UJMA

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma ISSN 2619-9653 DOI: http://dx.doi.org/10.32323/ujma.399587

Some New Cauchy Sequence Spaces

Harun Polat^{a*}

^aMuş Alparslan University, Art and Science Faculty, Department of Mathematics, 49100 Muş, Turkey ^{*}Corresponding author

Article Info

Abstract

Keywords: Cauchy sequence spaces, α -, β - and γ - duals, Schauder basis, Matrix mappings 2010 AMS: 46A35, 46A45, 46B45 Received: 28 February 2018 Accepted: 6 April 2018 Available online: 20 December 2018 In this paper, our goal is to introduce some new Cauchy sequence spaces. These spaces are defined by Cauchy transforms. We shall use notations $C_{\infty}(s,t)$, C(s,t) and $C_0(s,t)$ for these new sequence spaces. We prove that these new sequence spaces $C_{\infty}(s,t)$, C(s,t) and $C_0(s,t)$ are the *BK*-spaces and isomorphic to the spaces l_{∞} , *c* and c_0 , respectively. Besides the bases of these spaces, $\alpha -$, $\beta -$ and $\gamma -$ duals of these spaces will be given. Finally, the matrix classes $(C(s,t): l_p)$ and (C(s,t): c) have been characterized.

1. Preliminaries, background and notation

By w, we shall denote the space of all real or complex valued sequences. Any vector subspace of w is called as a sequence space. We shall write l_{∞} , c, c_0 and l_p for the spaces of all bounded, convergent, null and absolutely p-summable sequences which are given by

$$l_{\infty} = \left\{ x = (x_k) \in w : \sup_{k \to \infty} |x_k| < \infty \right\},\$$
$$c = \left\{ x = (x_k) \in w : \lim_{k \to \infty} x_k \text{ exists} \right\},\$$
$$c_0 = \left\{ x = (x_k) \in w : \lim_{k \to \infty} x_k = 0 \right\}$$

and

$$l_p = \left\{ x = (x_k) \in w : \sum_{k=0}^{\infty} |x_k|^p < \infty, 1 \le p < \infty \right\}.$$

Also by bs, cs and l_1 , we denote the spaces of all bounded, convergent and absolutely convergent series, respectively.

A sequence space λ with a linear topology is called an K- space provided of the maps $p_i : \lambda \to \mathbb{C}$ defined by $p_i(x) = x_i$ is continuous for all $i \in \mathbb{N}$; where \mathbb{C} denotes the set of complex number and $\mathbb{N} = \{0, 1, 2, ...\}$. Let λ be an K- space. Then λ is called an FK- space provided λ is a complete linear metric space. An FK- space provided whose topology is normable is called a BK- space [1].

Let *X*, *Y* be any two sequence spaces and $A = (a_{nk})$ be an infinite matrix of real numbers, where $n, k \in \mathbb{N}$. Then, we write $Ax = ((Ax)_n)$, the *A*-transform of *x*, if $A_n(x) = \sum_k a_{nk}x_k$ converges for each $n \in N$. If for every sequence $x = (x_k) \in X$, *A*-transform of *x* sequence *Ax* is in *Y*. Then we say that *A* defines a matrix transformation from *X* into *Y* and denote it by $A : X \to Y$. By (X : Y) we mean the class of all infinite matrices such that $A : X \to Y$.

Let *F* denote the collection of all finite subsets on \mathbb{N} and *K*, $\mathbb{N} \subset F$. The matrix domain X_A of an infinite matrix *A* in a sequence space *X* is defined by

$$X_A = \{x = (x_k) \in w : Ax \in X\}$$
(1.1)

which is a sequence space.

The approach constructing a new sequence space by means of the matrix domain of a particular limitation method has been employed by many authors recently. They introduced the sequence spaces $(c_0)_{T^r} = t_0^r$ and $(c)_{T^r} = t_c^r$ in [2], $(c_0)_{E^r} = e_0^r$ and $(c)_{E^r} = e_c^r$ in [3], $(c_0)_C = \overline{c_0}$ and $c_C = \overline{c}$ in [3], $(l_p)_{E^r} = e_p^r$ in [4], $(l_{\infty})_{R^l} = r_{\infty}^l$, $c_{R^l} = r_c^l$ and $(c_0)_{R^l} = r_0^r$ in [5], $(l_p)_C = X_p$ in [6] and $(l_p)_{N_q}$ in [7] where T^r , E^r , C, R^t and N_q denote the Taylor, Euler, Cesaro, Riesz and Nörlund means, respectively. In recent years, constructing a new sequence space by means of the domain of an infinite matrix was used by Candan [8, 9], Altay [10], Altay and Başar [11], Aydın and Başar [12], Başar [13, 14], Başar, Altay and Mursaleen [15], Polat and Başar [16].

Following [2]-[7], [17] by the same way, to introduce the new Cauchy sequence spaces $C_{\infty}(s,t)$, C(s,t) and $C_0(s,t)$ is the purpose of this paper.

2. The Cauchy matrix of inverse formula and Cauchy sequence spaces

Given two vectors s and t such that $s_i \neq -t_j$ for all i and j, the $n \times n$ matrix C = C(s,t) is a Cauchy (generalized Hilbert) matrix [18] where $C(s,t) = c_{ij} = \left[\frac{1}{s_i+t_i}\right]_{i,j=0}^{n-1}$. The inverse of Cauchy's Matrix [19] is given by

$$C^{-1}(s,t) = c_{ij}^{-1} = \frac{\prod_{1 \le k \le n} (s_j + t_k) (s_k + t_i)}{\left(s_j + t_i\right) \left[\prod_{\substack{1 \le k \le n \\ j \ne k}} (s_j - s_k)\right] \left[\prod_{\substack{1 \le k \le n \\ i \ne k}} (t_i - t_k)\right]}.$$
(2.1)

C(s,t) denotes the Cauchy mean defined by the matrix $C(s,t) = (c_{ij}), c_{ij} = [\frac{1}{s_i+t_j}]_{i,j=1}^n$ for each $n \in \mathbb{N}$. We introduce the Cauchy sequence spaces,

$$C_{\infty}(s,t) = \left\{ x = (x_k) \in w : \sup_n \left| \sum_{k=1}^n \frac{1}{s_n + t_k} x_k \right| < \infty \right\},\$$
$$C(s,t) = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{s_n + t_k} x_k \text{ exists} \right\}$$

and

$$C_0(s,t) = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{s_n + t_k} x_k = 0 \right\}.$$

By means of the notation (1.1), we may redefine the spaces $C_0(s,t)$ and C(s,t) as follows:

$$C_0(s,t) = (c_0)_{C(s,t)}$$
 and $C(s,t) = (c)_{C(s,t)}$. (2.2)

If λ is any arbitrary normed or paranormed sequence space, then we call the matrix domain $\lambda_{C(s,t)}$ as the Cauchy sequence space. We define the sequence $y = (y_k)$ which will be frequently used, as the C(s,t) – transform of a sequence $x = (x_k)$ i.e.,

$$y_n = \sum_{k=1}^n \frac{1}{s_n + t_k} x_k.$$
(2.3)

It can be shown easily that $C_{\infty}(s,t)$, C(s,t) and $C_{0}(s,t)$ are linear and normed spaces by the following norm:

$$\|x\|_{C_0(s,t)} = \|C(s,t)\|_{C_{\infty}(s,t)} = \sup_{n} \left| \sum_{k=1}^{n} \frac{1}{s_n + t_k} x_k \right|.$$
(2.4)

Theorem 2.1. The sequence spaces $C_{\infty}(s,t)$, C(s,t) and $C_0(s,t)$ are Banach spaces with the norm (2.4).

Proof. Let $(x_0^p) = (x_0^{(p)}, x_1^{(p)}, x_2^{(p)}, ...)$ be a Cauchy sequence in $C_{\infty}(s, t)$ for all $p \in \mathbb{N}$. Then, there exists $n_0 = n_0(\varepsilon)$ for every $\varepsilon > 0$ such

that $||x^p - x^r||_{\infty} < \varepsilon$ for all $p, r > n_0$. Hence, $|C(s,t)(x^p - x^r)| < \varepsilon$ for all $p, r > n_0$ and for each $k \in \mathbb{N}$. Therefore, $(C(s,t)x_k^p) = ((C(s,t)x^0)_k, (C(s,t)x^1)_k, (C(s,t)x^2)_k,...)$ is a Cauchy sequence in the set of complex numbers \mathbb{C} . Since \mathbb{C} is complete, it is convergent we write $\lim_{p\to\infty} (C(s,t)x^p)_k = (C(s,t)x)_k$ and $\lim_{m\to\infty} (C(s,t)x^m)_k = (C(s,t)x)_k$ for each $k \in \mathbb{N}$. Hence, we have $\lim_{m\to\infty} |C(s,t)x_k^p - x_k^m| = |C(s,t)(x_k^p - x_k) - C(s,t)(x_k^m - x_k)| \le \varepsilon \text{ for all } n \ge n_0. \text{ This implies that } ||x^p - x^m|| \to \infty \text{ for } p, m \to \infty. \text{ Now, we}$ should show that $x \in C_{\infty}(s, t)$. We have

$$||x||_{\infty} = ||C(s,t)x||_{\infty} = \sup_{n} \left| \sum_{k=1}^{n} \frac{1}{s_{n} + t_{k}} x_{k} \right| = \sup_{n} \left| \sum_{k=1}^{n} \frac{1}{s_{n} + t_{k}} (x_{k} - x_{k}^{p} + x_{k}^{p} \right|$$

$$\leq \sup_{n} \left| C(s,t) \left(x_{k}^{p} - x_{k} \right) \right| + \sup_{n} \left| C(s,t) x_{k}^{p} \right| \leq \left\| x^{p} - x \right\|_{\infty} + \left| C(s,t) x_{k}^{p} \right| < \infty$$

for $p, k \in \mathbb{N}$. This implies that $x = (x_k) \in C_{\infty}(s,t)$. Thus, $C_{\infty}(s,t)$ the space is a Banach space with the norm (2.4).

It can be shown that $C_0(s,t)$ and C(s,t) are closed subspaces of $C_{\infty}(s,t)$ which leads us to the consequence that the spaces are also the Banach spaces with the norm (2.4). Furthermore, since $C_{\infty}(s,t)$ is a Banach space with continuous coordinates, i.e., $||C(s,t)(x_k^p - x)||_{\infty} \to 0$ imples $|C(s,t)(x_k^p - x_k)| \to 0$ for all $k \in N$, it is also a BK- space.

Theorem 2.2. The sequence spaces $C_{\infty}(s,t)$, C(s,t) and $C_0(s,t)$ are linearly isomorphic to the spaces l_{∞} , c and c_0 respectively, i.e., $C_{\infty}(s,t) \cong l_{\infty}$, $C(s,t) \cong c$ and $C_0(s,t) \cong c_0$.

Proof. To prove the fact $C_0(s,t) \cong c_0$, we should show the existence of a linear bijection between the spaces $C_0(s,t)$ and c_0 . Consider the transformation *F* defined, with the notation (2.3), from $C_0(s,t)$ to c_0 . The linearity of *F* is clear. Further, it is trivial that x = 0 whenever Fx = 0 and hence *F* is injective.

Let $y \in c_0$ and define the sequence $x = (x_k)$ by $x_k = \sum_{j=1}^k c_{kj}^{-1} y_j$ for each $k \in \mathbb{N}$. Wherein c_{kj}^{-1} is as defined in (2.1). Then

$$\lim_{n \to \infty} (C(s,t)x)_n = \lim_{n \to \infty} \sum_{k=1}^n c_{nk} x_k = \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{s_n + t_k} \sum_{j=1}^k c_{kj}^{-1} y_j = \lim_{n \to \infty} y_n = 0.$$

Thus, we have that $x \in C_0(s,t)$. In addition, note that

$$\|x\|_{C_0(s,t)} = \sup_{n \in \mathbb{N}} \left| \sum_{k=1}^n \frac{1}{s_n + t_k} \sum_{j=1}^k c_{kj}^{-1} y_j \right| = \sup_{n \in \mathbb{N}} |y_n| = \|y\|_{c_0} < \infty.$$

Consequently, *F* is surjective and is norm preserving. Hence, *F* is a linear bijection therefore we say that the spaces $C_0(s,t)$ to c_0 are linearly isomorphic. In the same way, it can be shown that C(s,t) and $C_{\infty}(s,t)$ are linearly isomorphic to *c* and l_{∞} , respectively, and so we omit the detail.

Theorem 2.3. The sequence space $C_{\infty}(s,t)$, C(s,t) and $C_0(s,t)$ includes the sequence spaces l_{∞} , c and c_0 respectively i.e. $l_{\infty} \subset C_{\infty}(s,t)$, $c \subset C(s,t)$ and $c_0 \subset C_0(s,t)$.

Proof. We only prove the conclusion $l_{\infty} \subset C_{\infty}(s,t)$ and the rest follows in a similar way. Let $x \in l_{\infty}$. Then, using (2.3) and (2.4), we obtain that

$$||x|| = ||C(s,t)x||_{\infty} = \sup_{n} \left| \sum_{k=1}^{n} \frac{1}{s_{n} + t_{k}} x_{k} \right|$$

$$\leq \sup_{n} |x_{k}| \sup_{n} |C(s,t)| = ||x||_{C_{\infty}(s,t)}$$

it means that $x \in C_{\infty}(s,t)$.

3. The basis for the spaces C(s,t) and $C_0(s,t)$

Firstly, let us define the Schauder basis. A sequence $(b_n)_{n \in \mathbb{N}}$ in a normed sequence space λ is called a Schauder basis (or briefly basis) [20], if for every $x \in \lambda$ there is a unique sequence (α_n) of scalars such that

$$\lim_{n\to\infty} \|x - (\alpha_0 x_0 + \alpha_1 x_1 + \ldots + \alpha_n x_n)\| = 0.$$

In this section, we shall give the Schauder basis for the spaces C(s,t) and $C_0(s,t)$.

Theorem 3.1. Let $k \in \mathbb{N}$ be a fixed natural number and $b^{(k)} = \left\{b_n^{(k)}\right\}_{n \in \mathbb{N}}$ where $b_n^{(k)} = \left[c_{nk}^{-1}\right]_{k=1}^n$, $(n \in \mathbb{N})$. Wherein c_{nk}^{-1} is as defined in (2.1). Then the following assertions are true:

i. The sequence $\{b_n^{(k)}\}$ is a basis for the space $C_0(s,t)$ and every $x \in C_0(s,t)$ has a unique representation of the form $x = \sum_k \lambda_k b^{(k)}$ where $\lambda_k = (C(s,t)x)_k$ for all $k \in \mathbb{N}$. For simplicity, here and thereafter an unlimited sum symbol runs from zero to infinity.

ii. The set $\{e, b^{(0)}, b^{(1)}, ..., b^{(k)}, ...\}$ is a basis for the space C(s,t) and every $x \in C(s,t)$ has a unique representation of the form $x = le + \sum_k (\lambda_k - l) b^{(k)}$ where $l = \lim_{k \to \infty} (C(s,t)x)_k$ and $\lambda_k = (C(s,t)x)_k$ for all $k \in \mathbb{N}$.

4. The α -, β - and γ - Duals of the Spaces $C_{\infty}(s,t)$, C(s,t) and $C_0(s,t)$

In this section, we state and prove the theorems determining the α -, β - and γ - duals of the sequence spaces $C_{\infty}(s,t)$, C(s,t) and $C_0(s,t)$. For the sequence spaces λ and μ , we define the set $S(\lambda,\mu)$ by

$$S(\lambda,\mu) = \{z = (z_k) \in w : xz = (x_k z_k) \in \mu \text{ for all } x \in \lambda\}.$$

The α -, β - and γ - duals of the sequence spaces λ , which are respectively denoted by λ^{α} , λ^{β} and λ^{γ} are defined by Garling [21], by $\lambda^{\alpha} = S(\lambda, l_1)$, $\lambda^{\beta} = S(\lambda, cs)$ and $\lambda^{\gamma} = S(\lambda, bs)$. We shall begin with the lemmas due to Stieglitz and Tietz [22], which are needed in the proof of the Theorems 4.4-4.6.

Lemma 4.1. $A \in (c_0 : l_1) = (c : l_1)$ *if and only if, for* $(\alpha_k) \subset \mathbb{R}$

$$\sup_{K\in F} \sum_{n} \left| \sum_{k\in K} a_{nk} \right| < \infty \tag{4.1}$$

Lemma 4.2. $A \in (c_0 : c)$ if and only if

$$\sup_{n} \sum_{k} |a_{nk}| < \infty \tag{4.2}$$

and

$$\lim_{n\to\infty}a_{nk}=\alpha_k,\ (k\in\mathbb{N}).$$

Lemma 4.3. $A \in (c_0 : l_\infty)$ if and only if (4.2) holds.

In the following theorems, we denote by *K* and *F* finite subsets of \mathbb{N} .

Theorem 4.4. Let $a = (a_k) \in w$ and define the matrix $B = (c_{nk}^{-1}a_n)$ for all $k, n \in \mathbb{N}$. The α - dual of the sequence spaces $C_{\infty}(s,t)$, C(s,t) and $C_0(s,t)$ is the set $D = \left\{ a = (a_k) \in w : \sup_{K \in F} \sum_n \left| \sum_{k \in K} c_{nk}^{-1} a_n \right| < \infty \right\}$. Wherein c_{nk}^{-1} is as defined in (2.1) for each $k, n \in \mathbb{N}$.

Proof. Let $a = (a_n) \in w$ and consider the matrix *B* whose rows are the products of the rows of the matrix $C^{-1}(s,t)$ and sequence $a = (a_n)$. Bearing in mind the relation (2.3), we immediately derive that

$$a_n x_n = \sum_{k=1}^n c_{nk}^{-1} a_n y_k = (By)_n, \ (n \in \mathbb{N}).$$
(4.3)

We therefore observe by (4.3) that $ax = (a_n x_n) \in l_1$ whenever $x \in C_{\infty}(s,t)$, C(s,t) and $C_0(s,t)$ if and only if $By \in l_1$ whenever $y \in l_{\infty}$, c, and c_0 . Then, by means of Lemma 4.1, we get $\sup_{K \in F} \sum_n \left| \sum_{k \in K} c_{nk}^{-1} a_n \right| < \infty$ which yields the consequences that $\{C_{\infty}(s,t)\}^{\alpha} = \{C(s,t)\}^{\alpha} = \{C_0(s,t)\}^{\alpha} = D.$

Theorem 4.5. Let us consider the sets B_1 , B_2 , B_3 and B_4 defined as follows:

$$B_{1} = \left\{ a = (a_{k}) \in w : \sup_{n} \sum_{k=1}^{n} \left| \sum_{j=k}^{n} c_{jk}^{-1} a_{j} \right| < \infty \right\},$$

$$B_{2} = \left\{ a = (a_{k}) \in w : \sum_{j=k}^{\infty} c_{jk}^{-1} a_{j} \text{ exists for each } k \in \mathbb{N} \right\},$$

$$B_{3} = \left\{ a = (a_{k}) \in w : \lim_{n \to \infty} \sum_{k=1}^{n} \left| \sum_{j=k}^{n} c_{jk}^{-1} a_{j} \right| = \sum_{k=1}^{n} \left| \lim_{n \to \infty} \sum_{j=k}^{n} c_{jk}^{-1} a_{j} \right|$$

and

$$B_4 = \left\{ a = (a_k) \in w : \lim_{n \to \infty} \sum_{k=1}^n \sum_{j=k}^n c_{jk}^{-1} a_j \text{ exists} \right\}.$$

Wherein c_{jk}^{-1} is as defined in (2.1) for each $j, k \in \mathbb{N}$. Then $\{C_0(s,t)\}^{\beta} = B_1 \cap B_2, \{C(s,t)\}^{\beta} = B_1 \cap B_2 \cap B_4$ and $\{C_{\infty}(s,t)\}^{\beta} = B_2 \cap B_3$.

Proof. We only give the proof for the space $C_0(s,t)$. Since the proof may give by a similar way for the spaces C(s,t) and $C_{\infty}(s,t)$, we omit others. Consider the equation

$$\sum_{k=1}^{n} a_k x_k = \sum_{k=1}^{n} \left[\sum_{j=1}^{k} c_{kj}^{-1} y_j \right] a_k = \sum_{k=1}^{n} \left[\sum_{j=k}^{n} c_{kj}^{-1} a_j \right] y_k = (By)_n,$$

where $B = (b_{nk})$ is defined by $b_{nk} = \sum_{j=k}^{n} c_{nj}^{-1} a_j$, $(n, k \in \mathbb{N})$. Thus, we deduce from Lemma 4.2 with (4.2) that $ax = (a_k x_k) \in cs$ whenever $x = (x_k \in) C_0(s,t)$ if and only if $By \in c$ whenever $y = (y_k) \in c_0$. Therefore, we observe using relations (4.1) and (4.2), we conclude that $\lim_{n\to\infty} c_{nk}^{-1}$ exists for each $n, k \in \mathbb{N}$ and $\sup_{n \in \mathbb{N}} \left| \sum_{k=1}^{n} c_{nk}^{-1} \right| < \infty$. Thus, we obtain $\{C_0(s,t)\}^\beta = B_1 \cap B_2$.

Theorem 4.6. The γ - dual of the sequence spaces $C_{\infty}(s,t)$, C(s,t) and $C_0(s,t)$ is the set B_1 .

Proof. This theorem can be proved using the same technique as in the proof of Theorem 4.4 with Lemma 4.3 instead of Lemma 4.2. So, we omit the details. \Box

5. Some matrix mappings related to Cauchy sequence spaces

Lemma 5.1. [22, p. 57] The matrix mappings between BK- spaces are continuous.

Lemma 5.2. [22, p. 128] $A \in (c : l_p)$ if and only if

$$\sup_{K \in F} \sum_{n} \left| \sum_{k \in K} a_{nk} \right|^{p} < \infty, \ (1 \le p < \infty)$$
(5.1)

Theorem 5.3. $A \in (C(s,t):l_p)$ if and only if the following conditions are satisfied

$$\sup_{n\in\mathbb{N}}\sum_{k=0}^{n}|g_{nk}|<\infty\,,\tag{5.2}$$

 $\lim_{k \to \infty} g_{nk} \text{ exists for all } k \in \mathbb{N},$ (5.3)

$$\lim_{n \to \infty} \sum_{k=0}^{n} g_{nk} \text{ converges for all } n \in \mathbb{N},$$
(5.4)

$$\sup_{K \in F} \sum_{n} \left| \sum_{k \in K} g_{nk} \right|^{p} < \infty, (1 \le p < \infty)$$
(5.5)

and

$$\sup_{n\in\mathbb{N}}\sum_{k=0}^{n}|g_{nk}|^{p}<\infty,\ (p=\infty)$$
(5.6)

where $g_{nk} = \sum_{j=k}^{n} c_{kj}^{-1} a_{nj}$ and c_{kj}^{-1} is defined by (2.1).

Proof. Let $1 \le p < +\infty$. Assume that conditions (5.2)-(5.6) are satisfied and take any $x \in C(s,t)$. Then $(a_{nk}) \in (C(s,t))^{\beta}$ for all $k, n \in \mathbb{N}$, which implies that Ax exists. We define the matrix $G = (g_{nk})$ for all $n, k \in \mathbb{N}$. Then, since condition (5.1) is satisfied for the matrix G, we have $G \in (c : l_p)$. Now consider the following equality obtained from the s th partial sum of the series $\sum_k a_{nk} x_k$:

$$\sum_{k=1}^{s} a_{nk} x_k = \sum_{k=1}^{s} \sum_{j=k}^{s} c_{jk}^{-1} a_{nj} y_k$$

 $(s, n \in \mathbb{N})$. Therefore, we derive from that as $s \to \infty$ that

$$\sum_{k=1}^{\infty} a_{nk} x_k = \sum_{k=1}^{\infty} g_{nk} y_k \tag{5.7}$$

 $(n \in \mathbb{N})$. Whence taking l_p – norm we get

$$||Ax||_{l_n} = ||Gy||_{l_n} < \infty.$$

This means that $A \in (C(s,t): l_p)$. Now let $p = \infty$. Assume that conditions (5.2)-(5.6) are satisfied and take any $x \in C(s,t)$. Then $(a_{nk}) \in (C(s,t))^{\beta}$ for all $k, n \in \mathbb{N}$, which implies that Ax exists. Whence taking l_{∞} – norm (5.7)

$$\|Ax\|_{l_{\infty}} = \sup_{n \in \mathbb{N}} \left| \sum_{k} g_{nk} \right| \le \|y\|_{l_{\infty}} \sup_{n \in \mathbb{N}} \sum_{k} |g_{nk}| < \infty.$$

Then, we have $A \in (C(s,t): l_{\infty})$.

Conversely, assume that $A \in (C(s,t) : l_p)$. Then, since C(s,t) and l_p are BK- spaces, it follows from Lemma 5.1 that there exists a real constant K > 0 such that

$$||Ax||_{l_p} = K ||x||_{C(s,t)}$$

for all $x \in C(s,t)$. Since inequality **??** also holds for the sequence $x = (x_k) = \sum_{k \in F} b^{(k)} \in C(s,t)$ where $b_n^{(k)} = \left[c_{nk}^{-1}\right]_{k=1}^n$, $(n \in \mathbb{N})$. Wherein c_{nk}^{-1} is as defined in 2.1. We have $||Ax||_{l_p} = \left[\sum_n |\sum_{k \in F} g_{nk}|^p\right]^{\frac{1}{p}} \le K ||x||_{C(s,t)} = K$ which shows the necessity of 5.5.

(5.8)

(5.10)

Theorem 5.4. $A \in (C(s,t):c)$ if and only if conditions are satisfied

 g_{nk} exists for all $n, k \in \mathbb{N}$,

$$\sup_{n}\sum_{k}|g_{nk}| < \infty \text{ for all } n, k \in \mathbb{N},$$
(5.9)

$$\lim g_{nk} = \alpha_k$$
 for all $k \in \mathbb{N}$

and

$$\lim_{n} \sum_{k} g_{nk} = \alpha \tag{5.11}$$

where $g_{nk} = \sum_{j=k}^{n} c_{kj}^{-1} a_{nj}$ and c_{kj}^{-1} is defined by (2.1).

Proof. Assume that A satisfies conditions (5.8)-(5.11). Let us take an arbitrary an $x = (x_k)$ in C(s,t) such that $x_k \to l$ as $k \to \infty$. Then Axexists and it is trivial that the sequence $y = (y_k)$ associated with the sequence $x = (x_k)$ by relation (2.3) belongs to c and is such that $y_k \rightarrow l$ as $k \to \infty$. At this stage, it follows from (5.4) and (5.6) that

$$\sum_{i=0}^k |\alpha_i| \le \sup_n \sum_i |g_{ni}| < \infty$$

for every $k \in \mathbb{N}$. This yield $\alpha_k \in l_1$. Considering $\sum_k a_{nk} x_k = \sum_k g_{nk} y_k$ we write

$$\sum_{k} a_{nk} x_k = \sum_{k} g_{nk} (y_k - l) + l \sum_{k} g_{nk} y_k$$
(5.12)

In this situation, letting $n \to \infty$ in (5.6), we establish that the first term on the right-hand side tends to $\sum_k \alpha_k (y_k - l)$ by (5.3) and (5.4) and the second term tends to $l\alpha$ by (5.12). Taking these facts into account, we deduce from (5.12) as $n \to \infty$ that $(Ax)_n = \sum_k \alpha_k (y_k - l) + l\alpha$ which shows that $A \in (C(s,t):c)$.

Conversely, assume that $A \in (C(s,t):c)$. Then, since the inclusion $c \subset l_{\infty}$ holds the necessity of (5.10), (5.12) is immediately obtained from $\sup_{n}\sum_{k}|b_{nk}| < \infty$. To prove the necessity of (5.11) consider the sequence $x = b^{(k)} = \left\{b_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ in C(s,t) which defined above for every fixed $k \in \mathbb{N}$. Since Ax exists and belongs to c for every $x \in C(s,t)$, one can easily see that $Ab^{(k)} = \left\{b_n^{(k)}\right\}_{n \in \mathbb{N}}$ for each $k \in \mathbb{N}$, which yields the necessity of (5.11). Similarly, by setting x = e in (5.7), we obtain $Ax = \{\sum_{k \in \mathbb{N}} g_{nk}\}_{n \in \mathbb{N}}$, which belongs to the space *c*, and this shows the necessity of (5.12). Where $g_{nk} = \sum_{j=k}^{n} c_{kj}^{-1} a_{nj}$ and c_{kj}^{-1} is defined by (2.1). This step concludes the proof.

References

- [1] B. Choudhary, S. Nanda, Functional analysis with applications, Wiley, New Delhi, 1989.
- [2] M. Kirişçi, On the Taylor sequence spaces of non-absolute type which include the spaces c_0 and c, J. Math. Anal., 6(2) (2015) 22-35.
- [3] B. Altay, F. Başar, Some Euler sequence spaces of non-absolute type, Ukrain. Math. J., 57(1) (2005), 1-17.
- [4] B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include in the spaces l_p and l_{∞} , Inform. Sci., 176(10) (2006), 1450–1462.
- [5] E. Malkowsky, Recent results in the theory of matrix transformations in sequences spaces, Mat. Vesnik, 49 (1997), 187–196.
- [6] P. N. Ng, P. Y. Lee, Cesaro sequences spaces of non-absolute type, Comment. Math. Prace Mat., 20(2) (1978), 429-433.
- [7] C. S. Wang, On Nörlund sequence spaces, Tamkang J. Math., 9 (1978), 269-274.
- [8] M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Dif. Equ., 1 (2014), 163-281.
- [9] M. Candan, Almost convergence and double sequential band matrix, Acta. Math. Sci., 34B(2) (2014), 354-366.
- [10] B. Altay, On the space of p-summable difference sequences of order $m (1 \le p < \infty)$, Studia Sci. Math. Hungar., 43(4) (2006), 387–402.
- [11] B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., 336(1) (2007), 632-645.
- C. Aydın, F. Başar, On the new sequence spaces which include the spaces c₀ and c, Hokkaido Math. J., 33(2) (2004), 383–398. [12]
- [13] F. Başar, Strongly-conservative sequence-to-series matrix transformations, Erc. Uni. Fen Bil. Derg., 5(12) (1989), 888–893.
- [14] F. Başar, f-conservative matrix sequences, Tamkang J. Math., 22(2) (1991), 205-212.
- [14] F. Başar, J. Conservative matrix sequences, funding 5. Math., 22(2) (1971), 203–112.
 [15] F. Başar, E. Malkowsky, B. Altay, Matrix transformations on the matrix domains of triangles in the spaces of strongly C1-summable and bounded sequences, Publ. Math., 73(1-2) (2008), 193–213.
- [16] H. Polat, F. Başar, Some Euler spaces of difference sequences of order m, Acta Math. Sci., 27B(2) (2007), 254-266.
- [17] M. Şengönül, F. Başar, Some new Cesaro sequence spaces of non-absolute type which include the spaces c₀ and c, Soochow J. Math., **31**(1) (2005),
- 107–119. [18] P. V. Krishna Raja and at all, A cryptosystem based on Hilbert matrix using Cipher block chaining mode, Int. J. Math. Trends Tech., July to Aug Issue
- [19] M. Mohammad Tabanjeh, New approach for the inversion of structured matrices via Newton's iteration, Adv. Linear Algebra Matrix Theory, 5 (2015),
- [20] I. J. Maddox, Elements of functional analysis, Cambridge University Press, Cambridge, 1988.
- [21] D. J. H. Garling, The α -, β and γ duality of sequence spaces, Proc. Comb. Phil. Soc., 63 (1967), 963-981.
- [22] M. Stieglitz, H. Tietz, Matrixtransformationen von folgenraumen eine ergebnisübersict, Math. Z., 154 (1977), 1-16.
- [23] M. Candan, A new sequence space isomorphic to the space l(p) and compact operators, J. Math. Comput. Sci., 4(2) (2014), 306-334.