u_{n-1} \right| < \infty \right\}.$$

Here, the difference matrix matrix $T = (t_{nk})$ is defined by

$$t_{nk} = \begin{cases} t_n & , \quad k = n \\ -\frac{1}{t_n} & , \quad k = n - 1 \\ 0 & , \quad k > n \text{ or } 0 \le k < n - 1, \end{cases}$$

where $t_n > 0$ for all $n \in \mathbb{N}$ and $t = (t_n) \in c \setminus c_0$. Note that we use the sequence $v = (v_n)$ for the *T*-transform of a sequence $u = (u_n)$, that is,

$$v_n = T_n(u) = \begin{cases} t_0 u_0 &, n = 0\\ t_n u_n - \frac{1}{t_n} u_{n-1} &, n \ge 1 \end{cases} \quad (n \in \mathbb{N}).$$

2 Compact Operators on the Spaces $\ell_p(T)$ and $\ell_{\infty}(T)$

For a sequence $a = (a_k) \in \omega$, we define a sequence $\tilde{a} = (\tilde{a}_k)$ as $\tilde{a}_k = \sum_{j=k}^{\infty} t_k \prod_{i=k}^{j} \frac{1}{t_i^2} a_j$ for all $k \in \mathbb{N}$. We need the following results in the sequel.

Lemma 4. Let $a = (a_k) \in (\ell_p(T))^{\beta}$, where $1 \le p \le \infty$. Then $\tilde{a} = (\tilde{a}_k) \in \ell_q$ and

$$\sum_{k} a_k u_k = \sum_{k} \tilde{a}_k v_k \tag{1}$$

for all $u = (u_k) \in \ell_p(T)$.

Lemma 5. The following statements hold.

 $\begin{aligned} &(a) \|a\|_{\ell_{1}(T)}^{*} = \sup_{k} |\tilde{a}_{k}| < \infty \text{ for all } a = (a_{k}) \in (\ell_{1}(T))^{\beta}. \\ &(b) \|a\|_{\ell_{p}(T)}^{*} = \left(\sum_{k} |\tilde{a}_{k}|^{q}\right)^{1/q} < \infty \text{ for all } a = (a_{k}) \in (\ell_{p}(T))^{\beta}, \text{ where } 1 \le p \le \infty. \\ &(c) \|a\|_{\ell_{\infty}(T)}^{*} = \sum_{k} |\tilde{a}_{k}| < \infty \text{ for all } a = (a_{k}) \in (\ell_{\infty}(T))^{\beta}. \end{aligned}$

Proof: We only prove part (a) and the others can be proved analogously. Choose $a = (a_k) \in (\ell_1(T))^{\beta}$. Then, by Lemma 4, we have $\tilde{a} = (\tilde{a}_k) \in \ell_{\infty}$ and (1) holds. Since $\|u\|_{\ell_1(T)} = \|v\|_{\ell_1}$ holds, we obtain that $u \in S_{\ell_1(T)}$ if and only if $v \in S_{\ell_1}$. Hence, we deduce that $\|a\|_{\ell_1(T)}^* = \sup_{u \in S_{\ell_1(T)}} |\sum_k a_k u_k| = \sup_{v \in S_{\ell_1}} |\sum_k \tilde{a}_k v_k| = \|\tilde{a}\|_{\ell_1}^*$. From Lemma 1, it follows that $\|a\|_{\ell_1(T)}^* = \|\tilde{a}\|_{\ell_1}^* = \|\tilde{a}\|_{\ell_{\infty}} = \sup_k |\tilde{a}_k|$. \Box

Throughout this section, we use the matrix $\tilde{A} = (\tilde{a}_{nk})$ defined by an infinite matrix $A = (a_{nk})$ via

$$\tilde{\mathfrak{a}}_{nk} = \sum_{j=k}^{\infty} t_k \prod_{i=k}^{j} \frac{1}{t_i^2} \mathfrak{a}_{nj}$$

for all $n,k\in\mathbb{N}$ under the assumption that the series is convergent.

Lemma 6. Let λ be a sequence space. If $\mathcal{A} \in (\ell_p(T), \lambda)$, then $\tilde{\mathcal{A}} \in (\ell_p, \lambda)$ and $\mathcal{A}u = \tilde{\mathcal{A}}v$ for all $u \in \ell_p(T)$, where $1 \le p \le \infty$. **Lemma 7.** If $\mathcal{A} \in (\ell_1(T), \ell_p)$, then we have

$$\|L_{\mathcal{A}}\| = \|\mathcal{A}\|_{(\ell_1(T),\ell_p)} = \sup_k \left(\sum_n |\tilde{\mathfrak{a}}_{nk}|^p\right)^{1/p} < \infty,$$

where $1 \leq p \leq \infty$.

Lemma 8. [11, Theorem 3.7] Let $\lambda \supset \psi$ be a BK-space. Then, the following statements hold. (a) $\mathcal{A} \in (\lambda, \ell_{\infty})$, then $0 \leq \|L_{\mathcal{A}}\|_{\chi} \leq \limsup_{n} \|\mathcal{A}_{n}\|_{\lambda}^{*}$. (b) $\mathcal{A} \in (\lambda, c_{0})$, then $\|\mathcal{A}_{S}\|_{\chi} \leq \limsup_{n} \|\mathcal{A}_{n}\|_{\lambda}^{*}$. (c) If λ has AK or $\lambda = \ell_{\infty}$ and $\mathcal{A} \in (\lambda, c)$, then

$$\frac{1}{2}\limsup_{n} \|\mathcal{A}_{n} - \alpha\|_{\lambda}^{*} \leq \|L_{\mathcal{A}}\|_{\chi} \leq \limsup_{n} \|\mathcal{A}_{n} - \alpha\|_{\lambda}^{*}$$

where $\alpha = (\alpha_k)$ and $\alpha_k = \lim_n \mathfrak{a}_{nk}$ for all $k \in \mathbb{N}$.

Theorem 2.

1. For $\mathcal{A} \in (\ell_1(T), \ell_\infty)$,

$$0 \le \|L_{\mathcal{A}}\|_{\chi} \le \limsup_{n} \left(\sup_{k} |\tilde{\mathfrak{a}}_{nk}| \right)$$

holds.

2. *For* $A \in (\ell_1(T), c)$,

$$\frac{1}{2}\limsup_{n} \left(\sup_{k} |\tilde{\mathfrak{a}}_{nk} - \tilde{\alpha}_{k}| \right) \le \|L_{\mathcal{A}}\|_{\chi} \le \limsup_{n} \left(\sup_{k} |\tilde{\mathfrak{a}}_{nk} - \tilde{\alpha}_{k}| \right)$$

holds. 3. For $\mathcal{A} \in (\ell_1(T), c_0)$,

$$\|L_{\mathcal{A}}\|_{\chi} = \limsup_{n} \left(\sup_{k} |\tilde{\mathfrak{a}}_{nk}| \right)$$

holds. 4. For $\mathcal{A} \in (\ell_1(T), \ell_1)$,

$$||L_{\mathcal{A}}||_{\chi} = \lim_{m} \left(\sup_{k} \sum_{n=m}^{\infty} |\tilde{\mathfrak{a}}_{nk}| \right)$$

holds.

Corollary 1.

1. $L_{\mathcal{A}}$ is compact for $\mathcal{A} \in (\ell_1(T), \ell_{\infty})$ if

$$\lim_{n} \left(\sup_{k} |\tilde{\mathfrak{a}}_{nk}| \right) = 0.$$

2. $L_{\mathcal{A}}$ is compact for $\mathcal{A} \in (\ell_1(T), c)$, if and only if

$$\lim_{n} \left(\sup_{k} |\tilde{\mathfrak{a}}_{nk} - \tilde{\alpha}_{k}| \right) = 0.$$

3. L_A is compact for $A \in (\ell_1(T), c_0)$ if and only if

$$\lim_{n} \left(\sup_{k} |\tilde{\mathfrak{a}}_{nk}| \right) = 0$$

4. $L_{\mathcal{A}}$ is compact for $\mathcal{A} \in (\ell_1(T), \ell_1)$ if and only if

$$\lim_{m} \left(\sup_{k} \sum_{n=m}^{\infty} |\tilde{\mathfrak{a}}_{nk}| \right) = 0.$$

Lemma 9. Let $\lambda \supset \psi$ be a BK-space. If $A \in (\lambda, \ell_1)$, then

$$\lim_{r} \left(\sup_{N \in \mathcal{K}_{r}} \left\| \sum_{n \in N} \mathcal{A}_{n} \right\|_{\lambda}^{*} \right) \leq \|L_{\mathcal{A}}\|_{\chi} \leq 4 \lim_{r} \left(\sup_{N \in \mathcal{K}_{r}} \left\| \sum_{n \in N} \mathcal{A}_{n} \right\|_{\lambda}^{*} \right)$$

and $L_{\mathcal{A}}$ is compact if and only if $\lim_{r} \left(\sup_{N \in \mathcal{K}_{r}} \|\sum_{n \in N} \mathcal{A}_{n}\|_{\lambda}^{*} \right) = 0$, where \mathcal{K}_{r} is the subcollection of \mathcal{K} consisting of subsets of \mathbb{N} with elements that are greater than r.

Theorem 3. Let 1 .

1. For $\mathcal{A} \in (\ell_p(T), \ell_\infty)$,

$$0 \le \|L_{\mathcal{A}}\|_{\chi} \le \limsup_{n} \left(\sum_{k} |\tilde{\mathfrak{a}}_{nk}|^{q}\right)^{1/q}$$

holds. 2. For $\mathcal{A} \in (\ell_p(T), c)$,

$$\frac{1}{2}\limsup_{n} \left(\sum_{k} |\tilde{\mathfrak{a}}_{nk} - \tilde{\alpha}_{k}|^{q}\right)^{1/q} \le \|L_{\mathcal{A}}\|_{\chi} \le \limsup_{n} \left(\sum_{k} |\tilde{\mathfrak{a}}_{nk} - \tilde{\alpha}_{k}|^{q}\right)^{1/q}$$

holds.

3. *For* $A \in (\ell_p(T), c_0)$,

$$||L_{\mathcal{A}}||_{\chi} = \limsup_{n} \left(\sum_{k} |\tilde{\mathfrak{a}}_{nk}|^{q} \right)^{1/q}$$

holds. 4. For $\mathcal{A} \in (\ell_p(T), \ell_1)$,

$$\lim_{m} \|\mathcal{A}\|_{(\ell_{p}(T),\ell_{1})}^{(m)} \leq \|L_{\mathcal{A}}\|_{\chi} \leq 4 \lim_{m} \|\mathcal{A}\|_{(\ell_{p}(T),\ell_{1})}^{(m)}$$

holds, where $\|\mathcal{A}\|_{(\ell_p(T),\ell_1)}^{(m)} = \sup_{N \in \mathcal{K}_m} \left(\sum_k |\sum_{n \in N} \tilde{\mathfrak{a}}_{nk}|^q \right)^{1/q}$.

Corollary 2. Let 1 .

1. $L_{\mathcal{A}}$ is compact for $\mathcal{A} \in (\ell_p(T), \ell_{\infty})$ if

$$\lim_{n} \left(\sum_{k} |\tilde{\mathfrak{a}}_{nk}|^{q} \right)^{1/q} = 0.$$

2. $L_{\mathcal{A}}$ is compact for $\mathcal{A} \in (\ell_p(T), c)$ if and only if

$$\lim_{n} \left(\sum_{k} |\tilde{\mathfrak{a}}_{nk} - \tilde{\alpha}_{k}|^{q} \right)^{1/q} = 0.$$

3. $L_{\mathcal{A}}$ is compact for $\mathcal{A} \in (\ell_p(T), c_0)$ if and only if

$$\lim_{n} \left(\sum_{k} |\tilde{\mathfrak{a}}_{nk}|^{q} \right)^{1/q} = 0.$$

4. $L_{\mathcal{A}}$ is compact for $\mathcal{A} \in (\ell_p(T), \ell_1)$ if and only if

$$\lim_{m} \|\mathcal{A}\|_{(\ell_p(T),\ell_1)}^{(m)} = 0,$$

where $\|\mathcal{A}\|_{(\ell_p(T),\ell_1)}^{(m)} = \sup_{N \in \mathcal{K}_m} \left(\sum_k |\sum_{n \in N} \tilde{\mathfrak{a}}_{nk}|^q \right)^{1/q}$.

Theorem 4.

1. For
$$\mathcal{A} \in (\ell_{\infty}(T), \ell_{\infty})$$

$$0 \le \|L_{\mathcal{A}}\|_{\chi} \le \limsup_{n} \sum_{k} |\tilde{\mathfrak{a}}_{nk}|$$

holds.

2. For $\mathcal{A} \in (\ell_{\infty}(T), c)$,

$$\frac{1}{2}\limsup_{n} \sum_{k} |\tilde{\mathfrak{a}}_{nk} - \tilde{\alpha}_{k}| \le \|L_{\mathcal{A}}\|_{\chi} \le \limsup_{n} \sum_{k} |\tilde{\mathfrak{a}}_{nk} - \tilde{\alpha}_{k}|$$

holds. 3. For $\mathcal{A} \in (\ell_{\infty}(T), c_0)$,

$$\|L_{\mathcal{A}}\|_{\chi} = \limsup_{n} \sum_{k} |\tilde{\mathfrak{a}}_{nk}|$$

holds.

Corollary 3.

1. $L_{\mathcal{A}}$ is compact for $\mathcal{A} \in (\ell_{\infty}(T), \ell_{\infty})$ if

$$\lim_{n}\sum_{k}|\tilde{\mathfrak{a}}_{nk}|=0$$

2. $L_{\mathcal{A}}$ is compact for $\mathcal{A} \in (\ell_{\infty}(T), c)$, if and only if

$$\lim_{n}\sum_{k}|\tilde{\mathfrak{a}}_{nk}-\tilde{\alpha}_{k}|=0.$$

3. $L_{\mathcal{A}}$ is compact for $\mathcal{A} \in (\ell_{\infty}(T), c_0)$ if and only if

$$\lim_n \sum_k |\tilde{\mathfrak{a}}_{nk}| = 0$$

3 References

- E. Malkowsky, V. Rakocevic, An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik radova, Matematicki Inst. SANU, Belgrade, 9(17) [1] (2000), 143–234. V. Rakocevic, *Measures of noncompactness and some applications*, Filomat, **12**(2) (1998), 87–120.
- [2]
- M. Başarır, E. E. Kara, On compact operators on the Riesz B(m)-difference sequence spaces, Iran. J. Sci. Technol., 35(A4) (2011), 279–285. [3]
- M. Başarır, E. E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal., 2 (2011), 114-129. [4]
- [5] M. Başarır, E. E. Kara, On the B-difference sequence space derived by generalized weighted mean and compact operators, J. Math. Anal. Appl., 391 (2012), 67-81. [6] M. Mursaleen, V. Karakaya, H. Polat, N. Şimşek, Measure of noncompactness of matrix operators on some difference sequence spaces of weighted means, Comput. Math. Appl.,
- **62** (2011), 814–820. [7] M. Mursaleen, S. A. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in ℓ_p spaces, Nonlinear Anal., 75 (2012), 2111–
- 2115. [8] M. Mursaleen, A. K. Noman, Applications of Hausdorff measure of noncompactness in the spaces of generalized means, Math. Inequal. Appl., 16(1) (2013), 207–220.
- [9] M. Mursaleen, A. K. Noman, The Hausdorff measure of noncompactness of matrix operators on some BK spaces, Oper. Matrices, 5(3) (2011), 473-486.
- [10] E. E. Kara, M. İlkhan, On some Banach sequence spaces derived by a new band matrix, Br. J. Math. Comput. Sci. 9(2) (2015), 141–159.
 [11] M. Mursaleen, A. K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal., 73(8) (2010), 2541–2557.