An Extention of Angelov's Fixed Point Theorem in Uniform Spaces

Ljubomir P. Georgiev ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, University of Mining and Geology "St. I. Rilski", 1700 Sofia, Bulgaria

Abstract

In this paper we establish an existence result for fixed points of mapping in a uniform space, which extends some previous theorems of V. G. Angelov [1].

Keywords: fixed point theorems, uniform space.
2010 MSC: 47H10, 47H09

1. Introduction and Preliminaries

We begin the present note recalling some basic notions from [1], [2].
Further on we denote by (X, \mathbf{A}) a Hausdorff sequentially complete uniform space, whose uniformity is generated by a saturated family $\mathbf{A}=\left\{\rho_{\alpha}: \alpha \in A\right\}$ of pseudo-metrics $\rho_{\alpha}: X \times X \rightarrow[0, \infty), A$ being an index set.

Recall that a Hausdorff uniform space is called sequentially complete if any Cauchy sequence in it is convergent. The sequence $\left\{x_{n} \in X\right\}_{n=1}^{\infty}$ is said to be Cauchy one if for every $\varepsilon>0$ and $\alpha \in A$ there is a natural number $n_{0} \in \mathbb{N}:=\{1,2,3, \ldots\}$ such that $\rho_{\alpha}\left(x_{m}, x_{n}\right)<\varepsilon$ for all $m, n \geq n_{0}$. The sequence $\left\{x_{n} \in X\right\}_{n=1}^{\infty}$ is called convergent if there exists an element $x \in X$ such that for every $\varepsilon>0$ and $\alpha \in A$, there exists $n_{0} \in \mathbb{N}$ with $\rho_{\alpha}\left(x, x_{n}\right)<\varepsilon$ for all $n \geq n_{0}$. Let us point out that the uniform spaces and gauge spaces are equivalent notions [3].

Let $(\Phi)=\left\{\Phi_{\alpha}: \alpha \in A\right\}$ be a family of functions $\Phi_{\alpha}(\cdot):[0, \infty) \rightarrow[0, \infty)$ with the properties (for every fixed $\alpha \in A$):
$(\Phi 1) \Phi_{\alpha}(\cdot)$ is non-decreasing and continuous from the right;
($\Phi 2$) $0<\Phi_{\alpha}(t)<t, \forall t>0$. (It follows $\Phi_{\alpha}(0)=0$.)
Let $j: A \rightarrow A$ be an arbitrary mapping of the index set into itself. The iterations can be defined inductively as follows: $j^{n}(\alpha)=j\left(j^{n-1}(\alpha)\right), j^{0}(\alpha)=\alpha(n=1,2,3, \ldots)$.

Definition 1.1. 1 Let M be a subset of X and $T: M \rightarrow M$ be a mapping. T is said to be $(\Phi, j)-$ contractive on M, if $\rho_{\alpha}(T(x), T(y)) \leq \Phi_{\alpha}\left(\rho_{j(\alpha)}(x, y)\right)$ for every fixed $\alpha \in A$ and for every $x, y \in M$.

Remark 1.2. Recall that if $\Phi_{\alpha} \in(\Phi)$ and the function $\varphi_{\alpha}:(0, \infty) \rightarrow(0, \infty)$, defined by $\varphi_{\alpha}(t)=\frac{\Phi_{\alpha}(t)}{t} \forall t \in(0, \infty)$, is non-decreasing, then $\sum_{l=0}^{\infty} \Phi_{\alpha}^{l}(t)<\infty$ for any fixed $t \in(0, \infty)$ $\left(\right.$ where $\left.\Phi_{\alpha}^{0}(t)=t, \Phi_{\alpha}^{l}(t)=\Phi_{\alpha}\left(\Phi_{\alpha}^{l-1}(t)\right), l \in \mathbb{N}\right)$.

Indeed, for any fixed $l \in \mathbb{N}$ and $t>0$ it follows by ($\Phi \mathbf{2}$) $\Phi_{\alpha}^{l}(t)=\Phi_{\alpha}\left(\Phi_{\alpha}^{l-1}(t)\right)<\Phi_{\alpha}^{l-1}(t)$. Therefore $\Phi_{\alpha}^{l}(t)<\Phi_{\alpha}^{l-1}(t)<\Phi_{\alpha}^{l-2}(t) \ldots<\Phi_{\alpha}(t)<t$ and the inequalities

$$
\frac{\Phi_{\alpha}^{l+1}(t)}{\Phi_{\alpha}^{l}(t)}=\frac{\Phi_{\alpha}\left(\Phi_{\alpha}^{l}(t)\right)}{\Phi_{\alpha}^{l}(t)}=\varphi_{\alpha}\left(\Phi_{\alpha}^{l}(t)\right) \leq \varphi_{\alpha}\left(\Phi_{\alpha}^{l-1}(t)\right) \leq \ldots \leq \varphi_{\alpha}\left(\Phi_{\alpha}(t)\right) \leq \varphi_{\alpha}(t)=\frac{\Phi_{\alpha}(t)}{t}<1 \quad(l \in \mathbb{N})
$$

are a sufficient condition for the convergence of $\sum_{l=0}^{\infty} \Phi_{\alpha}^{l}(t)$.
Fixed point theorems from [1], 2] guarantee an existence of fixed points of $(\Phi, j)-\operatorname{contractive~(or~just~}(\Phi)-$ contractive) and $j-$ non-expansive mappings under various conditions.

In this paper we extend the following result from [1]:
Theorem 1.3. (Angelov). Let the following conditions hold:

1) the operator $T: X \rightarrow X$ is $(\Phi)-$ contractive;
2) for every $\alpha \in A$ there exists a function $\bar{\Phi}_{\alpha} \in(\Phi)$ such that

$$
\sup \left\{\Phi_{j^{n}(\alpha)}(t): n=0,1,2,3, \ldots\right\} \leq \bar{\Phi}_{\alpha}(t) \text { and } \frac{\bar{\Phi}_{\alpha}(t)}{t} \text { is non-decreasing }(t>0) \text {; }
$$

3) there exists an element $x_{0} \in X$ such that for every $\alpha \in A$ there is $q(\alpha)>0$:

$$
\rho_{j^{n}(\alpha)}\left(x_{0}, T\left(x_{0}\right)\right) \leq q(\alpha)<\infty(n=0,1,2,3, \ldots) .
$$

Then T has at least one fixed point in X.
If, in addition, we suppose that
4) for every $\alpha \in A$ and $x, y \in X$ there exists $p=p(x, y, \alpha)$ such that

$$
\rho_{j^{k}(\alpha)}(x, y) \leq p(x, y, \alpha)<\infty(k=0,1,2,3, \ldots),
$$

then the fixed point of T is unique.

2. Main results

Let $j_{1}: A \rightarrow A, j_{2}: A \rightarrow A$ be two mappings of the index set into itself.
In this paper we introduce the notion of $\left(\Phi, j_{1}, j_{2}\right)$ - contractive mappings and we establish some fixed point results for such mappings in uniform spaces.

Introduce the subfamily $(\Psi) \subset(\Phi)$ of functions $\Phi_{\alpha} \in(\Phi)$ which are sub-additive, i.e.
($\Phi 3$) for every $\alpha \in A\left(\forall \Phi_{\alpha} \in \Psi\right): \Phi_{\alpha}\left(t_{1}+t_{2}\right) \leq \Phi_{\alpha}\left(t_{1}\right)+\Phi_{\alpha}\left(t_{2}\right)$ for all $t_{1}, t_{2} \in[0, \infty)$.
Definition 2.1. The mapping $T: X \rightarrow X$ is said to be (Φ, j_{1}, j_{2}) - contractive on X, if for any fixed $\alpha \in A$ there is a function $\Phi_{\alpha} \in(\Psi)$ such that $\rho_{\alpha}(T(x), T(y)) \leq \frac{1}{2} \Phi_{\alpha}\left(\rho_{j_{1}(\alpha)}(x, y)+\rho_{j_{2}(\alpha)}(x, y)\right)$ for every $x, y \in X$.

Define the mapping $S_{1}: A \rightarrow j_{1}(A) \cup j_{2}(A)$ as follows: $S_{1}(\gamma)=\left\{j_{1}(\gamma), j_{2}(\gamma)\right\}$ for $\gamma \in A$. Introduce for any fixed index $\alpha \in A$ the following notations: $S^{0}(\alpha) \equiv \alpha_{0} \equiv \alpha ; S^{1}(\alpha) \equiv S_{1}(\alpha)$;
$S^{n}(\alpha)=\left\{\sigma^{n}=\left(\alpha_{1}, \ldots, \alpha_{n}\right): \alpha_{k} \in S_{1}\left(\alpha_{k-1}\right), \forall k=1, \ldots, n\right\}$ for every $n \in \mathbb{N}, n>1$.
Theorem 2.2. Let (X, \mathbf{A}) be a Hausdorff sequentially complete uniform space, whose uniformity is generated by a saturated family of pseudo-metrics $\mathbf{A}=\left\{\rho_{\alpha}(x, y): \alpha \in A\right\}$, where A is an index set. Let the mappings $j_{1}: A \rightarrow A$ and $j_{2}: A \rightarrow A$ be defined and $(\Psi)=\left\{\Phi_{\alpha}: \alpha \in A\right\}$ be the family of functions with properties (Ф1) - (Ф3). Let the following conditions hold:

1. The mapping $T: X \rightarrow X$ is $\left(\Phi, j_{1}, j_{2}\right)$-contractive on X.
2. For every $\alpha \in A$ there is a function $\bar{\Phi}_{\alpha} \in(\Phi)$ such that $\frac{\bar{\Phi}_{\alpha}(t)}{t}$ is non-decreasing, $\Phi_{\alpha}(t) \leq \bar{\Phi}_{\alpha}(t)$, $\forall t>0$ and for any fixed $k \in \mathbb{N}$ for all $\sigma^{k}=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in S^{k}(\alpha)$ the inequalities $\Phi_{\alpha_{i}}(t) \leq \bar{\Phi}_{\alpha}(t), \forall t>0$ are satisfied for all coordinates α_{i} of $\sigma^{k}(i=1, \ldots, k)$.
3. There exists an element $x_{0} \in X$ such that for every $\alpha \in A$ there exists a constant $q_{\alpha}=q(\alpha)>0$ such that $\rho_{\alpha}\left(x_{0}, T\left(x_{0}\right)\right) \leq q_{\alpha}$ and for any fixed $k \in \mathbb{N}$ for all $\sigma^{k}=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in S^{k}(\alpha)$ the inequalities $\rho_{\alpha_{m}}\left(x_{0}, T\left(x_{0}\right)\right) \leq q_{\alpha}$ are satisfied for all coordinates α_{m} of $\sigma^{k}(m=1, \ldots, k)$.

Then T has at least one fixed point in X.
Theorem 2.3. If to the conditions of Theorem 2.2 we add the following assumption for the set X :
4. for any fixed $\alpha \in A$ there exists $p_{\alpha}: X \times X \rightarrow(0, \infty)$ such that $\rho_{\alpha}(x, y) \leq p_{\alpha}(x, y)$ for all $(x, y) \in X \times X$ and for any fixed $k \in \mathbb{N}$ for all $\sigma^{k}=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in S^{k}(\alpha)$ the inequalities $\rho_{\alpha_{n}}(x, y) \leq p_{\alpha}(x, y)$ are satisfied for all $(x, y) \in X \times X$ and for all coordinates α_{l} of $\sigma^{k}(l=1, \ldots, k)$, then the fixed point of T is unique.

Proof. (of Theorem (2.2) Begin with $x_{0} \in X$, we define the sequence $\left\{x_{n}: n=0,1,2, \ldots\right\}, x_{n}=T^{n}\left(x_{0}\right)$, where $T^{0} \equiv I d$ and $T^{n}(\cdot)=T\left(T^{n-1}(\cdot)\right)$ for $n \in \mathbb{N}$. If $x_{n^{\prime}}=x_{n^{\prime}-1}$ for some $n^{\prime} \in \mathbb{N}$ then $x_{n^{\prime}-1}$ is a fixed point of T. Consequently we may assume $x_{n} \neq x_{n-1}, \forall n \in \mathbb{N}$.

Let $\alpha \in A$ be any fixed index. Define the sequence $\left\{c_{n}^{\alpha}\right\}_{n=0}^{\infty}: c_{n}^{\alpha}=\rho_{\alpha}\left(x_{n}, x_{n+1}\right)(n=0,1,2, \ldots)$. For any fixed $n \in \mathbb{N}$ let $\sigma^{n}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be an arbitrary element of $S^{n}(\alpha)$.
Define $c_{k}^{\alpha_{n-k}}=\rho_{\alpha_{n-k}}\left(x_{k}, x_{k+1}\right)$ for every $k=1, \ldots, n$ (with $\alpha_{0} \equiv \alpha$ and $c_{n}^{\alpha_{0}} \equiv c_{n}^{\alpha}$). It follows:

$$
\begin{aligned}
c_{1}^{\alpha_{n-1}} & =\rho_{\alpha_{n-1}}\left(x_{1}, x_{2}\right) \leq \frac{1}{2} \Phi_{\alpha_{n-1}}\left(\rho_{j_{1}\left(\alpha_{n-1}\right)}\left(x_{0}, x_{1}\right)+\rho_{j_{2}\left(\alpha_{n-1}\right)}\left(x_{0}, x_{1}\right)\right) \\
& \leq \frac{1}{2} \Phi_{\alpha_{n-1}}\left(\rho_{j_{1}\left(\alpha_{n-1}\right)}\left(x_{0}, x_{1}\right)\right)+\frac{1}{2} \Phi_{\alpha_{n-1}}\left(\rho_{j_{2}\left(\alpha_{n-1}\right)}\left(x_{0}, x_{1}\right)\right) \\
& \leq \frac{1}{2} \bar{\Phi}_{\alpha}\left(\rho_{j_{1}\left(\alpha_{n-1}\right)}\left(x_{0}, x_{1}\right)\right)+\frac{1}{2} \bar{\Phi}_{\alpha}\left(\rho_{j_{2}\left(\alpha_{n-1}\right)}\left(x_{0}, x_{1}\right)\right) \leq \frac{1}{2} \cdot 2 \bar{\Phi}_{\alpha}\left(q_{\alpha}\right)=\bar{\Phi}_{\alpha}\left(q_{\alpha}\right) .
\end{aligned}
$$

Therefore $c_{1}^{\alpha_{n-1}} \leq \bar{\Phi}_{\alpha}\left(q_{\alpha}\right)$ for any $\alpha_{n-1} \in S_{1}\left(\alpha_{n-2}\right)$. By induction, for every choice of $\sigma^{n} \in S^{n}(\alpha)$ and its coordinates α_{n-k}, we prove:

$$
c_{k}^{\alpha_{n-k}} \leq \bar{\Phi}_{\alpha}^{k}\left(q_{\alpha}\right) \forall k=1, \ldots, n-1
$$

In fact, such estimates are valid when $k=1$, as we have already proven. Suppose that the above inequalities are valid for all $k \leq m<n-1$. Then for $k=m+1$ we obtain:

$$
\begin{aligned}
c_{m+1}^{\alpha_{n-m-1}} & =\rho_{\alpha_{n-m-1}}\left(x_{m+1}, x_{m+2}\right) \leq \frac{1}{2} \Phi_{\alpha_{n-m-1}}\left(\rho_{j_{1}\left(\alpha_{n-m-1}\right)}\left(x_{m}, x_{m+1}\right)+\rho_{j_{2}\left(\alpha_{n-m-1}\right)}\left(x_{m}, x_{m+1}\right)\right) \\
& \leq \frac{1}{2} \Phi_{\alpha_{n-m-1}}\left(\rho_{j_{1}\left(\alpha_{n-m-1}\right)}\left(x_{m}, x_{m+1}\right)\right)+\frac{1}{2} \Phi_{\alpha_{n-m-1}}\left(\rho_{j_{2}\left(\alpha_{n-m-1}\right)}\left(x_{m}, x_{m+1}\right)\right) \\
& \leq \frac{1}{2} \bar{\Phi}_{\alpha}\left(\rho_{j_{1}\left(\alpha_{n-m-1}\right)}\left(x_{m}, x_{m+1}\right)\right)+\frac{1}{2} \bar{\Phi}_{\alpha}\left(\rho_{j_{2}\left(\alpha_{n-m-1}\right)}\left(x_{m}, x_{m+1}\right)\right) \leq \bar{\Phi}_{\alpha}\left(c_{m}^{\alpha_{n-m}^{*}}\right)
\end{aligned}
$$

where $\alpha_{n-m}^{*} \in S_{1}\left(\alpha_{n-m-1}\right)$ is such that

$$
c_{m}^{\alpha_{n-m}^{*}}=\rho_{\alpha_{n-m}^{*}}\left(x_{m}, x_{m+1}\right)=\max \left\{\rho_{j_{1}\left(\alpha_{n-m-1}\right)}\left(x_{m}, x_{m+1}\right), \rho_{j_{2}\left(\alpha_{n-m-1}\right)}\left(x_{m}, x_{m+1}\right)\right\}
$$

It follows by assumption that $c_{m-m}^{\alpha_{n}^{*}} \leq \bar{\Phi}_{\alpha}^{m}\left(q_{\alpha}\right)$. Therefore $c_{m+1}^{\alpha_{n-m-1}} \leq \bar{\Phi}_{\alpha}\left(\bar{\Phi}_{\alpha}^{m}\left(q_{\alpha}\right)\right)=\bar{\Phi}_{\alpha}^{m+1}\left(q_{\alpha}\right)$.
For c_{n}^{α} we obtain as follows:

$$
\begin{aligned}
c_{n}^{\alpha} & =\rho_{\alpha}\left(x_{n}, x_{n+1}\right) \leq \frac{1}{2} \Phi_{\alpha}\left(\rho_{j_{1}(\alpha)}\left(x_{n-1}, x_{n}\right)+\rho_{j_{2}(\alpha)}\left(x_{n-1}, x_{n}\right)\right) \\
& \leq \frac{1}{2} \bar{\Phi}_{\alpha}\left(\rho_{j_{1}(\alpha)}\left(x_{n-1}, x_{n}\right)\right)+\frac{1}{2} \bar{\Phi}_{\alpha}\left(\rho_{j_{2}(\alpha)}\left(x_{n-1}, x_{n}\right)\right) \leq \bar{\Phi}_{\alpha}\left(\rho_{\alpha_{1}^{*}}\left(x_{n-1}, x_{n}\right)\right)
\end{aligned}
$$

where $\alpha_{1}^{*} \in S_{1}(\alpha)$ is such that

$$
\rho_{\alpha_{1}^{*}}\left(x_{n-1}, x_{n}\right)=\max \left\{\rho_{\alpha_{1}}\left(x_{n-1}, x_{n}\right): \alpha_{1} \in S_{1}(\alpha)\right\}=\max \left\{\rho_{j_{1}(\alpha)}\left(x_{n-1}, x_{n}\right), \rho_{j_{2}(\alpha)}\left(x_{n-1}, x_{n}\right)\right\}
$$

Hence $c_{n}^{\alpha} \leq \bar{\Phi}_{\alpha}\left(\rho_{\alpha_{1}^{*}}\left(x_{n-1}, x_{n}\right)\right)=\bar{\Phi}_{\alpha}\left(c_{n-1}^{\alpha_{1}^{*}}\right) \leq \bar{\Phi}_{\alpha}\left(\bar{\Phi}_{\alpha}^{n-1}\left(q_{\alpha}\right)\right)\left(\right.$ since $\left.\alpha_{1}^{*} \in S_{1}(\alpha)\right)$.
Thus we obtain the inequality $c_{n}^{\alpha} \leq \bar{\Phi}_{\alpha}^{n}\left(q_{\alpha}\right)$, which is valid for any fixed index $\alpha \in A$ and for every $n \in \mathbb{N}$. Consequently for every fixed $m=0,1,2, \ldots$ and $p \in \mathbb{N}$ we obtain:

$$
\rho_{\alpha}\left(x_{m}, x_{m+p}\right) \leq \sum_{k=0}^{p-1} c_{m+k}^{\alpha} \leq \sum_{k=0}^{p-1} \bar{\Phi}_{\alpha}^{m+k}\left(q_{\alpha}\right)=\Psi_{m+p}-\Psi_{m}
$$

where $\Psi_{k}=\sum_{l=0}^{k-1} \bar{\Phi}_{\alpha}^{l}\left(q_{\alpha}\right)$ is the k-th partial sum of the series $\sum_{l=0}^{\infty} \bar{\Phi}_{\alpha}^{l}\left(q_{\alpha}\right)$, which is convergent, in view of Remark 1.2

Therefore for any $\varepsilon>0$ there exists $N_{0} \in \mathbb{N}$ such that $\forall m \geq N_{0}: \rho_{\alpha}\left(x_{m}, x_{m+p}\right) \leq \Psi_{m+p}-\Psi_{m}<\varepsilon$ for every $p \in \mathbb{N}$, i.e. $\left\{x_{n}=T^{n}\left(x_{0}\right): n=0,1,2, \ldots\right\}$ is a Cauchy sequence in X. In view of the sequential completeness of (X, \mathbf{A}) there exists $x \in X: \rho_{\alpha}\left(x_{n}, x\right) \underset{n \rightarrow \infty}{\rightarrow} 0, \forall \alpha \in A$.

The right-continuity of Φ_{α} and the inequalities

$$
\begin{aligned}
\rho_{\alpha}(x, T(x)) & \leq \rho_{\alpha}\left(x, T^{n+1}\left(x_{0}\right)\right)+\rho_{\alpha}\left(T^{n+1}\left(x_{0}\right), T(x)\right) \leq \\
& \leq \rho_{\alpha}\left(x, x_{n+1}\right)+\frac{1}{2} \Phi_{\alpha}\left(\rho_{j_{1}(\alpha)}\left(x_{n}, x\right)+\rho_{j_{2}(\alpha)}\left(x_{n}, x\right)\right)(n \in \mathbb{N})
\end{aligned}
$$

imply $\rho_{\alpha}(x, T(x))=0 \forall \alpha \in A$, that is $x=T(x)$. Theorem 2.2 is thus proved.
Proof. (of Theorem (2.3) Let $(x, y) \in X \times X$ be an arbitrary fixed pair. Let $\alpha \in A$ be any fixed index. Denote by $d_{n}^{\alpha}=d_{n}^{\alpha}(x, y)=\rho_{\alpha}\left(T^{n}(x), T^{n}(y)\right)(n=0,1,2, \ldots)$. For any fixed $n \in \mathbb{N}$ let $\sigma^{n}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be an arbitrary element of $S^{n}(\alpha)$.

Define $d_{k}^{\alpha_{n-k}}=d_{k}^{\alpha_{n-k}}(x, y)=\rho_{\alpha_{n-k}}\left(T^{k}(x), T^{k}(y)\right)$ for every $k=1, \ldots, n\left(\right.$ with $\alpha_{0} \equiv \alpha$ and $\left.d_{n}^{\alpha_{0}} \equiv d_{n}^{\alpha}\right)$. It follows:

$$
\begin{aligned}
d_{1}^{\alpha_{n-1}} & =\rho_{\alpha_{n-1}}(T(x), T(y)) \leq \frac{1}{2} \Phi_{\alpha_{n-1}}\left(\rho_{j_{1}\left(\alpha_{n-1}\right)}(x, y)+\rho_{j_{2}\left(\alpha_{n-1}\right)}(x, y)\right) \\
& \leq \frac{1}{2} \Phi_{\alpha_{n-1}}\left(\rho_{j_{1}\left(\alpha_{n-1}\right)}(x, y)\right)+\frac{1}{2} \Phi_{\alpha_{n-1}}\left(\rho_{j_{2}\left(\alpha_{n-1}\right)}(x, y)\right) \leq \bar{\Phi}_{\alpha}\left(\rho_{\alpha_{n}^{*}}(x, y)\right)
\end{aligned}
$$

where $\alpha_{n}^{*} \in S_{1}\left(\alpha_{n-1}\right)$ is such that $\rho_{\alpha_{n}^{*}}(x, y)=\max \left\{\rho_{j_{1}\left(\alpha_{n-1}\right)}(x, y), \rho_{j_{2}\left(\alpha_{n-1}\right)}(x, y)\right\}$.
Therefore $d_{1}^{\alpha_{n-1}} \leq \bar{\Phi}_{\alpha}\left(p_{\alpha}(x, y)\right)$ for $\alpha_{n-1} \in S_{1}\left(\alpha_{n-2}\right)$.
By induction, for every choice of $\sigma^{n} \in S^{n}(\alpha)$ and its coordinates α_{n-k}, we prove:

$$
d_{k}^{\alpha_{n-k}} \leq \bar{\Phi}_{\alpha}^{k}\left(p_{\alpha}(x, y)\right) \forall k=1,2, \ldots, n-1
$$

Indeed, we have just obtained that the estimates are valid for $k=1$. If we suppose that the above inequalities are satisfied for all $k \leq m<n-1$, then for $k=m+1$ we obtain:

$$
\begin{aligned}
d_{m+1}^{\alpha_{n-m-1}} & =\rho_{\alpha_{n-m-1}}\left(T^{m+1}(x), T^{m+1}(y)\right) \\
& \leq \frac{1}{2} \Phi_{\alpha_{n-m-1}}\left(\rho_{j_{1}\left(\alpha_{n-m-1}\right)}\left(T^{m}(x), T^{m}(y)\right)\right)+\frac{1}{2} \Phi_{\alpha_{n-m-1}}\left(\rho_{j_{2}\left(\alpha_{n-m-1}\right)}\left(T^{m}(x), T^{m}(y)\right)\right) \\
& \leq \bar{\Phi}_{\alpha}\left(d_{m}^{\alpha_{n-m}^{*}}\right)
\end{aligned}
$$

where $\alpha_{n-m}^{*} \in S_{1}\left(\alpha_{n-m-1}\right)$ is such that

$$
d_{m}^{\alpha_{n-m}^{*}}=\rho_{\alpha_{n-m}^{*}}\left(T^{m}(x), T^{m}(y)\right)=\max \left\{\rho_{j_{1}\left(\alpha_{n-m-1}\right)}\left(T^{m}(x), T^{m}(y)\right), \rho_{j_{2}\left(\alpha_{n-m-1}\right)}\left(x_{m}, x_{m+1}\right)\right\}
$$

In particular, $d_{m}^{\alpha_{n-m}^{*}} \leq \bar{\Phi}_{\alpha}^{m}\left(p_{\alpha}(x, y)\right)$. It follows $d_{m+1}^{\alpha_{n-m-1}} \leq \bar{\Phi}_{\alpha}\left(\bar{\Phi}_{\alpha}^{m}\left(p_{\alpha}(x, y)\right)\right)=\bar{\Phi}_{\alpha}^{m+1}\left(p_{\alpha}(x, y)\right)$. This completes the induction. Finally,

$$
\begin{aligned}
d_{n}^{\alpha} & =\rho_{\alpha}\left(T^{n}(x), T^{n}(y)\right) \leq \frac{1}{2} \Phi_{\alpha}\left(\rho_{j_{1}(\alpha)}\left(T^{n-1}(x), T^{n-1}(y)\right)+\rho_{j_{2}(\alpha)}\left(T^{n-1}(x), T^{n-1}(y)\right)\right) \\
& \leq \frac{1}{2} \Phi_{\alpha}\left(\rho_{j_{1}(\alpha)}\left(T^{n-1}(x), T^{n-1}(y)\right)\right)+\frac{1}{2} \Phi_{\alpha}\left(\rho_{j_{2}(\alpha)}\left(T^{n-1}(x), T^{n-1}(y)\right)\right) \leq \bar{\Phi}_{\alpha}\left(\rho_{\alpha_{1}^{*}}\left(T^{n-1}(x), T^{n-1}(y)\right)\right)
\end{aligned}
$$

where $\alpha_{1}^{*} \in S_{1}(\alpha)$ is such that $\rho_{\alpha_{1}^{*}}(x, y)=\max \left\{\rho_{j_{1}(\alpha)}(x, y), \rho_{j_{2}(\alpha)}(x, y)\right\}$, and consequently
$\rho_{\alpha_{1}^{*}}\left(T^{n-1}(x), T^{n-1}(y)\right)=d_{n-1}^{\alpha_{1}^{*}} \leq \bar{\Phi}_{\alpha}^{n-1}\left(p_{\alpha}(x, y)\right)$. Therefore $d_{n}^{\alpha} \leq \bar{\Phi}_{\alpha}^{n}\left(p_{\alpha}(x, y)\right)$.
The properties of the function $\bar{\Phi}_{\alpha} \in(\Phi)$ guarantee that $\bar{\Phi}_{\alpha}^{n}(t) \underset{n \rightarrow \infty}{\rightarrow} 0$ for any fixed $t \in[0, \infty)$. Thus, if we suppose that there exist two elements $x \neq y$ of X, for which $x=T(x)$ and $y=T(y)$, then for every index $\alpha \in A \rho_{\alpha}(x, y)=\rho_{\alpha}\left(T^{n}(x), T^{n}(y)\right) \leq \bar{\Phi}_{\alpha}^{n}\left(p_{\alpha}(x, y)\right)$ for all $n \in \mathbb{N}$, which implies $\rho_{\alpha}(x, y)=0$ for every $\alpha \in A$. The obtained contradiction proves Theorem 2.3.

References

[1] V. G. Angelov, Fixed point theorem in uniform spaces and applications, Czechoslovak Math. J. 37 (112) (1987), 19-33.
[2] V. G. Angelov, Fixed Points in Uniform Spaces and Applications, Cluj University Press, Cluj-Napoca, Romania, 2009.
[3] W. Page, Topological Uniform Structures, J. Wiley \& Sons, New York, 1978.

