Results in Nonlinear Analysis ${\bf 1}$ (2018) No. 3, 128–132 Available online at www.resultsinnonlinear analysis.com

An Extention of Angelov's Fixed Point Theorem in Uniform Spaces

Ljubomir P. Georgiev^a

^aDepartment of Mathematics, University of Mining and Geology "St. I. Rilski", 1700 Sofia, Bulgaria

Abstract

In this paper we establish an existence result for fixed points of mapping in a uniform space, which extends some previous theorems of V. G. Angelov [1].

Keywords: fixed point theorems, uniform space. 2010 MSC: 47H10, 47H09

1. Introduction and Preliminaries

We begin the present note recalling some basic notions from [1], [2].

Further on we denote by (X, \mathbf{A}) a Hausdorff sequentially complete uniform space, whose uniformity is generated by a saturated family $\mathbf{A} = \{\rho_{\alpha} : \alpha \in A\}$ of pseudo-metrics $\rho_{\alpha} : X \times X \to [0, \infty)$, A being an index set.

Recall that a Hausdorff uniform space is called *sequentially complete* if any Cauchy sequence in it is convergent. The sequence $\{x_n \in X\}_{n=1}^{\infty}$ is said to be *Cauchy* one if for every $\varepsilon > 0$ and $\alpha \in A$ there is a natural number $n_0 \in \mathbb{N} := \{1, 2, 3, ...\}$ such that $\rho_{\alpha}(x_m, x_n) < \varepsilon$ for all $m, n \ge n_0$. The sequence $\{x_n \in X\}_{n=1}^{\infty}$ is called *convergent* if there exists an element $x \in X$ such that for every $\varepsilon > 0$ and $\alpha \in A$, there exists $n_0 \in \mathbb{N}$ with $\rho_{\alpha}(x, x_n) < \varepsilon$ for all $n \ge n_0$. Let us point out that the uniform spaces and gauge spaces are equivalent notions [3].

Let $(\Phi) = {\Phi_{\alpha} : \alpha \in A}$ be a family of functions $\Phi_{\alpha}(\cdot) : [0, \infty) \to [0, \infty)$ with the properties (for every fixed $\alpha \in A$):

(**Φ1**) $\Phi_{\alpha}(\cdot)$ is non-decreasing and continuous from the right;

(**42**) $0 < \Phi_{\alpha}(t) < t$, $\forall t > 0$. (It follows $\Phi_{\alpha}(0) = 0$.)

Let $j : A \to A$ be an arbitrary mapping of the index set into itself. The iterations can be defined inductively as follows: $j^n(\alpha) = j(j^{n-1}(\alpha)), j^0(\alpha) = \alpha \ (n = 1, 2, 3, ...).$

Email address: lubo_62@mgu.bg (Ljubomir P. Georgiev)

Received September 02, 2018, Accepted December 18, 2018, Online December 19, 2018.

Definition 1.1. [1] Let M be a subset of X and $T: M \to M$ be a mapping. T is said to be (Φ, j) – contractive on M, if $\rho_{\alpha}(T(x), T(y)) \leq \Phi_{\alpha}(\rho_{i(\alpha)}(x, y))$ for every fixed $\alpha \in A$ and for every $x, y \in M$.

Remark 1.2. Recall that if $\Phi_{\alpha} \in (\Phi)$ and the function $\varphi_{\alpha} : (0, \infty) \to (0, \infty)$, defined by $\varphi_{\alpha}(t) = \frac{\Phi_{\alpha}(t)}{t} \ \forall t \in (0,\infty), \text{ is non-decreasing, then } \sum_{l=0}^{\infty} \Phi_{\alpha}^{l}(t) < \infty \text{ for any fixed } t \in (0,\infty)$ (where $\Phi^0_{\alpha}(t) = t$, $\Phi^l_{\alpha}(t) = \Phi_{\alpha}\left(\Phi^{l-1}_{\alpha}(t)\right), l \in \mathbb{N}$).

Indeed, for any fixed $l \in \mathbb{N}$ and t > 0 it follows by $(\Phi 2) \Phi_{\alpha}^{l}(t) = \Phi_{\alpha} \left(\Phi_{\alpha}^{l-1}(t) \right) < \Phi_{\alpha}^{l-1}(t)$. Therefore $\Phi_{\alpha}^{l}(t) < \Phi_{\alpha}^{l-1}(t) < \Phi_{\alpha}^{l-2}(t) \dots < \Phi_{\alpha}(t) < t$ and the inequalities

$$\frac{\Phi_{\alpha}^{l+1}(t)}{\Phi_{\alpha}^{l}(t)} = \frac{\Phi_{\alpha}\left(\Phi_{\alpha}^{l}(t)\right)}{\Phi_{\alpha}^{l}(t)} = \varphi_{\alpha}\left(\Phi_{\alpha}^{l}(t)\right) \le \varphi_{\alpha}\left(\Phi_{\alpha}^{l-1}(t)\right) \le \dots \le \varphi_{\alpha}\left(\Phi_{\alpha}(t)\right) \le \varphi_{\alpha}(t) = \frac{\Phi_{\alpha}(t)}{t} < 1 \quad (l \in \mathbb{N})$$

are a sufficient condition for the convergence of $\sum_{l=1}^{\infty} \Phi_{\alpha}^{l}(t)$.

Fixed point theorems from [1], [2] guarantee an existence of fixed points of (Φ, j) – contractive (or just (Φ) – *contractive*) and j - non-expansive mappings under various conditions.

In this paper we extend the following result from [1]:

Theorem 1.3. (Angelov). Let the following conditions hold:

1) the operator $T: X \to X$ is $(\Phi) - contractive;$

2) for every $\alpha \in A$ there exists a function $\overline{\Phi}_{\alpha} \in (\Phi)$ such that

 $\sup \left\{ \Phi_{j^n(\alpha)}(t) : n = 0, 1, 2, 3, \ldots \right\} \leq \overline{\Phi}_{\alpha}(t) \text{ and } \frac{\overline{\Phi}_{\alpha}(t)}{t} \text{ is non-decreasing } (t > 0);$ 3) there exists an element $x_0 \in X$ such that for every $\alpha \in A$ there is $q(\alpha) > 0$:

$$\rho_{j^n(\alpha)}(x_0, T(x_0)) \le q(\alpha) < \infty \ (n = 0, 1, 2, 3, \ldots).$$

Then T has at least one fixed point in X.

If, in addition, we suppose that

4) for every $\alpha \in A$ and $x, y \in X$ there exists $p = p(x, y, \alpha)$ such that

$$\rho_{j^k(\alpha)}(x,y) \le p(x,y,\alpha) < \infty \ (k=0,1,2,3,...),$$

then the fixed point of T is unique.

2. Main results

Let $j_1: A \to A$, $j_2: A \to A$ be two mappings of the index set into itself.

In this paper we introduce the notion of (Φ, j_1, j_2) – contractive mappings and we establish some fixed point results for such mappings in uniform spaces.

Introduce the subfamily $(\Psi) \subset (\Phi)$ of functions $\Phi_{\alpha} \in (\Phi)$ which are sub-additive, i.e. (**43**) for every $\alpha \in A$ ($\forall \Phi_{\alpha} \in \Psi$) : $\Phi_{\alpha}(t_1 + t_2) \leq \Phi_{\alpha}(t_1) + \Phi_{\alpha}(t_2)$ for all $t_1, t_2 \in [0, \infty)$.

Definition 2.1. The mapping $T: X \to X$ is said to be (Φ, j_1, j_2) –contractive on X, if for any fixed $\alpha \in A$ there is a function $\Phi_{\alpha} \in (\Psi)$ such that $\rho_{\alpha}(T(x), T(y)) \leq \frac{1}{2} \Phi_{\alpha} \left(\rho_{j_1(\alpha)}(x, y) + \rho_{j_2(\alpha)}(x, y) \right)$ for every $x, y \in X$.

Define the mapping $S_1: A \to j_1(A) \cup j_2(A)$ as follows: $S_1(\gamma) = \{j_1(\gamma), j_2(\gamma)\}$ for $\gamma \in A$. Introduce for any fixed index $\alpha \in A$ the following notations: $S^0(\alpha) \equiv \alpha_0 \equiv \alpha; S^1(\alpha) \equiv S_1(\alpha);$

 $S^{n}(\alpha) = \{\sigma^{n} = (\alpha_{1}, ..., \alpha_{n}) : \alpha_{k} \in S_{1}(\alpha_{k-1}), \forall k = 1, ..., n\}$ for every $n \in \mathbb{N}, n > 1$.

Theorem 2.2. Let (X, \mathbf{A}) be a Hausdorff sequentially complete uniform space, whose uniformity is generated by a saturated family of pseudo-metrics $\mathbf{A} = \{\rho_{\alpha}(x, y) : \alpha \in A\}$, where A is an index set. Let the mappings $j_1: A \to A \text{ and } j_2: A \to A \text{ be defined and } (\Psi) = \{\Phi_\alpha : \alpha \in A\}$ be the family of functions with properties $(\Phi 1) - (\Phi 3)$. Let the following conditions hold:

1. The mapping $T: X \to X$ is (Φ, j_1, j_2) -contractive on X.

2. For every $\alpha \in A$ there is a function $\overline{\Phi}_{\alpha} \in (\Phi)$ such that $\frac{\overline{\Phi}_{\alpha}(t)}{t}$ is non-decreasing, $\Phi_{\alpha}(t) \leq \overline{\Phi}_{\alpha}(t), \forall t > 0$ and for any fixed $k \in \mathbb{N}$ for all $\sigma^{k} = (\alpha_{1}, ..., \alpha_{k}) \in S^{k}(\alpha)$ the inequalities $\Phi_{\alpha_{i}}(t) \leq \overline{\Phi}_{\alpha}(t), \forall t > 0$ are satisfied for all coordinates α_{i} of σ^{k} (i = 1, ..., k).

3. There exists an element $x_0 \in X$ such that for every $\alpha \in A$ there exists a constant $q_\alpha = q(\alpha) > 0$ such that $\rho_\alpha(x_0, T(x_0)) \leq q_\alpha$ and for any fixed $k \in \mathbb{N}$ for all $\sigma^k = (\alpha_1, ..., \alpha_k) \in S^k(\alpha)$ the inequalities $\rho_{\alpha_m}(x_0, T(x_0)) \leq q_\alpha$ are satisfied for all coordinates α_m of σ^k (m = 1, ..., k).

Then T has at least one fixed point in X.

Theorem 2.3. If to the conditions of Theorem 2.2 we add the following assumption for the set X:

4. for any fixed $\alpha \in A$ there exists $p_{\alpha} : X \times X \to (0, \infty)$ such that $\rho_{\alpha}(x, y) \leq p_{\alpha}(x, y)$ for all $(x, y) \in X \times X$ and for any fixed $k \in \mathbb{N}$ for all $\sigma^{k} = (\alpha_{1}, ..., \alpha_{k}) \in S^{k}(\alpha)$ the inequalities $\rho_{\alpha_{n}}(x, y) \leq p_{\alpha}(x, y)$ are satisfied for all $(x, y) \in X \times X$ and for all coordinates α_{l} of σ^{k} (l = 1, ..., k), then the fixed point of T is unique.

Proof. (of Theorem 2.2) Begin with $x_0 \in X$, we define the sequence $\{x_n : n = 0, 1, 2, ...\}$, $x_n = T^n(x_0)$, where $T^0 \equiv Id$ and $T^n(\cdot) = T(T^{n-1}(\cdot))$ for $n \in \mathbb{N}$. If $x_{n'} = x_{n'-1}$ for some $n' \in \mathbb{N}$ then $x_{n'-1}$ is a fixed point of T. Consequently we may assume $x_n \neq x_{n-1}, \forall n \in \mathbb{N}$.

Let $\alpha \in A$ be any fixed index. Define the sequence $\{c_n^{\alpha}\}_{n=0}^{\infty}$: $c_n^{\alpha} = \rho_{\alpha}(x_n, x_{n+1})$ (n = 0, 1, 2, ...). For any fixed $n \in \mathbb{N}$ let $\sigma^n = (\alpha_1, ..., \alpha_n)$ be an arbitrary element of $S^n(\alpha)$.

Define $c_k^{\alpha_{n-k}} = \rho_{\alpha_{n-k}}(x_k, x_{k+1})$ for every k = 1, ..., n (with $\alpha_0 \equiv \alpha$ and $c_n^{\alpha_0} \equiv c_n^{\alpha}$). It follows:

$$c_{1}^{\alpha_{n-1}} = \rho_{\alpha_{n-1}}(x_{1}, x_{2}) \leq \frac{1}{2} \Phi_{\alpha_{n-1}}(\rho_{j_{1}(\alpha_{n-1})}(x_{0}, x_{1}) + \rho_{j_{2}(\alpha_{n-1})}(x_{0}, x_{1}))$$

$$\leq \frac{1}{2} \Phi_{\alpha_{n-1}}(\rho_{j_{1}(\alpha_{n-1})}(x_{0}, x_{1})) + \frac{1}{2} \Phi_{\alpha_{n-1}}(\rho_{j_{2}(\alpha_{n-1})}(x_{0}, x_{1}))$$

$$\leq \frac{1}{2} \overline{\Phi}_{\alpha}(\rho_{j_{1}(\alpha_{n-1})}(x_{0}, x_{1})) + \frac{1}{2} \overline{\Phi}_{\alpha}(\rho_{j_{2}(\alpha_{n-1})}(x_{0}, x_{1})) \leq \frac{1}{2} \cdot 2\overline{\Phi}_{\alpha}(q_{\alpha}) = \overline{\Phi}_{\alpha}(q_{\alpha}).$$

Therefore $c_1^{\alpha_{n-1}} \leq \overline{\Phi}_{\alpha}(q_{\alpha})$ for any $\alpha_{n-1} \in S_1(\alpha_{n-2})$. By induction, for every choice of $\sigma^n \in S^n(\alpha)$ and its coordinates α_{n-k} , we prove:

$$c_k^{\alpha_{n-k}} \le \overline{\Phi}_{\alpha}^k(q_{\alpha}) \,\forall k = 1, ..., n-1.$$

In fact, such estimates are valid when k = 1, as we have already proven. Suppose that the above inequalities are valid for all $k \le m < n - 1$. Then for k = m + 1 we obtain:

$$\begin{aligned} c_{m+1}^{\alpha_{n-m-1}} &= \rho_{\alpha_{n-m-1}}(x_{m+1}, x_{m+2}) \leq \frac{1}{2} \Phi_{\alpha_{n-m-1}}(\rho_{j_1(\alpha_{n-m-1})}(x_m, x_{m+1}) + \rho_{j_2(\alpha_{n-m-1})}(x_m, x_{m+1})) \\ &\leq \frac{1}{2} \Phi_{\alpha_{n-m-1}}(\rho_{j_1(\alpha_{n-m-1})}(x_m, x_{m+1})) + \frac{1}{2} \Phi_{\alpha_{n-m-1}}(\rho_{j_2(\alpha_{n-m-1})}(x_m, x_{m+1})) \\ &\leq \frac{1}{2} \overline{\Phi}_{\alpha}(\rho_{j_1(\alpha_{n-m-1})}(x_m, x_{m+1})) + \frac{1}{2} \overline{\Phi}_{\alpha}(\rho_{j_2(\alpha_{n-m-1})}(x_m, x_{m+1})) \leq \overline{\Phi}_{\alpha}\left(c_m^{\alpha^*_{n-m}}\right), \end{aligned}$$

where $\alpha_{n-m}^* \in S_1(\alpha_{n-m-1})$ is such that

$$c_m^{\alpha_{n-m}^*} = \rho_{\alpha_{n-m}^*}(x_m, x_{m+1}) = \max\{\rho_{j_1(\alpha_{n-m-1})}(x_m, x_{m+1}), \rho_{j_2(\alpha_{n-m-1})}(x_m, x_{m+1})\}.$$

It follows by assumption that $c_m^{\alpha_{n-m}^*} \leq \overline{\Phi}_{\alpha}^m(q_{\alpha})$. Therefore $c_{m+1}^{\alpha_{n-m-1}} \leq \overline{\Phi}_{\alpha}\left(\overline{\Phi}_{\alpha}^m(q_{\alpha})\right) = \overline{\Phi}_{\alpha}^{m+1}(q_{\alpha})$. For c_n^{α} we obtain as follows:

$$c_{n}^{\alpha} = \rho_{\alpha}(x_{n}, x_{n+1}) \leq \frac{1}{2} \Phi_{\alpha}(\rho_{j_{1}(\alpha)}(x_{n-1}, x_{n}) + \rho_{j_{2}(\alpha)}(x_{n-1}, x_{n}))$$

$$\leq \frac{1}{2} \overline{\Phi}_{\alpha}\left(\rho_{j_{1}(\alpha)}(x_{n-1}, x_{n})\right) + \frac{1}{2} \overline{\Phi}_{\alpha}\left(\rho_{j_{2}(\alpha)}(x_{n-1}, x_{n})\right) \leq \overline{\Phi}_{\alpha}\left(\rho_{\alpha_{1}^{*}}(x_{n-1}, x_{n})\right),$$

where $\alpha_1^* \in S_1(\alpha)$ is such that

$$\rho_{\alpha_1^*}(x_{n-1}, x_n) = \max\{\rho_{\alpha_1}(x_{n-1}, x_n) : \alpha_1 \in S_1(\alpha)\} = \max\{\rho_{j_1(\alpha)}(x_{n-1}, x_n), \rho_{j_2(\alpha)}(x_{n-1}, x_n)\}.$$

Hence $c_n^{\alpha} \leq \overline{\Phi}_{\alpha} \left(\rho_{\alpha_1^*}(x_{n-1}, x_n) \right) = \overline{\Phi}_{\alpha} \left(c_{n-1}^{\alpha_1^*} \right) \leq \overline{\Phi}_{\alpha} (\overline{\Phi}_{\alpha}^{n-1}(q_{\alpha}))$ (since $\alpha_1^* \in S_1(\alpha)$).

Thus we obtain the inequality $c_n^{\alpha} \leq \overline{\Phi}_{\alpha}^n(q_{\alpha})$, which is valid for any fixed index $\alpha \in A$ and for every $n \in \mathbb{N}$. Consequently for every fixed m = 0, 1, 2, ... and $p \in \mathbb{N}$ we obtain:

$$\rho_{\alpha}(x_m, x_{m+p}) \le \sum_{k=0}^{p-1} c_{m+k}^{\alpha} \le \sum_{k=0}^{p-1} \overline{\Phi}_{\alpha}^{m+k}(q_{\alpha}) = \Psi_{m+p} - \Psi_m$$

where $\Psi_k = \sum_{l=0}^{k-1} \overline{\Phi}_{\alpha}^l(q_{\alpha})$ is the k-th partial sum of the series $\sum_{l=0}^{\infty} \overline{\Phi}_{\alpha}^l(q_{\alpha})$, which is convergent, in view of

Remark 1.2.

Therefore for any $\varepsilon > 0$ there exists $N_0 \in \mathbb{N}$ such that $\forall m \ge N_0$: $\rho_\alpha(x_m, x_{m+p}) \le \Psi_{m+p} - \Psi_m < \varepsilon$ for every $p \in \mathbb{N}$, i.e. $\{x_n = T^n(x_0) : n = 0, 1, 2, ...\}$ is a Cauchy sequence in X. In view of the sequential completeness of (X, \mathbf{A}) there exists $x \in X$: $\rho_{\alpha}(x_n, x) \xrightarrow[n \to \infty]{} 0, \forall \alpha \in A$.

The right-continuity of Φ_{α} and the inequalities

$$\rho_{\alpha}(x, T(x)) \leq \rho_{\alpha}(x, T^{n+1}(x_{0})) + \rho_{\alpha}(T^{n+1}(x_{0}), T(x)) \leq \\ \leq \rho_{\alpha}(x, x_{n+1}) + \frac{1}{2} \Phi_{\alpha} \left(\rho_{j_{1}(\alpha)}(x_{n}, x) + \rho_{j_{2}(\alpha)}(x_{n}, x) \right) (n \in \mathbb{N})$$

imply $\rho_{\alpha}(x, T(x)) = 0 \ \forall \alpha \in A$, that is x = T(x). Theorem 2.2 is thus proved.

Proof. (of Theorem 2.3) Let $(x, y) \in X \times X$ be an arbitrary fixed pair. Let $\alpha \in A$ be any fixed index. Denote by $d_n^{\alpha} = d_n^{\alpha}(x, y) = \rho_{\alpha}\left(T^n(x), T^n(y)\right)$ (n = 0, 1, 2, ...). For any fixed $n \in \mathbb{N}$ let $\sigma^n = (\alpha_1, ..., \alpha_n)$ be an arbitrary element of $S^{n}(\alpha)$.

Define $d_k^{\alpha_{n-k}} = d_k^{\alpha_{n-k}}(x,y) = \rho_{\alpha_{n-k}}(T^k(x),T^k(y))$ for every k = 1, ..., n (with $\alpha_0 \equiv \alpha$ and $d_n^{\alpha_0} \equiv d_n^{\alpha}$). It follows:

$$d_1^{\alpha_{n-1}} = \rho_{\alpha_{n-1}}(T(x), T(y)) \le \frac{1}{2} \Phi_{\alpha_{n-1}}(\rho_{j_1(\alpha_{n-1})}(x, y) + \rho_{j_2(\alpha_{n-1})}(x, y))$$

$$\le \frac{1}{2} \Phi_{\alpha_{n-1}}(\rho_{j_1(\alpha_{n-1})}(x, y)) + \frac{1}{2} \Phi_{\alpha_{n-1}}(\rho_{j_2(\alpha_{n-1})}(x, y)) \le \overline{\Phi}_{\alpha}(\rho_{\alpha_n^*}(x, y)),$$

where $\alpha_n^* \in S_1(\alpha_{n-1})$ is such that $\rho_{\alpha_n^*}(x, y) = \max\{\rho_{j_1(\alpha_{n-1})}(x, y), \rho_{j_2(\alpha_{n-1})}(x, y)\}$.

Therefore $d_1^{\alpha_{n-1}} \leq \overline{\Phi}_{\alpha}(p_{\alpha}(x,y))$ for $\alpha_{n-1} \in S_1(\alpha_{n-2})$.

By induction, for every choice of $\sigma^n \in S^n(\alpha)$ and its coordinates α_{n-k} , we prove:

$$d_k^{\alpha_{n-k}} \leq \overline{\Phi}_{\alpha}^k(p_{\alpha}(x,y)) \forall k = 1, 2, ..., n-1.$$

Indeed, we have just obtained that the estimates are valid for k = 1. If we suppose that the above inequalities are satisfied for all $k \leq m < n - 1$, then for k = m + 1 we obtain:

$$\begin{aligned} d_{m+1}^{\alpha_{n-m-1}} &= \rho_{\alpha_{n-m-1}}(T^{m+1}(x), T^{m+1}(y)) \\ &\leq \frac{1}{2} \Phi_{\alpha_{n-m-1}}(\rho_{j_{1}(\alpha_{n-m-1})}(T^{m}(x), T^{m}(y))) + \frac{1}{2} \Phi_{\alpha_{n-m-1}}(\rho_{j_{2}(\alpha_{n-m-1})}(T^{m}(x), T^{m}(y))) \\ &\leq \overline{\Phi}_{\alpha}\left(d_{m}^{\alpha_{n-m}^{*}}\right), \end{aligned}$$

where $\alpha_{n-m}^* \in S_1(\alpha_{n-m-1})$ is such that

$$d_m^{\alpha_{n-m}^*} = \rho_{\alpha_{n-m}^*}(T^m(x), T^m(y)) = \max\{\rho_{j_1(\alpha_{n-m-1})}(T^m(x), T^m(y)), \rho_{j_2(\alpha_{n-m-1})}(x_m, x_{m+1})\}$$

In particular, $d_{m}^{\alpha_{n-m}^{*}} \leq \overline{\Phi}_{\alpha}^{m}(p_{\alpha}(x,y))$. It follows $d_{m+1}^{\alpha_{n-m-1}} \leq \overline{\Phi}_{\alpha}\left(\overline{\Phi}_{\alpha}^{m}(p_{\alpha}(x,y))\right) = \overline{\Phi}_{\alpha}^{m+1}(p_{\alpha}(x,y))$. This completes the induction. Finally,

$$\begin{aligned} d_n^{\alpha} &= \rho_{\alpha} \left(T^n(x), T^n(y) \right) \leq \frac{1}{2} \Phi_{\alpha}(\rho_{j_1(\alpha)}(T^{n-1}(x), T^{n-1}(y)) + \rho_{j_2(\alpha)}(T^{n-1}(x), T^{n-1}(y))) \\ &\leq \frac{1}{2} \Phi_{\alpha}(\rho_{j_1(\alpha)}(T^{n-1}(x), T^{n-1}(y))) + \frac{1}{2} \Phi_{\alpha}(\rho_{j_2(\alpha)}(T^{n-1}(x), T^{n-1}(y))) \leq \overline{\Phi}_{\alpha}(\rho_{\alpha_1^*}(T^{n-1}(x), T^{n-1}(y))), \end{aligned}$$

where $\alpha_1^* \in S_1(\alpha)$ is such that $\rho_{\alpha_1^*}(x, y) = \max\{\rho_{j_1(\alpha)}(x, y), \rho_{j_2(\alpha)}(x, y)\}$, and consequently

 $\rho_{\alpha_1^*}(T^{n-1}(x), T^{n-1}(y)) = d_{n-1}^{\alpha_1^*} \leq \overline{\Phi}_{\alpha}^{n-1}(p_{\alpha}(x, y)). \text{ Therefore } d_n^{\alpha} \leq \overline{\Phi}_{\alpha}^n(p_{\alpha}(x, y)).$ The properties of the function $\overline{\Phi}_{\alpha} \in (\Phi)$ guarantee that $\overline{\Phi}_{\alpha}^n(t) \xrightarrow[n \to \infty]{} 0$ for any fixed $t \in [0, \infty).$ Thus, if we suppose that there exist two elements $x \neq y$ of X, for which x = T(x) and y = T(y), then for every index $\alpha \in A \ \rho_{\alpha}(x, y) = \rho_{\alpha}(T^n(x), T^n(y)) \leq \overline{\Phi}_{\alpha}^n(p_{\alpha}(x, y))$ for all $n \in \mathbb{N}$, which implies $\rho_{\alpha}(x, y) = 0$ for every $\alpha \in A$. The obtained contradiction proves Theorem 2.3.

References

- [1] V. G. Angelov, Fixed point theorem in uniform spaces and applications, Czechoslovak Math. J. 37 (112) (1987), 19-33.
- [2] V. G. Angelov, Fixed Points in Uniform Spaces and Applications, Cluj University Press, Cluj-Napoca, Romania, 2009.
- [3] W. Page, Topological Uniform Structures, J. Wiley & Sons, New York, 1978.