Compact Totally Real Minimal Submanifolds in a Bochner-Kaehler Manifold

Mehmet Bektaş ${ }^{\text {a }}$, Zühal Küçc̈karslan Yüzbaşa ${ }^{\mathbf{a}^{*}}$ and Münevver Yıldırım Yılmaz ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science, Firat University, 23119 Elazığ, Turkey
*Corresponding author

Article Info

Keywords: Bochner-Kaehler manifold,
Ricci curvature
2010 AMS: 53B25, 53C55
Received: 9 May 2018
Accepted: 16 July 2018
Available online: 20 December 2018

Abstract

In this paper, we establish the following results: Let M be an m-dimensional compact totally real minimal submanifold immersed in a locally symmetric Bochner-Kaehler manifold \tilde{M} with Ricci curvature bounded from below. Then either M is a totally geodesic or $$
\inf r \leq \frac{1}{2}\left(\frac{1}{2} m(m-1) \tilde{k}-\frac{1}{3}(m+1) \tilde{c}\right)
$$

where r is the scalar curvature of M.

1. Introduction

The Bochner tensor was originally introduced in 1948 by S. Bochner as a Kaehler analogue of the Weyl conformal curvature tensor. Kaehler manifolds with vanishing Bochner tensor are known as Bochner-Kaehler manifolds, [1]. The Bochner tensor has interesting connections to several areas of mathematics and Bochner-Kaehler manifolds have been studied quite intensively in the last two decades, see for instance, [1, 2, 3].
In this work, we make us of Yau's [4] maximum principle to compact study totally real minimal submanifold with Ricci curvature bounded from below and obtain the following results:
Main Theorem. Let M be an m-dimensional compact totally real minimal submanifold immersed in a locally symmetric Bochner-Kaehler manifold \tilde{M} with Ricci curvature bounded from below. Then either M is totally geodesic or $\inf r \leq \frac{1}{2}\left(\frac{1}{2} m(m-1) \tilde{k}-\frac{1}{3}(m+1) \tilde{c}\right)$ where r is the scalar curvature of M.
We use the same notation and terminologies as in [5] unless otherwise stated.
Let \tilde{M} be an n-dimensional Kaehler manifold and denote by $g_{A B}, F_{A B}, \tilde{K}_{A B C D}$ and \tilde{K}, the metric tensor, the complex structure tensor, the curvature tensor, the Ricci tensor and the scalar curvature of \tilde{M}, respectively. Suppose that the Boechner curvature tensor of \tilde{M} vanishes, then we have

$$
\begin{align*}
\tilde{K}_{A B C D} & =-g_{A D} L_{B C}+g_{B D} L_{A C}-L_{A D} g_{B C}+L_{B D} g_{A C}-F_{A D} M_{B C} \tag{1.1}\\
& +F_{B D} M_{A C}-M_{A D} F_{B C}+M_{B D} F_{A C}+2\left(M_{A B} F_{C D}+F_{A B} M_{C D}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& L_{B C}=\tilde{K}_{B C} /(2 n+4)-\tilde{K} g_{B C} / 2(2 n+2)(2 n+4), \tilde{K}_{B C}=g^{A D} \tilde{K}_{A B D C} \\
& \tilde{K}=g^{B C} \tilde{K}_{B C}, M_{B C}=-L_{B D} F_{C}^{D}, F_{C}^{D}=g^{B D} F_{C B}
\end{aligned}
$$

$L_{B C}$ are components of a hybrid tensor of type $(0,2)$. That is

$$
L_{B C} F_{A}^{B} F_{D}^{C}=L_{A D}
$$

In order to avoid repetitions it will be agreed that our indices have the following ranges throughout this paper:

$$
\begin{aligned}
A, B, C, D, \ldots & =1,2, \ldots, m, 1^{*}, 2^{*}, \ldots, m^{*} \\
i, j, k, l, \ldots & =1,2, \ldots, m ; \alpha, \beta, \gamma, \ldots=1^{*}, 2^{*}, \ldots, m^{*}
\end{aligned}
$$

In the following sections, \tilde{M} is always supposed to be a Bochner-Kaehler manifold, that is, \tilde{M} is a Kaehler manifold with curvature tensor $\tilde{K}_{A B C D}$ given by (1.1).

2. Totally real submanifolds in \tilde{M}

We call M as a totally real submanifold of \tilde{M} if M admits an isometric immersion into \tilde{M} such that for all $x \in M, F\left(T_{x}(M)\right) \subset v_{x}$, where $T_{x}(M)$ denotes the tangent space of M at x and F the complex structure of \tilde{M}. If the real dimension of M is m, then $m \leq n, n$ is the complex dimension of \tilde{M}. We choose a local field of orthonormal frames

$$
e_{1}, \ldots, e_{m,}, e_{m+1}, \ldots, e_{n} ; \quad e_{1^{*}}=F e_{1, \ldots,}, e_{m^{*}}=F e_{m, \ldots, e_{n^{*}}}=F e_{n}
$$

in \tilde{M} in a such a way that, restricted to M, e_{1}, \ldots, e_{m} are tangents to M. With respect to this frame field, F and g have the components

$$
\left(F_{A B}\right)=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right), \quad\left(g_{A B}\right)=\left(I_{2 n}\right)
$$

where I_{k} denotes the identity matrix of degree k.
We consider the case $n=m$ only in this paper.
The equation of Gauss of M in \tilde{M} is written as

$$
\begin{equation*}
K_{i j k l}=\tilde{K}_{i j k l}+\sum_{\alpha}\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right) \tag{2.1}
\end{equation*}
$$

$K_{i j k l}$ is the curvature tensor and $h_{i j}^{\alpha}$ is the second fundamental tensor of M. Since M is a totally real submanifold in \tilde{M}, with respect to the above frame we have the relation $h_{j k}^{i^{*}}=h_{i k}^{j^{*}}$. Let \tilde{K} be the curvature tensor field of \tilde{M} so that $\tilde{K}_{A B C D}=g\left(\tilde{K}\left(e_{C}, e_{D}\right) e_{B}, e_{A}\right)$. Then (1.1) is equivalent to

$$
\begin{align*}
\tilde{K}(X, Y) Z & =L(Y, Z) X-L(X, Z) Y+\langle Y, Z\rangle N X-\langle X, Z\rangle N Y \tag{2.2}\\
& +M(Y, Z) F X-M(X, Z) F Y+\langle F Y, Z\rangle P X \\
& -\langle F X, Z\rangle P Y-2(M(X, Y) F Z+\langle F X, Y\rangle P Z)
\end{align*}
$$

where $N X, P X$ are defined by $g(N X, Y)=L(X, Y), g(P X, Y)=M(X, Y)$ and \langle,$\rangle denotes the inner product with respect to g$. Let $\tilde{K}(X)$ be the holomorphic sectional curvature spanned by a unit vector X and $F X$. By (1.1) or (2.2) we have

$$
\tilde{K}(X)=\tilde{K}(X, F X, F X, X)=\langle\tilde{K}(X, F X) F X, X\rangle=8 L(X, X),
$$

Let $\tilde{\rho}(X, Y)$ denote the sectional curvature of \tilde{M} determined by section $\{X, Y\}$ spanned by two orthonormal vector $\{X, Y\}$. If X, Y are both tangent to the totally real submanifold M then we have

$$
\begin{equation*}
\tilde{\rho}(X, Y)=L(X, X)+L(Y, Y)=\frac{1}{8}(\tilde{K}(X)+\tilde{K}(Y)) . \tag{2.3}
\end{equation*}
$$

The equation of (2.3) has been obtained by Iwasaki and Ogitsu, [6].
Let $\rho(X, Y)$ denote the sectional curvature of M determined by orthonormal tangent vectors $\{X, Y\}$ of M. Then the equation of Gauss (2.1) and (2.3) imply

$$
\rho(X, Y)=\frac{1}{8}(\tilde{K}(X)+\tilde{K}(Y))+\langle\sigma(X, X), \sigma(Y, Y)\rangle-\|\sigma(X, Y)\|^{2}
$$

where σ is the second fundamental form which is related to $h_{i j}^{\alpha}$ by $g(\sigma(X, Y), \xi)=h_{j k}^{i^{*}} X^{j} Y^{k} \xi^{i^{*}}$ for any normal $\xi=\xi^{i^{*}} e_{i^{*}}$. Let S be the Ricci tensor of M and r the scalar curvature of M. Then

$$
\begin{aligned}
S(X, Y) & =(m-2) L(X, Y)+\frac{1}{8} m \tilde{k}\langle X, Y\rangle-\sum_{\alpha} g\left(h_{\alpha} X, h_{\alpha} Y\right), \\
r & =\frac{1}{4} m(m-1) \tilde{k}-\|\sigma\|^{2}
\end{aligned}
$$

Let \tilde{M} is locally symmetric. Let Δ denote the Laplacian, ∇^{\prime} denote the covariant differentiation with respect to connection in (tangent bundle) \oplus (normal bundle) of M in \tilde{M}. If M is a minimal submanifold of \tilde{M} the following holds (see [5] for example). Since \tilde{M} is assumed to be locally symmetric:

$$
\begin{equation*}
\frac{1}{2} \Delta\|\sigma\|^{2}=\left\|\nabla^{\prime} \sigma\right\|^{2}+\frac{1}{4}(m+1) \tilde{c}\|\sigma\|^{2}+\sum \operatorname{tr}\left(h_{i^{*}} h_{j^{*}}-h_{j^{*}} h_{i^{*}}\right)^{2}-\sum \operatorname{tr}\left(h_{i^{*}} h_{j^{*}}\right)^{2}, \tag{2.4}
\end{equation*}
$$

where \tilde{c} is a function on M defined by $h_{l k}^{j^{*}} h_{i k}^{j^{*}} \tilde{K}_{l i}=\frac{1}{2}(m+1) \tilde{c}\|\sigma\|^{2}$.
In order to prove the main theorem, we need the following lemmas.

Lemma 2.1. Let $H_{i}, i \geq 2$ be symmetric $n \times n$ matrices, $S_{i}=\operatorname{tr} H_{i}^{2}, S=\sum_{i} S_{i}$. Then

$$
\begin{equation*}
\sum_{i, j} \operatorname{tr}\left(H_{i} H_{j}-H_{j} H_{i}\right)^{2}-\sum_{i, j} \operatorname{tr}\left(H_{i} H_{j}\right)^{2} \geq-\frac{3}{2}\|\sigma\|^{4} \tag{2.5}
\end{equation*}
$$

and the equality holds if and only if either all $H_{i}=0$ or there exists two of H_{i} different from zero. Moreover, if $H_{1} \neq 0, H_{2} \neq 0, H_{i}=0, i \neq 1,2$, then $S_{1}=S_{2}$ and there exists an orthogonal $n \times n$ matrices T such that

$$
T H_{1}^{t} T=\left(\begin{array}{cccc}
\frac{\sqrt{S_{1}}}{2} & 0 & \ldots & 0 \\
0 & -\frac{\sqrt{S_{1}}}{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right), T H_{2}^{t} T=\left(\begin{array}{cccc}
0 & \frac{\sqrt{S_{1}}}{2} & \ldots & 0 \\
\frac{\sqrt{S_{1}}}{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right),
$$

[7, 8].
Lemma 2.2. Let N be a complete Riemannian manifold with Ricci curvature bounded from below and let f be a C^{2}-function bounded from above on N, then for all $\varepsilon>0$, there exists a point $x \in N$ at which,
i) $\sup f-\varepsilon<f(x)$,
ii) $\|\nabla f(x)\|<\varepsilon$,
iii) $\Delta f(x)<\varepsilon$, in [9].

3. Proof of the main theorem

In this section, the method proof used by Ximin in [9] is applied totally real minimal submanifold immersed in a Bochner-Kaehler manifold. From (2.4) and (2.5), we obtain

$$
\begin{equation*}
\frac{1}{2} \Delta\|\sigma\|^{2} \geq\|\sigma\|^{2}\left(\frac{1}{4}(m+1) \tilde{c}-\frac{3}{2}\|\sigma\|^{2}\right) \tag{3.1}
\end{equation*}
$$

We know that $\|\sigma\|^{2}=\frac{1}{4} m(m-1) \tilde{k}-r$. By the condition of the theorem, we conclude that $\|\sigma\|^{2}$ is bounded. We define $f=\|\sigma\|^{2}$ and $F=(f+a)^{\frac{1}{2}}$ (where $a>0$ is any positive constant number). F is bounded. We have

$$
\begin{aligned}
d F & =\frac{1}{2}(f+a)^{-\frac{1}{2}} d f \\
\Delta F & =\frac{1}{2}\left(-\frac{1}{2}(f+a)^{-\frac{3}{2}}\|d f\|^{2}+(f+a)^{-\frac{1}{2}} \Delta f\right), \\
& =\frac{1}{2}\left(-2\|d F\|^{2}+\Delta f\right)(f+a)^{-\frac{1}{2}}
\end{aligned}
$$

i.e.,

$$
\Delta F=\frac{1}{2}\left(-2\|d F\|^{2}+\Delta f\right)
$$

Hence, $F \Delta F=-\|d F\|^{2}+\frac{1}{2} \Delta f$ or $\frac{1}{2} \Delta f=F \Delta F+\|d F\|^{2}$. Applying Lemma 2.2 to F, we have for all $\varepsilon>0$, there exists a point $x \in M$ such that at x

$$
\begin{equation*}
\|d F(x)\| \leq \varepsilon \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\Delta F(x)<\varepsilon \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
F(x)>\sup F-\varepsilon \tag{3.4}
\end{equation*}
$$

From (3.2),(3.3) and (3.4), we have

$$
\begin{equation*}
\frac{1}{2} \Delta f<\varepsilon^{2}+F \varepsilon=\varepsilon(\varepsilon+F) \tag{3.5}
\end{equation*}
$$

We take a sequence $\left\{e_{n}\right\}$ such that $\varepsilon_{n} \rightarrow 0(n \rightarrow \infty)$ and for all n, there exists a point $x_{n} \in M$ such that (3.2), (3.3) and (3.4) hold. Therefore, $\varepsilon_{n}\left(\varepsilon_{n}+F\left(x_{n}\right)\right) \rightarrow 0(n \rightarrow \infty)$ (Because F is bounded). From (3.4), we have $F\left(x_{n}\right)>\sup F-\varepsilon_{n}$. Because $\left\{F\left(x_{n}\right)\right\}$ is a bounded sequence. So we get $F\left(x_{n}\right) \rightarrow F_{0}$ (If necessary, we can choose a subsequence). Hence, $F_{0} \geq \sup F$. So we have

$$
F_{0}=\sup F
$$

From the definition of F, we get

$$
f\left(x_{n}\right) \rightarrow f=\sup f
$$

(3.1) and (3.5) imply that

$$
f\left(\frac{1}{4}(m+1) \tilde{c}-\frac{3}{2} f\right) \leq \frac{1}{2} \Delta f \leq \varepsilon(\varepsilon+F)
$$

and

$$
f\left(x_{n}\right)\left(\frac{1}{4}(m+1) \tilde{c}-\frac{3}{2} f\left(x_{n}\right)\right)<\varepsilon_{n}^{2}+\varepsilon_{n} F\left(x_{n}\right) \leq \varepsilon_{n}^{2}+\varepsilon_{n} F_{0}
$$

let $n \rightarrow \infty$, then $\varepsilon_{n} \rightarrow 0$ and $f\left(x_{n}\right) \rightarrow f_{0}$. Hence,

$$
f_{0}\left(\frac{1}{4}(m+1) \tilde{c}-\frac{3}{2} f_{0}\right) \leq 0
$$

i) If $f_{0}=0$, we have $f=\|\sigma\|^{2}=0$. Hence M is a totally geodesic.
ii) If $f_{0}>0$, we have $\frac{1}{4}(m+1) \tilde{c}-\frac{3}{2} f_{0} \leq 0$ and

$$
f_{0} \geq \frac{1}{6}(m+1) \tilde{c}
$$

that is, $\sup \|\sigma\|^{2} \geq \frac{1}{6}(m+1) \tilde{c}$. Therefore,

$$
\inf r \leq \frac{1}{2}\left(\frac{1}{2} m(m-1) \tilde{k}-\frac{1}{3}(m+1) \tilde{c}\right)
$$

This completes the proof.

References

[1] B. Y. Chen, Some topological obstructions to Bochner-Kaehler metrics and their applications, J. Dif. Geom., 13 (1978), 547-558.
[2] B. Y. Chen, K. Yano, Manifolds with vanishing Weyl or Bochner curvature tensor, J. Math. Soc. Japan, 27(1975), 106-112.
[3] B. Y. Chen, F. Dilen, Totally real bisectional curvature, Bochner-Kaehler and Einstein-Kaehler manifolds, Differential Geom. Appl., 10(1999), 145-154.
[4] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201-228.
[5] C. S. Houh, Totally Real submanifolds in a Bochner-Kaehler Manifold, Tensor, 32 (1978), 293-296.
[6] K. Iwasaki, N. Ogitsu, On the mean curvature for Anti-holomorphic p-plane in Kaehlerian spaces, Tohoku Math. J., 27 (1975), 313-317.
[7] M. Bektaş, Totally real submanifolds in a quaternion space form, Czech. Math. J., 54(129) (2004), 341-346.
[8] H. Sun, Totally real pseudo-umblical submanifolds of quaternion space form, Glasgow Math. J., 40 (1998), 109-115.
[9] L. Ximin, Totally real submanifolds in a complex projective space, Int. J. Math. Math. Sci., 22(1) (1999), 205-208.

