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Abstract

In this paper, we implemented an improved tanh function method for multiple soliton
solutions of new coupled Konno-Oono equation and extended (3+1)-dimensional KdV-type
equation.

1. Introduction

Nonlinear partial differential equations (NPDEs) have an important place in applied mathematics and physics [1], [2]. Many analytical
methods have been found in literature [3]-[11]. Besides these methods, there are many methods which reach to solution by using an auxiliary
equation. Using these methods, partial differential equations are transformed into ordinary differential equations. These nonlinear partial
differential equations are solved with the help of ordinary differential equations. These methods are given in [12]-[39].
We used the improved tanh function method to find the multiple soliton solutionsof new coupled Konno-Oono equation and extended
(3+1)-dimensional KdV-type equationin this study. This method is presented by Chen and Zhang [15].

2. Analysis of method

Let’s introduce the method briefly. Consider a general partial differential equation of two variables,

ϕ (v,vt ,vx,vxx, . . .) = 0. (2.1)

and transform equation (2.1) with

v(x, t) = v(∅) , ∅= k (x−wt)

where k, w are constants. With this conversion, we obtain a nonlinear ordinary differential equation for v(∅)

ϕ
′ (v′,v′′,v′′′, . . .)= 0. (2.2)

We can express the solution of equation (2.2) as below,

v(∅) =
n

∑
i=0

aiF i (∅) ,

here n is a positive integer and is found as the result of balancing the highest order linear term and the highest order nonlinear term found in
the equation.
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274 Universal Journal of Mathematics and Applications

If we write these solutions in equation (2.2), we obtain a system of algebraic equations for F (∅) , F2 (∅) , . . . ,F i (∅) , after, if the coefficients
of F (∅) , F2 (∅) , . . . ,F i (∅) are equal to zero, we can find the k,w,a0,a1, . . . ,an constants. The basic step of the method is to make full use
of the Riccati equation satisfying the tanh function and to use F (∅) , solutions. The Riccati equation required in this method is given below

F
′
(∅) = A+BF (∅)+CF2 (∅)

where, F ′ (∅) =
dF(∅)

d∅ and A, B and C are constants. The authors expressed the solutions [15].

Example 2.1. Example 1. Weconsider the new coupled Konno-Oono equation,

vt +2uux = 0

uxt −2uv = 0. (2.3)

Using the wave variable v(x, t) = v(∅) and u(x, t) = u(∅) , ∅= k (x−wt) , the equation (2.3) turns into an ordinary differential equation,

−kwv′+2kuu′ = 0

−k2wu′′−2uv = 0. (2.4)

When balancing v′ with uu′ and u′′ with uv then n1 = 1 and n2 = 2 gives. The solution is as follows:

u = a0 +a1F (∅)

v = b0 +b1F (∅)+b2F2 (∅) (2.5)

(2.5) are substituted in equations (2.4) , a system of algebraic equations for k,w,a0,a1,b0,b1,b2 are obtained. The obtained systems of
algebraic equations are as follows

2Aka0a1−Akwb1 = 0,
2Bka0a1 +2Aka2

1−Bkwb1−2Akwb2 = 0,
2Cka0a1 +2Bka2

1−Ckwb1−2Bkwb2 = 0,
2Cka2

1−2Ckwb2 = 0−ABk2wa1−2a0b0 = 0,
−B2k2wa1−2ACk2wa1−2a1b0−2a0b1 = 0,
−3BCk2wa1−2a1b1−2a0b2 = 0,

−2C2k2wa1−2a1b2 = 0.

Solving the above system with the help of Mathematica, the coefficients are found as two cases:
Case 1:

a0 = 0,B = 0,b1 = 0,A 6= 0,b2 =
Cb0

A
,k =

ib0

Aa1
,w =

a2
1

b2
,a1 6= 0,b2 6= 0.

Case 2:

a0 = 0, B = 0, b1 = 0, A = 0, b2 6= 0, k =
ib2

Ca1
, w =

a2
1

b2
, b0 = 0, Ca1 6= 0.

After these procedures, the solutions:
Solution 1:

u1 (x, t) = a1

[
Coth

(
2ib0

a1
x+2ia1t

)
±Cosech

(
2ib0

a1
x+2ia1t

)]

v1 (x, t) = b0−b0

[
Coth

(
2ib0

a1
x+2ia1t

)
±Cosech

(
2ib0

a1
x+2ia1t

)]2

u2 (x, t) = a1

[
Tanh

(
2ib0

a1
x+2ia1t

)
± iSech

(
2ib0

a1
x+2ia1t

)]
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v2 (x, t) = b0−b0

[
Tanh

(
2ib0

a1
x+2ia1t

)
± iSech

(
2ib0

a1
x+2ia1t

)]2

Solution 2:

u3 (x, t) = a1

[
Sec
(

2ib0

a1
x−2ia1t

)
±Tan

(
2ib0

a1
x−2ia1t

)]

v3 (x, t) = b0 +b0

[
Sec
(

2ib0

a1
x−2ia1t

)
±Tan

(
2ib0

a1
x−2ia1t

)]2

u4 (x, t) = a1

[
Cosec

(
2ib0

a1
x−2ia1t

)
±Cot

(
2ib0

a1
x−2ia1t

)]

v4 (x, t) = b0 +b0

[
Cosec

(
2ib0

a1
x−2ia1t

)
±Cot

(
2ib0

a1
x−2ia1t

)]2

u5 (x, t) = a1

[
Sec
(
−2ib0

a1
x+2ia1t

)
±Tan

(
−2ib0

a1
x+2ia1t

)]

v5 (x, t) = b0 +b0

[
Sec
(
−2ib0

a1
x+2ia1t

)
±Tan

(
−2ib0

a1
x+2ia1t

)]2

u6 (x, t) = a1

[
Cosec

(
−2ib0

a1
x+2ia1t

)
±Cot

(
−2ib0

a1
x+2ia1t

)]

v6 (x, t) = b0 +b0

[
Cosec

(
−2ib0

a1
x+2ia1t

)
±Cot

(
−2ib0

a1
x+2ia1t

)]2

Solution 3:

u7 (x, t) = a1

[
Tanh

(
ib0

a1
x+ ia1t

)]

v7 (x, t) = b0−b0

[
Tanh

(
ib0

a1
x+ ia1t

)]2

u8 (x, t) = a1

[
Coth

(
ib0

a1
x+ ia1t

)]

v8 (x, t) = b0−b0

[
Coth

(
ib0

a1
x+ ia1t

)]2

Solution 4:

u9 (x, t) = a1

[
Tan

(
ib0

a1
x− ia1t

)]

v9 (x, t) = b0 +b0

[
Tan

(
ib0

a1
x− ia1t

)]2

Solution 5:

u10 (x, t) = a1

[
Cot

(
− ib0

a1
x+ ia1t

)]
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v10 (x, t) = b0 +b0

[
Cot

(
− ib0

a1
x+ ia1t

)]2

Solution 6:

u11 (x, t) =−
a1(

ib2
a1

x− ia1t
)
+ c0

v11 (x, t) = b2

− 1(
ib2
a1

x− ia1t
)
+ c0

2

Example 2.2. Now let’s get the extended (3+1)-dimensional KdV-type equation,

ut +6uxuy +uxxy +uxxxxz +60u2
xuz +10uxxxuz +20uxuxxz +6uxuz +uxxz = 0, (2.6)

Using the wave variable u(x,y,z, t) = u(∅) and, ∅= k (x+αy+β z−wt), the equation (2.6) turns into an ordinary differential equation,

−wu′+6kα
(
u′
)2

+ k2
αu′′′+ k4

βu(5)+60k2
β
(
u′
)3

+30k3
βu′u′′′+6kβ

(
u′
)2

+ k2
βu′′′ = 0, (2.7)

When balancing u(5) with u′u′′′ then n = 1 gives. The solution is as follows:

u = a0 +a1F (∅) (2.8)

If (2.8) is substituted in equation (2.7), a system of algebraic equations for k,w,α,β ,a0,a1 can be obtained. The obtained systems of
algebraic equations are as follows

−Awa1 +AB2k2αa1 +2A2Ck2αa1 +AB2k2βa1 +2A2Ck2βa1 +AB4k4βa1 +22A2B2Ck4βa1
+16A3C2k4βa1 +6A2kαa2

1 +6A2kβa2
1 +30A2B2k3βa2

1 +60A3Ck3βa2
1 +60A3k2βa3

1 = 0,

−Bwa1 +B3k2αa1 +8ABCk2αa1 +B3k2βa1 +8ABCk2βa1 +B5k4βa1 +52AB3Ck4βa1 +136A2BC2k4βa1
+12ABkαa2

1 +12ABkβa2
1 +60AB3k3βa2

1 +300A2BCk3βa2
1 +180A2Bk2βa3

1 = 0,

−Cwa1 +7B2Ck2αa1 +8AC2k2αa1 +7B2Ck2βa1 +8AC2k2βa1 +31B4Ck4βa1+
292AB2C2k4βa1 +136A2C3k4βa1 +6B2kαa2

1 +12ACkαa2
1 +6B2kβa2

1 +12ACkβa2
1+

30B4k3βa2
1 +480AB2Ck3βa2

1 +300A2C2k3βa2
1 +180AB2k2βa3

1 +180A2Ck2βa3
1 = 0,

If the system is solved, the coefficients are found as

B = 0, a1 =
1
2

√
C
A
, a1 6= 0, A 6= 0, k =− 1

4Aa1
, α =−w, β 6= 0.

with the help of the Mathematica program. After these operations, the solutions of equation (2.6) as follow:
Solution 1:

u1 (x, t) =
i
2
[Coth(ix− iwy+ iβ z− iwt)±Cosech(ix− iwy+ iβ z− iwt)]

u2 (x, t) =
i
2
[Tanh(ix− iwy+ iβ z− iwt)± iSech(ix− iwy+ iβ z− iwt)]

Solution 2:

u3 (x, t) =
1
2
[Sec(−x+wy−β z+wt)+Tan(−x+wy−β z+wt)] (2.9)

u4 (x, t) =
1
2
[Cosec(−x+wy−β z+wt)−Cot (−x+wy−β z+wt)]

u5 (x, t) =
1
2
[Sec(x−wy+β z−wt)−Tan(x−wy+β z−wt)] (2.10)
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u6 (x, t) =
1
2
[Cosec(x−wy+β z−wt)+Cot (x−wy+β z−wt)] (2.11)

Solution 3:

u7 (x, t) =
i
2

[
Tanh

(
i
2

x− i
2

wy+
i
2

β z− i
2

wt
)]

(2.12)

u8 (x, t) =
i
2

[
Coth

(
i
2

x− i
2

wy+
i
2

β z− i
2

wt
)]

(2.13)

Solution 4:

u9 (x, t) =
1
2

[
Tan

(
−1

2
x+

1
2

wy− 1
2

β z+
1
2

wt
)]

(2.14)

Solution 5:

u10 (x, t) =
1
2

[
Cot

(
1
2

x− 1
2

wy+
1
2

β z− 1
2

wt
)]

(2.15)

3. Explanations and graphical presentments of some of the solutions obtained

The graphical demonstrations of some obtained solutions are shown in Figures 1-3.

Figure 3.1: a)The 3D surfaces of Eq.(2.9)for the values y = 1, z = 0 and w = 5 within the interval−5≤ x≤ 5, −1≤ t ≤ 1. b) The 2D surfaces of Eq.(2.9)for
thevalues y = 1, z = 0, w = 5 and t = 1 within the interval−5≤ x≤ 5.
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Figure 3.2: a) The 3D surfaces of Eq.(2.14)for the values y = 1, z = 0 and w = 5 within the interval −5 ≤ x ≤ 5, − 1 ≤ t ≤ 1. b) The 2D surfaces of
Eq.(2.14)for the values y = 1, z = 0, w = 5 and t = 1 within the interval−5≤ x≤ 5.

Figure 3.3: a)The 3D surfaces of Eq.(2.15)for the values and within the interval b) The 2D surfaces of Eq.(2.15) for the values and within the interval

4. Conclusion

We used the improved tanh function method to find the multiple soliton solutions of new coupled Konno-Oono equation and extended
(3+1)-dimensional KdV-type equation. This method has been successfully applied to solve some nonlinear wave equations and can be used
to many other nonlinear equations or coupled ones.
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