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Abstract

In this paper, a combined form of homotopy analysis method with Aboodh transform
method is proposed to solve nonlinear system of partial differential equations. This method
is called the homotopy analysis Aboodh transform method (HAATM). The homotopy
analysis Aboodh transform method can easily be applied to many problems of nonlinear
system, and is capable of reducing the size of computational work.

1. Introduction

The nonlinear evolution equations have attracted the attention of many researchers because of their wide applications in various fields such
as physics, fluid mechanics, bio-mathematics, chemical physics and other areas of science and engineering. The investigation of exact
solutions for the nonlinear evolution equations is a particularly hot topic [1]. So we find that a lot of researchers are working to develop new
methods to solve this kind of equations. These efforts have strengthened this area of research through many methods, among them we find,
homotopy analysis method (HAM). This method was developed in 1992 by Liao Shijun ([2], [3], [4], [5]), and was used by many researchers
to solven nonlinear differential equations ([6], [7], [8]). Then, a new option emerged recently, includes the composition of Laplace transform,
Sumudu transform, Natural transform or Aboodh transform with this method to solve nonlinear differential equations. Among which are the
homotopy analysis method coupled with Laplace transform ([9], [10], [11]), homotopy analysis Sumudu transform method ([12], [13], [14]),
homotopy Natural transform method ([15], [16]) and homotopy analysis Aboodh transform method [17].
The aim of this study is to combine homotopy analysis method and Aboodh transform method in order to obtain a more effective method,
characterized by speed in solution and accuracy in the results obtained. The modified method is called homotopy analysis Aboodh transform
method (HAATM). Three examples of nonlinear partial differential equations are given to re-confirm the strength and effectiveness of this
modified method.
The present paper has been organized as follows: In Section 2 Some basic definitions and properties of the Aboodh transform method. In
section 3 We give an analysis of the proposed method. In section 4 We present three examples explaining how to apply the proposed method.
Finally, the conclusion follows.

2. Definitions and properties of the Aboodh transform

In this section, we give some basic definitions and properties of Aboodh transform which are used further in this paper.
A new transform called the Aboodh transform defined for function of exponential order, we consider functions in the set Ā, defined by [18]:

Ā =
{

f (t) : ∃M, k1,k2 > 0, | f (t)|< Me−vt} .
For given function in the set Ā, the constant M must be finite number, k1,k2 my be finite or infinite.
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The Aboodh transform denoted by the operator A(·) defined by the integral equation:

A [ f (t)] = K(v) =
1
v

∫
∞

0
f (t)e−vtdt, t > 0,k1 6 v 6 k2.

We will summarize here some results of simple functions related to Aboodh transform in the following table [18]:

f (t) A [ f (t)] f (t) A [ f (t)]
1 1

v2 sinat a
v(v2+a2)

t 1
v3 cosat 1

v2+a2

tn n!
vn+2 sinhat a

v(v2−a2)

eat 1
v2−av coshat 1

v2−a2

Theorem 2.1. Let K(v) is the Aboodh transform of f (t), then one has:

A
[

f ′(t)
]
= vK(v)− f (0)

v
,

A
[

f
′′
(t)
]
= v2K(v)− f ′(0)

v
− f (0),

A
[

f
(n)
(t)
]
= vnK(v)−

n−1

∑
k=0

f (k)(0)
v2−n+k .

Proof. (see [18]).

Aboodh transform of partial derivative: To obtain Aboodh transform of partial derivative, we use integration by parts, and then we have:

A
[

∂u(x, t)
∂ t

]
= vK(x,v)− u(x,0)

v
,

A
[

∂ 2u(x, t)
∂ t2

]
= v2K(x,v)− 1

v
∂u(x,0)

∂ t
−u(x,0),

For the proof of these formulas, you can see [19].

Theorem 2.2. Let K(x,v) is the Aboodh transform of u(x, t), then one has:

A
[

∂ nu(x, t)
∂ tn

]
= vnK(x,v)−

n−1

∑
k=0

1
v2−n+k

∂ ku(x,0)
∂ tk .

Proof. (see [17]).

3. Homotopy analysis Aboodh transform method (HAATM)

To illustrate the basic idea of this method, we consider a general non-homogeneous, nonlinear partial diffrential equation

Lt [V (x, t)]+R [V (x, t)]+N [V (x, t)] = f (x, t), (3.1)

where Lt denotes a first-order partial diffrential operator, R is the general linear operators, N is the nonlinear operator and f (x, t) is the
source terms.
Taking the Aboodh transform on both sides of (3.1), we get

A(Lt [V (x, t)])+A(R [V (x, t)]+N [V (x, t)]) = A [ f (x, t)]

Using the property of the Aboodh transform, we have

A [V (x, t)]− 1
v2 V (x,0)+

1
v
(A [R(V (x, t))+N (V (x, t))− f (x, t)]) = 0

Define the nonlinear operators

N[φ(x, t; p)] = A [ φ(x, t; p)]− 1
v2 V (x,0; p)+

1
v
(A [R(φ(x, t; p))+N (φ(x, t; p))− f (x, t; p)])
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By means of homotopy analysis method ([2], [3], [4], [5]), we construct the so-called the zero-order deformation equation

(1−q)A [φ(x, t; p)−V0(x, t)] = phH(x, t)N[φ(x, t; p)], (3.2)

where p is an embedding parameter and p ∈ [0, 1], H(x, t) 6= 0 is an auxiliary function, h 6= 0 is an auxiliary parameter, A is an auxiliary
linear Aboodh operator. When p = 0 and p = 1, we have

{
φ(x, t;0) =V0(x, t),
φ(x, t;1) =V (x, t).

When P increases from 0 to 1, the φ(x, t, p) various from V0(x, t) to V (x, t). Expanding φ(x, t; p) in Taylor series with respect to p, we have

φ(x, t; p) =V0(x, t)+
+∞

∑
m=1

Vm(x, t)pm, (3.3)

where

Vm(x, t) =
1

m!
∂ mφ(x, t; p)

∂ pm

∣∣p=0

When p = 1, the formula (3.3) becomes

V (x, t) =V0(x, t)+
+∞

∑
m=1

Vm(x, t).

Define the vectors

−→
V = {V0(x, t),V1(x, t),V2(x, t), . . . ,Vm(x, t)}.

Differentiating (3.2) m−times with respect to p, then setting p = 0 and finally dividing them by m!, we obtain the so-called mth order
deformation equation

A[Vm(x, t)−χmVm−1(x, t)] = hH(x, t)ℜm(
−→
V m−1(x, t)), (3.4)

where

ℜm(
−→
V m−1(x, t)) =

1
(m−1)!

∂ m−1N(x, t; p)
∂ pm−1

∣∣p=0 ,

and

χm =

{
0, m 6 1,
1, m > 1.

Applying the inverse Aboodh transform on both sides of (3.4), we can obtain

Vm(x, t) = χmVm−1(x, t)+hA−1
[
H(x, t)ℜm(

−→
V m−1(x, t))

]
. (3.5)

The mth deformation equation (3.5) is a linear which can be easily solved. So, the solution of (3.1) can be written into the following form

V (x, t) =
N

∑
m=0

Vm(x, t),

when N→ ∞, we can obtain an accurate approximation solution of (3.1).
For the proof of the convergence of the homotopy analysis method see [3].
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4. Application of this method

In this section, we apply the homotopy analysis method (HAM) coupled with Aboodh transform method for solving system of nonlinear
partial differential equations.

Example 4.1. We consider the following system of nonlinear coupled Burgers partial differential equations

{
Ut −Uxx−2UUx +(UV )x = 0
Vt −Vxx−2VVx +(UV )x = 0 , (4.1)

with the initial conditions

U(κ,0) = sinx, V (x,0) = sinx.

The nonlinear operators are


N[φ(x, t, p)] = A [φ(x, t; p)]− 1

v2 sinx
+ 1

v A [−φxx(x, t; p)−2φ(x, t; p)φx(x, t; p)+(φ(x, t; p)ϕ(x, t; p))x]

N[ϕ(x, t, p)] = A [ϕ(x, t; p)]− 1
v2 sinx

+ 1
v A [−ϕxx(x, t; p)−2ϕ(x, t; p)ϕx(x, t; p)+(φ(x, t; p)ϕ(x, t; p))x]

.

Thus, we obtain the mth order deformation equations given by

{
Um(x, t) = χmUm−1(x, t)+hA−1[ℜm(

−→
U m−1(x, t))]

Vm(x, t) = χmVm−1(x, t)+hA−1[ℜm(
−→
V m−1(x, t))]

. (4.2)

with 
ℜm(
−→
U m−1(x, t)) = A [Um−1(x, t)]− 1

v2 (1−χm)sinx

+ 1
v A
[
∑

m−1
i=0 (UiVm−1−i)κ−2∑

m−1
i=0 Ui(Um−1−i)κ−∑

m−1
i=0 (Ui)xx

]
,

ℜm(
−→
V m−1(x, t)) = A [Vm−1(x, t)]− 1

v2 (1−χm)sinx

+ 1
v A
[
∑

m−1
i=0 (UiVm−1−i)κ−2∑

m−1
i=0 Vi(Vm−1−i)κ−∑

m−1
i=0 (Vi)xx

]
,

(4.3)

and

χm =

{
0, m 6 1,
1, m > 1.

According to (4.2) and (4.3), the formulas of the first terms is given by

U1(x, t) = hA−1 ( 1
v A [(U0V0)x−2U0(U0)x− (U0)xx]

)
,

U2(x, t) = (1+h)U1(x, t)
+hA−1 ( 1

v A [(U0V1 +U1V0)x−2(U0U1x +U1U0x)− (U1)xx]
)
,

U3(x, t) = (1+h)U2(x, t)
+hA−1 ( 1

v A [(U0V2 +U1V1 +U2V0)x−2(2U0U2x +U1U1x)− (U2)xx]
)
,

...

(4.4)

and

V1(x, t) = hA−1 ( 1
v A [(U0V0)x−2V0(V0)x− (V0)xx]

)
,

V2(x, t) = (1+h)V1(x, t)
+hA−1 ( 1

v A [(U0V1 +U1V0)x−2(V0V1x +V1V0x)− (V1)xx]
)
,

V3(x, t) = (1+h)V2(x, t)
+hA−1 ( 1

v A [(U0V2 +U1V1 +U2V0)x−2(2V0V2x +V1V1x)− (V2)xx]
)
,

...

(4.5)

From the equations (4.4) and (4.5), the first solution terms of homotopy analysis Aboodh transform method of the system (4.1), is given by



248 Universal Journal of Mathematics and Applications

U0(x, t) = sinx,
V0(x, t) = sinx,

U1(x, t) = (h)sin(x)t,
V1(x, t) = (h)sin(x)t,

U2(x, t) = (h)(1+h)sin(x)t +(h2)sin(x) t2

2! ,

V2(x, t) = (h)(1+h)sin(x)t +(h2)sin(x) t2

2! ,

U3(x, t) = (h)(1+h)2 sin(x)t +2(1+h)(h2)sin(x) t2

2! +(h3)sin(x) t3

3! ,

V3(x, t) = (h)(1+h)2 sin(x)t +2(1+h)(h2)sin(x) t2

2! +(h3)sin(x) t3

3! ,
...

and so on.
The other components of the (HAATM) can be determined in a similar way. Finally, the approximate solution (U,V ) of the system (4.1)in a
series form, is given by

 U(x, t) = sinx
(

1+h(3+3h+h2)t +(3+2h)h2 t2

2! +h3 t3

3! + · · ·
)

V (x, t) = sinx
(

1+h(3+3h+h2)t +(3+2h)h2 t2

2! +h3 t3

3! + · · ·
)

Substiting h = −1 in (??), the approximate solution of the system (4.1) is given as follows

 U(x, t) = sinx
(

1− t + t2

2! −
t3

3! + · · ·
)

V (x, t) = sinx
(

1− t + t2

2! −
t3

3! + · · ·
)

And in the closed form, the solution (U,V ) is given by

{
U(x, t) = sin(x)e−t

V (x, t) = sin(x)e−t .

(a) (b)

Figure 4.1: (a) Exact solution for U(x, t) and V (x, t), (b) Approximate solution U(x, t) and V (x, t) when h−→−0.99.

Example 4.2. Consider the nonlinear system of inhomogeneous partial differential equations [20]

{
Ut +UxV +U = 1
Vt −UVx−V = 1 . (4.6)

with the initial conditions

U(κ,0) = ex, V (x,0) = e−x.

The nonlinear operators are

{
N[φ(x, t, p)] = A [φ(x, t; p)]− 1

v2 ex + 1
v A [φx(x, t; p)ϕ(x, t; p)+φ(x, t; p)−1]

N[ϕ(x, t, p)] = A [ϕ(x, t; p)]− 1
v2 e−x + 1

v A [−φ(x, t; p)ϕx(x, t; p)−ϕ(x, t; p)−1]
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Thus, we obtain the mth order deformation equations given by

{
Um(x, t) = χmUm−1(x, t)+hA−1[ℜm(

−→
U m−1(x, t))]

Vm(x, t) = χmVm−1(x, t)+hA−1[ℜm(
−→
V m−1(x, t))]

. (4.7)

with


ℜm(
−→
U m−1(x, t)) = A [Um−1(x, t)]− 1

v2 (1−χm)ex

+ 1
v A
[
∑

m−1
i=0 (Ui)xVm−1−i +∑

m−1
i=0 Ui−1

]
,

ℜm(
−→
V m−1(x, t)) = A [Vm−1(x, t)]− 1

v2 (1−χm)e−x

+ 1
v A
[
−∑

m−1
i=0 Ui(Vm−1−i)κ−∑

m−1
i=0 Vi−1

]
,

(4.8)

and

χm =

{
0, m 6 1,
1, m > 1.

According to (4.7) and (4.8), the formulas of the first terms is given by

U1(x, t) = hA−1 ( 1
v A [(U0)xV0 +U0−1]

)
,

U2(x, t) = (1+h)U1(x, t)+hA−1 ( 1
v A [(U0)xV1 +(U1)xV0 +U1]

)
,

U3(x, t) = (1+h)U2(x, t)
+hA−1 ( 1

v A [(U0)xV2 +(U1)xV1 +(U2)xV0 +U2]
)
,

...

(4.9)

and

V1(x, t) = hA−1 ( 1
v A [−U0(V0)x−V0−1]

)
,

V2(x, t) = (1+h)V1(x, t)+hA−1 ( 1
v A [−U0(V1)x−U1(V0)x−V1]

)
,

V3(x, t) = (1+h)V2(x, t)
+hA−1 ( 1

v A [−U0(V2)x−U1(V1)x−U2(V0)x−V2]
)
,

...

(4.10)

From the equations (4.9) and (4.10), the first solution terms of homotopy analysis Aboodh transform method of the system (4.6), is given by

U0(x, t) = ex,
V0(x, t) = e−x,

U1(x, t) = (h)ext,
V1(x, t) = (−h)e−xt,

U2(x, t) = (h)(1+h)ext +(h2)ex t2

2! ,

V2(x, t) = (−h)(1+h)e−xt +(h2)e−x t2

2! ,

U3(x, t) = (h)(1+h)2ext +2(1+h)(h2)ex t2

2! +(h3)ex t3

3! ,

V3(x, t) = (−h)(1+h)2e−xt +2h2(1+h)e−x t2

2! +(−h3)e−x t3

3! ,
...

and so on.
The other components of the (HAATM) can be determined in a similar way. Finally, the approximate solution (U,V ) of the system (4.6)in a
series form, is given by

 U(x, t) = ex
(

1+h(3+3h+h2)t +(3+2h)h2 t2

2! +h3 t3

3! + · · ·
)

V (x, t) = e−x
(

1+(−h)(3+3h+h2)t +(3+2h)h2 t2

2! +(−h3) t3

3! + · · ·
) ,

and in the case h = −1, the approximate solution is given as follows

 U(x, t) = ex
(

1− t + t2

2! −
t3

3! + · · ·
)

V (x, t) = e−x
(

1+ t + t2

2! +
t3

3! + · · ·
)

And in the closed form, the solution (U,V ) is given by

{
U(x, t) = ex−t

V (x, t) = e−x+t
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(a) (b)

Figure 4.2: (a) Exact solution U(x, t). (b) Approximate solution U(x, t) when h−→−1.09.

(c) (d)

Figure 4.3: (c) Exact solution V (x, t). (d) Approximate solution V (x, t) when h−→−1.09.

Example 4.3. Consider the system of nonlinear coupled partial differential equations [21]


Ut(x,y, t)−Vx(x,y, t)Wy(x, ,y, t) = 1
Vt(x,y, t)−Wx(x,y, t)Uy(x, ,y, t) = 5
Wt(x,y, t)−Ux(x,y, t)Vy(x, ,y, t) = 5

, (4.11)

with the initial conditions

U(κ,y,0) = x+2y, V (x,y,0) = x−2y, W (x,y,0) =−x+2y.

The nonlinear operators are


N[φ(x, t, p)] = A [φ(x, t; p)]− 1

v2 (x+2y)− 1
v A
[
ϕx(x, t; p)ψy(x, t; p)+1

]
N[ϕ(x, t, p)] = A [ϕ(x, t; p)]− 1

v2 (x−2y)− 1
v A
[
ψx(x, t; p)φy(x, t; p)+5

]
N[ψ(x, t, p)] = A [ψ(x, t; p)]− 1

v2 (−x+2y)− 1
v A
[
φx(x, t; p)ϕy(x, t; p)+5

]
Thus, we obtain the mth order deformation equations given by


Um(x, t) = χmUm−1(x, t)+hA−1[ℜm(

−→
U m−1(x, t))]

Vm(x, t) = χmVm−1(x, t)+hA−1[ℜm(
−→
V m−1(x, t))]

Wm(x, t) = χmWm−1(x, t)+hA−1[ℜm(
−→
W m−1(x, t))]

(4.12)
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with, 

ℜm(
−→
U m−1(x, t)) = A [Um−1(x, t)]− 1

v2 (1−χm)(x+2y)

− 1
v A
[
∑

m−1
i=0 (Vi)x(Wm−1−i)y +1

]
,

ℜm(
−→
V m−1(x, t)) = A [Vm−1(x, t)]− 1

v2 (1−χm)(x−2y)

− 1
v A
[
∑

m−1
i=0 (Wi)x(Um−1−i)y +5

]
,

ℜm(
−→
W m−1(x, t)) = A [Wm−1(x, t)]− 1

v2 (1−χm)(−x+2y)

− 1
v A
[
∑

m−1
i=0 (Ui)x(Vm−1−i)y +5

]
,

(4.13)

χm =

{
0, m 6 1,
1, m > 1.

According to (4.12) and (4.13), the formulas of the first terms is given by

U1(x, t) =−hA−1 ( 1
v A
[
(V0)x(W0)y +1

])
,

U2(x, t) = (1+h)U1(x, t)−hA−1 ( 1
v A
[
(V0)x(W1)y +(V1)x(W0)y

])
,

U3(x, t) = (1+h)U2(x, t)
−hA−1 ( 1

v A
[
(V0)x(W2)y +(V1)x(W1)y +(V2)x(W0)y

])
,

...

V1(x, t) =−hA−1 ( 1
v A
[
(W0)x(U0)y +5

])
,

V2(x, t) = (1+h)V1(x, t)−hA−1 ( 1
v A
[
(W0)x(U1)y +(W1)x(U0)y

])
,

V3(x, t) = (1+h)V2(x, t)
−hA−1 ( 1

v A
[
(W0)x(U2)y +(W1)x(U1)y +(W2)x(U0)y

])
,

...

and

W1(x, t) =−hA−1 ( 1
v A
[
(U0)x(V0)y +5

])
,

W2(x, t) = (1+h)W1(x, t)−hA−1 ( 1
v A
[
(U0)x(V1)y +(U1)x(V0)y

])
,

W3(x, t) = (1+h)W2(x, t)
−hA−1 ( 1

v A
[
(U0)x(V2)y +(U1)x(V1)y +(U2)x(V0)y

])
,

...

From the equations (4.4) and (4.5), the first solution terms of homotopy analysis Aboodh transform method of the system (4.1), is given by

U0(κ,y, t) = x+2y, V0(x,y, t) = x−2y,
W0(x,y, t) =−x+2y,

U1(x,y, t) =−3(h)t, V1(x,y, t) =−3(h)t,
W1(x,y, t) =−3(h)t,

U2(x,y, t) =−3h(1+h)t, V2(x,y, t) =−3h(1+h)t,
W2(x,y, t) =−3h(1+h)t,

U3(x, t) =−3h(1+h)2t, V3(x, t) =−3h(1+h)2t,
W3(x, t) =−3h(1+h)2t,

...

and so on.
The other components of the (HAATM) can be determined in a similar way. Finally, the approximate solution (U,V,W ) of the system (4.11)in
a series form, is given by


U(x,y, t) = x+2y−3(h)t−3h(1+h)2t−3h(1+h)3t + · · ·
V (x,y, t) = x−2y−3(h)t−3h(1+h)2t−3h(1+h)3t + · · ·

W (x,y, t) =−x+2y−3(h)t−3h(1+h)2t−3h(1+h)3t + · · ·

Substiting h = −1 in (??), the exact solution of the system (4.11) is given by


U(x,y, t) = x+2y+3t
V (x,y, t) = x−2y+3t

W (x,y, t) =−x+2y+3t
(4.14)
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(a) (b)

Figure 4.4: (a) Exact solution U(x,y, t) at the moment t = 1. (b) Approximate solution U(x,y, t) at the moment t = 1 when h−→−0.99.

(c) (d)

Figure 4.5: (c) Exact solution V (x,y, t) at the moment t = 1. (d) Approximate solution V (x,y, t) at the moment t = 1 when h−→−0.99.

(e) (f)

Figure 4.6: (e) Exact solution W (x,y, t) at the moment t = 1. (f) Approximate solution W (x,y, t) at the moment t = 1 when h−→−0.99.

5. Conclusion

In this paper, we have seen that the coupling of homotopy analysis method (HAM) and the Aboodh transform method, proved very effective
to solve nonlinear system of partial differential equations. The proposed algorithm (HAATM) is suitable for such problems and is very user
friendly. The advantage of this method is its ability to combine two powerful methods to obtain exact solutions of nonlinear system of
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partial differential equations. The results obtained in the examples presented shows that this modified method is very powerful and efficient
technique in finding exact solutions for wide classes of problems.
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