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Abstract

In this paper we establish an existence result for fixed points of mapping in a uniform space, which extends
some previous theorems of V. G. Angelov [1].
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1. Introduction and Preliminaries

We begin the present note recalling some basic notions from [1], [2].
Further on we denote by (X,A) a Hausdorff sequentially complete uniform space, whose uniformity is

generated by a saturated family A = {ρα : α ∈ A} of pseudo-metrics ρα : X×X → [0,∞), A being an index
set.

Recall that a Hausdorff uniform space is called sequentially complete if any Cauchy sequence in it is
convergent. The sequence {xn ∈ X}∞n=1 is said to be Cauchy one if for every ε > 0 and α ∈ A there is a
natural number n0 ∈ N := {1, 2, 3, ...} such that ρα(xm, xn) < ε for allm,n ≥ n0. The sequence {xn ∈ X}∞n=1

is called convergent if there exists an element x ∈ X such that for every ε > 0 and α ∈ A, there exists n0 ∈ N
with ρα(x, xn) < ε for all n ≥ n0. Let us point out that the uniform spaces and gauge spaces are equivalent
notions [3].

Let (Φ) = {Φα : α ∈ A} be a family of functions Φα (·) : [0,∞) → [0,∞) with the properties (for every
fixed α ∈ A):
(Φ1) Φα (·) is non-decreasing and continuous from the right;
(Φ2) 0 < Φα(t) < t, ∀t > 0. (It follows Φα(0) = 0.)

Let j : A → A be an arbitrary mapping of the index set into itself. The iterations can be defined
inductively as follows: jn(α) = j(jn−1(α)), j0(α) = α (n = 1, 2, 3, ... ).
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Definition 1.1. [1] Let M be a subset of X and T : M → M be a mapping. T is said to be (Φ, j)−
contractive on M , if ρα(T (x), T (y)) ≤ Φα(ρj(α)(x, y)) for every fixed α ∈ A and for every x, y ∈M .

Remark 1.2. Recall that if Φα ∈ (Φ) and the function ϕα : (0,∞)→ (0,∞), defined by

ϕα(t) =
Φα(t)

t
∀t ∈ (0,∞), is non-decreasing, then

∞∑
l=0

Φl
α(t) <∞ for any fixed t ∈ (0,∞)

(where Φ0
α(t) = t, Φl

α(t) = Φα

(
Φl−1
α (t)

)
, l ∈ N).

Indeed, for any fixed l ∈ N and t > 0 it follows by (Φ2) Φl
α(t) = Φα

(
Φl−1
α (t)

)
< Φl−1

α (t). Therefore
Φl
α(t) < Φl−1

α (t) < Φl−2
α (t)... < Φα(t) < t and the inequalities

Φl+1
α (t)

Φl
α(t)

=
Φα

(
Φl
α(t)

)
Φl
α(t)

= ϕα

(
Φl
α(t)

)
≤ ϕα

(
Φl−1
α (t)

)
≤ ... ≤ ϕα (Φα(t)) ≤ ϕα(t) =

Φα(t)

t
< 1 (l ∈ N)

are a sufficient condition for the convergence of
∞∑
l=0

Φl
α(t).

Fixed point theorems from [1], [2] guarantee an existence of fixed points of (Φ, j)− contractive (or just (Φ)−
contractive) and j− non-expansive mappings under various conditions.

In this paper we extend the following result from [1]:

Theorem 1.3. (Angelov). Let the following conditions hold:
1) the operator T : X → X is (Φ)− contractive;
2) for every α ∈ A there exists a function Φα ∈ (Φ) such that

sup
{

Φjn(α)(t) : n = 0, 1, 2, 3, ...
}
≤ Φα(t) and

Φα(t)

t
is non-decreasing (t > 0);

3) there exists an element x0 ∈ X such that for every α ∈ A there is q(α) > 0 :
ρjn(α)(x0, T (x0)) ≤ q(α) <∞ (n = 0, 1, 2, 3, ...).

Then T has at least one fixed point in X.
If, in addition, we suppose that
4) for every α ∈ A and x, y ∈ X there exists p = p(x, y, α) such that

ρjk(α)(x, y) ≤ p(x, y, α) <∞ (k = 0, 1, 2, 3, ...),
then the fixed point of T is unique.

2. Main results

Let j1 : A→ A, j2 : A→ A be two mappings of the index set into itself.
In this paper we introduce the notion of (Φ, j1, j2)− contractive mappings and we establish some fixed

point results for such mappings in uniform spaces.
Introduce the subfamily (Ψ) ⊂ (Φ) of functions Φα ∈ (Φ) which are sub-additive, i.e.

(Φ3) for every α ∈ A (∀Φα ∈ Ψ) : Φα(t1 + t2) ≤ Φα(t1) + Φα(t2) for all t1, t2 ∈ [0,∞).

Definition 2.1. The mapping T : X → X is said to be (Φ, j1, j2)−contractive on X, if for any fixed α ∈ A
there is a function Φα ∈ (Ψ) such that ρα(T (x), T (y)) ≤ 1

2
Φα

(
ρj1 (α)(x, y) + ρj2 (α)(x, y)

)
for every x, y ∈ X.

Define the mapping S1 : A→ j1(A) ∪ j2(A) as follows: S1 (γ) = {j1 (γ) , j2 (γ)} for γ ∈ A. Introduce for
any fixed index α ∈ A the following notations: S0(α) ≡ α0 ≡ α;S1(α) ≡ S1(α);

Sn (α) = {σn = (α1, ..., αn) : αk ∈ S1(αk−1), ∀k = 1, ..., n} for every n ∈ N, n > 1.

Theorem 2.2. Let (X,A) be a Hausdorff sequentially complete uniform space, whose uniformity is generated
by a saturated family of pseudo-metrics A = {ρα (x, y) : α ∈ A}, where A is an index set. Let the mappings
j1 : A → A and j2 : A → A be defined and (Ψ) = {Φα : α ∈ A} be the family of functions with properties
(Φ1) – (Φ3). Let the following conditions hold:
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1. The mapping T : X → X is (Φ, j1, j2)−contractive on X.

2. For every α ∈ A there is a function Φα ∈ (Φ) such that
Φα(t)

t
is non-decreasing, Φα(t) ≤ Φα(t), ∀t > 0

and for any fixed k ∈ N for all σk = (α1, ..., αk) ∈ Sk (α) the inequalities Φαi(t) ≤ Φα(t), ∀t > 0 are satisfied
for all coordinates αi of σk (i = 1, ..., k).

3. There exists an element x0 ∈ X such that for every α ∈ A there exists a constant qα = q(α) > 0
such that ρα(x0, T (x0)) ≤ qα and for any fixed k ∈ N for all σk = (α1, ..., αk) ∈ Sk (α) the inequalities
ραm(x0, T (x0)) ≤ qα are satisfied for all coordinates αm of σk (m = 1, ..., k).

Then T has at least one fixed point in X.

Theorem 2.3. If to the conditions of Theorem 2.2 we add the following assumption for the set X:
4. for any fixed α ∈ A there exists pα : X×X → (0,∞) such that ρα(x, y) ≤ pα(x, y) for all (x, y) ∈ X×X

and for any fixed k ∈ N for all σk = (α1, ..., αk) ∈ Sk (α) the inequalities ραn(x, y) ≤ pα(x, y) are satisfied
for all (x, y) ∈ X ×X and for all coordinates αl of σk (l = 1, ..., k), then the fixed point of T is unique.

Proof. (of Theorem 2.2) Begin with x0 ∈ X, we define the sequence {xn : n = 0, 1, 2, ...} , xn = Tn(x0),
where T 0 ≡ Id and Tn(·) = T

(
Tn−1(·)

)
for n ∈ N. If xn′ = xn′−1 for some n′ ∈ N then xn′−1 is a fixed

point of T . Consequently we may assume xn 6= xn−1,∀n ∈ N.
Let α ∈ A be any fixed index. Define the sequence { cαn}

∞
n=0: c

α
n = ρα(xn, xn+1) (n = 0, 1, 2, ...). For any

fixed n ∈ N let σn = (α1, ..., αn) be an arbitrary element of Sn (α).
Define cαn−k

k = ραn−k
(xk, xk+1) for every k = 1, ..., n (with α0 ≡ α and cα0

n ≡ cαn). It follows:

c
αn−1

1 = ραn−1(x1, x2) ≤
1

2
Φαn−1(ρj1 (αn−1)(x0, x1) + ρj2 (αn−1)(x0, x1))

≤ 1

2
Φαn−1(ρj1 (αn−1)(x0, x1)) +

1

2
Φαn−1(ρj2 (αn−1)(x0, x1))

≤ 1

2
Φα(ρj1 (αn−1)(x0, x1)) +

1

2
Φα(ρj2 (αn−1)(x0, x1)) ≤

1

2
· 2Φα(qα) = Φα(qα).

Therefore cαn−1

1 ≤ Φα(qα) for any αn−1 ∈ S1(αn−2). By induction, for every choice of σn ∈ Sn (α) and its
coordinates αn−k, we prove:

c
αn−k

k ≤ Φ
k
α(qα) ∀k = 1, ..., n− 1.

In fact, such estimates are valid when k = 1, as we have already proven. Suppose that the above inequalities
are valid for all k ≤ m < n− 1. Then for k = m+ 1 we obtain:

c
αn−m−1

m+1 = ραn−m−1(xm+1, xm+2) ≤
1

2
Φαn−m−1(ρj1 (αn−m−1)(xm, xm+1) + ρj2 (αn−m−1)(xm, xm+1))

≤ 1

2
Φαn−m−1(ρj1 (αn−m−1)(xm, xm+1)) +

1

2
Φαn−m−1(ρj2 (αn−m−1)(xm, xm+1))

≤ 1

2
Φα(ρj1 (αn−m−1)(xm, xm+1)) +

1

2
Φα(ρj2 (αn−m−1)(xm, xm+1)) ≤ Φα

(
cα
∗
n−m

m

)
,

where α∗
n−m
∈ S1(αn−m−1) is such that

cα
∗
n−m

m
= ρα∗n−m

(xm, xm+1) = max{ρj1 (αn−m−1)(xm, xm+1), ρj2 (αn−m−1)(xm, xm+1)}.

It follows by assumption that cα
∗
n−m

m
≤ Φ

m
α (qα). Therefore cαn−m−1

m+1 ≤ Φα

(
Φ
m
α (qα)

)
= Φ

m+1
α (qα).

For cαn we obtain as follows:

cαn = ρα(xn, xn+1) ≤
1

2
Φα(ρj1 (α)(xn−1, xn) + ρj2 (α)(xn−1, xn))

≤ 1

2
Φα

(
ρj1 (α)(xn−1, xn)

)
+

1

2
Φα

(
ρj2 (α)(xn−1, xn)

)
≤ Φα

(
ρα∗

1
(xn−1, xn)

)
,

where α∗
1
∈ S1(α) is such that

ρα∗
1
(xn−1, xn) = max {ρα1(xn−1, xn) : α1 ∈ S1(α)} = max{ρj1 (α)(xn−1, xn), ρj2 (α)(xn−1, xn)}.
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Hence cαn ≤ Φα

(
ρα∗

1
(xn−1, xn)

)
= Φα

(
c
α∗
1
n−1

)
≤ Φα(Φ

n−1
α (qα)) (since α∗

1
∈ S1(α)).

Thus we obtain the inequality cαn ≤ Φ
n
α(qα), which is valid for any fixed index α ∈ A and for every n ∈ N.

Consequently for every fixed m = 0, 1, 2, ... and p ∈ N we obtain:

ρα(xm, xm+p) ≤
p−1∑
k=0

cαm+k ≤
p−1∑
k=0

Φ
m+k
α (qα) = Ψm+p −Ψm,

where Ψk =

k−1∑
l=0

Φ
l
α(qα) is the k-th partial sum of the series

∞∑
l=0

Φ
l
α(qα), which is convergent, in view of

Remark 1.2.
Therefore for any ε > 0 there exists N0 ∈ N such that ∀m ≥ N0: ρα(xm, xm+p) ≤ Ψm+p −Ψm < ε for

every p ∈ N, i.e. {xn = Tn(x0) : n = 0, 1, 2, ...} is a Cauchy sequence in X. In view of the sequential
completeness of (X,A) there exists x ∈ X: ρα(xn, x) →

n→∞
0, ∀α ∈ A.

The right-continuity of Φα and the inequalities

ρα(x, T (x)) ≤ ρα(x, Tn+1(x0)) + ρα(Tn+1(x0), T (x)) ≤
≤ ρα(x, xn+1) +

1

2
Φα

(
ρj1 (α)(xn, x) + ρj2 (α)(xn, x)

)
(n ∈ N)

imply ρα(x, T (x)) = 0 ∀α ∈ A, that is x = T (x). Theorem 2.2 is thus proved.

Proof. (of Theorem 2.3) Let (x, y) ∈ X × X be an arbitrary fixed pair. Let α ∈ A be any fixed index.
Denote by dαn = dαn(x, y) = ρα (Tn(x), Tn(y)) (n = 0, 1, 2, ...). For any fixed n ∈ N let σn = (α1, ..., αn) be
an arbitrary element of Sn (α).

Define dαn−k

k = d
αn−k

k (x, y) = ραn−k
(T k(x), T k(y)) for every k = 1, ..., n (with α0 ≡ α and dα0

n ≡ dαn). It
follows:

d
αn−1

1 = ραn−1(T (x), T (y)) ≤ 1

2
Φαn−1(ρj1 (αn−1)(x, y) + ρj2 (αn−1)(x, y))

≤ 1

2
Φαn−1(ρj1 (αn−1)(x, y)) +

1

2
Φαn−1(ρj2(αn−1)(x, y)) ≤ Φα(ρα∗

n
(x, y)),

where α∗
n
∈ S1(αn−1) is such that ρα∗n (x, y) = max{ρj1 (αn−1)(x, y), ρj2 (αn−1)(x, y)}.

Therefore dαn−1

1 ≤ Φα(pα(x, y)) for αn−1 ∈ S1(αn−2).
By induction, for every choice of σn ∈ Sn (α) and its coordinates αn−k, we prove:

d
αn−k

k ≤ Φ
k
α(pα(x, y))∀k = 1, 2, ..., n− 1.

Indeed, we have just obtained that the estimates are valid for k = 1. If we suppose that the above
inequalities are satisfied for all k ≤ m < n− 1, then for k = m+ 1 we obtain:

d
αn−m−1

m+1 = ραn−m−1(Tm+1(x), Tm+1(y))

≤ 1

2
Φαn−m−1(ρj1 (αn−m−1)(T

m(x), Tm(y))) +
1

2
Φαn−m−1(ρj2 (αn−m−1)(T

m(x), Tm(y)))

≤ Φα

(
dα
∗
n−m

m

)
,

where α∗
n−m
∈ S1(αn−m−1) is such that

dα
∗
n−m

m
= ρα∗n−m

(Tm(x), Tm(y)) = max{ρj1 (αn−m−1)(T
m(x), Tm(y)), ρj2 (αn−m−1)(xm, xm+1)}

In particular, dα
∗
n−m

m
≤ Φ

m
α (pα(x, y)). It follows dαn−m−1

m+1 ≤ Φα

(
Φ
m
α (pα(x, y))

)
= Φ

m+1
α (pα(x, y)). This

completes the induction. Finally,

dαn = ρα (Tn(x), Tn(y)) ≤ 1

2
Φα(ρj1 (α)(T

n−1(x), Tn−1(y)) + ρj2 (α)(T
n−1(x), Tn−1(y)))

≤ 1

2
Φα(ρj1 (α)(T

n−1(x), Tn−1(y))) +
1

2
Φα(ρj2 (α)(T

n−1(x), Tn−1(y))) ≤ Φα(ρα∗
1
(Tn−1(x), Tn−1(y))),
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where α∗
1
∈ S1(α) is such that ρα∗

1
(x, y) = max{ρj1 (α)(x, y), ρj2 (α)(x, y)}, and consequently

ρα∗
1
(Tn−1(x), Tn−1(y)) = d

α∗
1
n−1 ≤ Φ

n−1
α (pα(x, y)). Therefore dαn ≤ Φ

n
α(pα(x, y)).

The properties of the function Φα ∈ (Φ) guarantee that Φ
n
α(t) →

n→∞
0 for any fixed t ∈ [0,∞). Thus, if we

suppose that there exist two elements x 6= y of X, for which x = T (x) and y = T (y), then for every index
α ∈ A ρα(x, y) = ρα(Tn(x), Tn(y)) ≤ Φ

n
α(pα(x, y)) for all n ∈ N, which implies ρα(x, y) = 0 for every α ∈ A.

The obtained contradiction proves Theorem 2.3.
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