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ABSTRACT 
 

Beulosuv-Zhabotonksiy reaction is pure chemical reaction that exhibits sustained and relaxed oscillations, which are analogous 

to observed oscillations in many biological systems. The reaction is very complicated, however, its oscillatory mechanism is 

represented by a simple model, called the Oregonator.  Since delays naturally appear in chemical reactions and they are often 

responsible for presence of complex behaviours, delay effects in Beulosuv-Zhabotonksiy reaction should be considered to 

better explain the mechanism of  some biochemical oscillations. In this work, qualitative and asymptotic  analysis of the 

Oregonator model by taking into account the delays arising due to the physical constraints will be considered. Some numerical 

results will given to present some certain properties of the considered model. 
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1. INTRODUCTION 
 

Delays naturally appear in many engineering applications, biological, and chemical processes, due to 

the transportation and propagation phenomena, for instance, transportation of information or energy in 

interconnected systems requires some amount of time, signals in real-time control applications can not  

be computed instantaneously, mass transfer in processes occurs after a finite interval (see, [1] and 

references there in for a wide survey). Besides the above phenomena, since delay-differential equations 

(DDEs)  have  richer mathematical framework compared to ordinary differential equations (ODE), 

modelling systems in the field biology and chemistry by using DDEs may introduce certain benefits 

from the numerical point of view [2]. In addition, as pointed in [3], DDEs may lead to describe chemical 

reactions by a fewer concentration variables than the classical mass-action law. 
 

Chemical reactions are often modelled by law of mass-action, which states that the rate of a reaction is 

proportional to the product of concentrations of the reactants by assuming all the stoichiometric 

coefficients of the reactants are one [4]. Then, the resulting dynamic model is described by polynomial 

ODEs, where their solutions are  non-negative for non-negative  initial conditions [5]. Note that, since 

dynamic variables of a kinetic equation obtained by mass-action laws correspond to the concentrations 

of  the species in the reaction, non-negative initial conditions must yield non-negative solution from the 

physical point of view. However, mass-action laws may not be sufficient in presence of delays, which 

naturally appear in dynamics of chemical reactions due to the propagation phenomena. In fact, delays 

in chemical reactions are often sufficiently small, hence, they may be neglected. However, delay 

presence in system’s dynamics is often responsible for unexpected behaviours [1]. In addition, as 

mentioned in [6], delays induced behaviours in complex chemical reactions should be considered to 

better understand  the dynamics of such reactions. 
 

Belousov-Zhabotinsky reaction, called BZ reaction, is a very complex chemical reaction involving dozens 

of elementary steps and exhibiting various type of behaviours such as steady-state, periodic, and chaotic. 

The reaction, in short, consists of two different processes, say Process A and B, in one system such that 
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only one of them dominates the reaction depending on the Bromide ion concentration in the reaction at 

any  time. Process A dominates the reaction when the Bromide ion concentration is sufficiently high,  and 

the Bromide ion is consumed monotonically during this process. Then, whenever the concentration 

reduces below some certain level, Process B starts to dominate the reaction. The oscillatory mechanism 

origins that Bromide ion is indirectly produced in Process B, hence, control of the reaction is returned to 

Process A. In [7], this mechanism is represented by a simple model, called the Oregonator model. Since 

oscillatory behaviour of the BZ reaction is analogous to many real biological oscillators, the reaction 

mechanism is accepted as a prototype for biochemical oscillators [8, 9, 10]. Since biochemical oscillations, 

which are common in all biological organizations, play key roles in a variety of important processes, 

including circadian regulation, metabolism, neuronal firing, and cardiac rhythms [10, 11, 12], it is 

important to comprehend its mechanism. Note, even these behaviors have been known for a long time, the 

underlying mechanism is still not clear [11, 13]. Since BZ reaction has rich complex dynamics,  mechanism 

of some biochemical oscillations may be better explained if delays are taken into account. 
 

To the best knowledge of the author, there exists only limited works on delay effects in the Oregonator 

model. Most of them are considered to describe the mechanism with a fewer chemical concentration 

variables. In [6], two different models are proposed to describe the oscillatory mechanism by using DDEs, 

however, only one of them, which does not satisfy the delay mass-action law,  exhibits oscillatory behavior 

at the non-trivial equilibrium point. By inspiring the work of [6], another delayed-Oregonator model is 

proposed in [3] such that the model satisfies the delay mass-action laws and exhibits qualitatively  the 

same oscillatory behavior with the Oregonator model. Different than these works, in [14], a two-delay 

Oregonator model is proposed to take into account the delay effects arising due to the physical constraints 

while ensuring the oscillatory behavior in the mechanism. One of these delays, called ``delayed-

activation’’, has the same role as in [3], and the other one, called ``delayed-concentration’’, is introduced 

due to the physical constraints. Note, ``delayed-concentration’’ term is also used in [6], however, its role 

in [14] is completely different in the sense of modelling and physical point of view. As shown by 

numerical results, oscillatory behavior of the two-delay Oregonator qualitatively match with the model 

in [7] if  the activation and concentration delays are relatively ``small’’.  
 

In this work, in order to better understand the arising complex dynamics of BZ in presence of delays 

introduced by the specific physical constraints will be considered. It should be noted that despite the 

advantages of use of DDEs in the field of bioscience, mathematical solution of a DDE is more difficult 

compared to ODE. Solution of a DDE requires an infinite set of initial history function, therefore, it is 

not trivial to ensure positivity of the solution, which is required for DDEs describing the chemical 

reactions. In addition, characteristic polynomial of a system described by DDEs may have infinitely 

many zeros. In Section 2, chemical kinetics of the considered Oregonator model will be given. In 

addition, by use of delay mass-action law, its dynamic and asymptotic properties will be presented. 

Then, some numerical results will be presented in Section 3 and the paper will be completed by some 

concluding remarks in Section 4. 
 

2. MODEL OF THE MECHANISM  
 

From [7], the reaction steps of the irreversible Oregonator  model is as given below  
 

𝐴 + 𝑌
𝑘1
→ 𝑋 + 𝑂                (𝑅1) 

𝑋 + 𝑌
𝑘2
→ 2𝑂                      (𝑅2) 

𝐵 + 𝑋
𝑘3
→ 2𝑋 + 𝑍              (𝑅3) 

2𝑋
𝑘4
→ 𝐴 + 𝑂                       (𝑅4) 

𝑍
𝑘5
→ 𝑓𝑌,                                (𝑅5) 
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where 𝐴, 𝐵 are assumed to be constant chemical species, 𝑌 (Bromide ion), 𝑋 (Bromous acid), and 𝑍 

(Cerium (IV)) are chemical variables, 𝑂 is some chemical product, 𝑘𝑖, 𝑖 = 1, …, 5, is the positive rate 

constant, and, 𝑓 is a stoichiometric factor. By using the mass-action law, as given in [6], dynamic model  

of the Oregonator model is obtained as given below: 
 

�̇�(𝑡) = 𝑘1𝐴𝑌(𝑡) − 𝑘2𝑋(𝑡)𝑌(𝑡) + 𝑘3𝐴𝑋(𝑡) − 2𝑘4𝑋(𝑡)2     (1a) 
�̇�(𝑡) = −𝑘1𝐴𝑌(𝑡) − 𝑘2𝑋(𝑡)𝑌(𝑡) + 𝑘5𝑓𝑍(𝑡)      (1b) 

�̇�(𝑡) = 𝑘3𝐵𝑋(𝑡) − 𝑘5𝑍(𝑡),         (1c) 
 

where 𝑘1 = 1.34𝑀−1𝑠𝑒𝑐−1, 𝑘2 = 1.6 × 109𝑀−1𝑠𝑒𝑐−1, 𝑘3 = 8 × 103 𝑀−1𝑠𝑒𝑐−1, 𝑘4 = 4 ×
107𝑀−1𝑠𝑒𝑐−1, 𝑘5 = 1 𝑠𝑒𝑐−1, 𝑓 = 1, and 𝐴 = 𝐵 = 0.06  [7].  
 

It is  mentioned in [15], the reactants in  a chemical reaction are not necessarily  to react whenever the 

activation energy is provided. In addition to such a time lag, it is not physically possible to  maintain the 

required activation energy instantaneously. In order to  take into account these type of delays in the BZ 

reaction, the Oregonator model can be expressed, by replacing (𝑅1) with  
 

𝐴 + 𝑌
𝑘1
→ 𝑋(𝑡 + 𝜏) + 𝑂(𝑡 + 𝜏),                (𝑑𝑅1)  

 

which implies that X and 𝑂 appear after 𝜏 units. The recent mechanism, which corresponds to replacing 

reaction step 𝑅_1 by 𝑑𝑅1, is more realistic compared to the Oregonator  model from the physical point of view.  

 

Remark 1 Note that, the reaction mechanism consists of five elementary steps, and, delay may 

introduced all these steps due to  transportation phenomena. Note, as seen from  𝑅1 − 𝑅5, since 𝑂  is not 

on the reactant part and 𝐴 is assumed to be constant, the considered chemical variables  appear only  in 

𝑅1, 𝑅3, and 𝑅5. In addition,  since the role of  𝑅5 in the mechanism can be considered to provide a 

negative delayed feedback [6], and, the reaction rate constant in 𝑅3, which corresponds to 𝑘3, is 

``sufficiently large’’ than 𝑘1, 𝑅1 becomes the slowest step. Furthermore, since the reaction starts 

whenever the present Bromide ion starts to decrease, taking into account the existing time lag in 𝑅1 is 

more meaningful compared to elementary steps. 

 

By delayed mass-action laws, the kinetic scheme of delayed Oregonator model, which consists of the 

steps (𝑑𝑅1), 𝑅2 − 𝑅5, can be described by the following DDEs 

 

�̇�(𝑡) = 𝑘1𝐴𝑌(𝑡 − 𝜏) − 𝑘2𝑋(𝑡)𝑌(𝑡) + 𝑘3𝐴𝑋(𝑡) − 2𝑘4𝑋(𝑡)2     (2a) 

   �̇�(𝑡) = −𝑘1𝐴𝑌(𝑡) − 𝑘2𝑋(𝑡)𝑌(𝑡) + 𝑘5𝑓𝑍(𝑡)        (2b) 

   �̇�(𝑡) = 𝑘3𝐵𝑋(𝑡) − 𝑘5𝑍(𝑡).           (2c) 

 

Since it will be more convenient to use dimensionless variables, the  dimensionless DDEs can be 

obtained as follows: 

 

   �̇�(𝜃) = 𝛿(𝑦(𝜃 − ℎ) − 𝑥(𝜃)𝑦(𝜃) + 𝑥(𝜃) − 𝜌𝑥(𝜃)2)     (3a) 

�̇�(𝜃) = 1/𝛿(−𝑦(𝜃) − 𝑥(𝜃)𝑦(𝜃) + 𝑓𝑧(𝜃))        (3b) 

�̇�(𝜃) = 𝛾(𝑥(𝜃) − 𝑧(𝜃)),           (3c) 

 

where, 𝜃 = √𝑘1𝑘3𝐴𝑡,   𝛿 =
𝑘3

𝑘1
,   𝛾 =

𝑘5

𝐴√𝑘1𝑘3
,    𝜌 =

2𝑘1𝑘4

𝑘2𝑘3
, ℎ = √𝑘1𝑘3𝐴𝜏, 𝑥 =

𝑘1

𝑘2
𝐴𝑋,    𝑦 =

𝑘3

𝑘2
𝐴𝑌,

𝑧 =
𝑘1𝑘3

𝑘2𝑘5
𝑍. In the sequel, first, presence of a positive equilibrium point for the dynamic model described 

in (3a-3c) will be presented. Note, since the dynamic variables in (2a-2c) correspond to instantaneous 

concentration of the considered chemical variables, the equilibrium point of the model should be 
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positive. Then, the positivity of the solutions for positive initial history function will be shown, and 

asymptotic properties of  the model will be given. 
 

Proposition 1. The model described by dimensionless DDEs in (3a)-(3c) has only one positive 

equilibrium point (𝑥∗, 𝑦∗, 𝑧∗), where 
 

   𝑦∗ = 𝑓
𝑥∗

1+𝑥∗               (4) 

and 

   𝑧∗ = 𝑥∗ =
(𝜌+𝑓−1)−√(𝜌+𝑓−1)2+4(1+𝑓)𝑞

−2𝑞
           (5) 

 

Proof Let (𝑥∗, 𝑦∗, 𝑧∗) be a solution of (�̇�(𝜃), �̇�(𝜃), �̇�(𝜃)) = 0. Then,  
 

𝑦∗ − 𝑥∗𝑦∗ + 𝑥∗ − 𝜌(𝑥∗)2 = 0           (6) 

−𝑦∗ − 𝑥∗𝑦∗ + 𝑓𝑧∗ = 0           (7) 

−𝑥∗ + 𝑧∗ = 0.            (8) 

 

From (7-8), since 𝑧∗ = 𝑥∗ and 𝑦∗ = 𝑓
𝑥∗

1+𝑥∗,  by (6),  

 

   − 𝜌(𝑥∗)2 − (𝜌 + 𝑓 − 1)𝑥∗ + (1 + 𝑓) = 0.        (9) 
 

 Note,  since it is obvious that    

 

   √ (𝜌 + 𝑓 − 1)2 + 4𝜌(1 + 𝑓) >  (𝜌 + 𝑓 − 1), 
 

the positive solution of (9) is obtained as in (5). 

  
Proposition 2. Solution of the DDEs in (3a-3c) is positive  for a positive initial history function. 
 

Proof By contradiction, assume that the DDEs has a non-positive solution for some positive initial 

history function, which implies that 𝑥(�̂�) > 0, 𝑦(�̂�) > 0, and 𝑧(�̂�) > 0, �̂� ∈ [−ℎ, 0]. Now, from (3c), since 

 

   𝑧(𝜃) = 𝑒−𝛾𝜃𝑧(0) + ∫ 𝑒−𝛾(𝜃−𝜏)𝑥(𝜏)𝑑𝜏
𝜃

0
,        𝜃 > 0,       (10a) 

 

then, 𝑧(𝜃) ≤ 0 only if  there exists a positive 𝜃1, 𝜃1 ≤ 𝜃, such that 𝑥(𝜃1) ≤ 0, since 𝑧(0) > 0. Then, 

the positivity of initial history function yields that there exists a positive 𝜃2, where 𝜃2 ≤ 𝜃1,  such that 

𝑥(𝜃2) = 0. From (3a), since  

 

   �̇�(𝜃2) = 𝛿𝑦(𝜃2 − ℎ),           (10b) 
 

 x(𝜃1) ≤  0 only if 𝑦(𝜃2 − ℎ) < 0. However, the latter inequality holds only if there exists a positive 

𝜃3, such that 𝜃3 ≤ 𝜃2 − ℎ and  𝑦(𝜃3) = 0.  However, from (3b), since,  
 

   �̇�(𝜃3) =
𝑓𝑧(𝜃3)

𝛿
> 0,           (10c) 

 

then, 𝑧(𝜃) can  not be non-positive. Furthermore, by using (10b-10c), it can be easily shown that 𝑥(𝜃) 

and 𝑦(𝜃) can not be non-positive. 
 

Proposition 3. The characteristic function of the linearized model given in (3a-3c) has two positive  real 

zeros in the right-half plane for  ℎ ≥ 0. 
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Proof By linearizing (3a-3c) around the positive equilibrium point (𝑥∗, 𝑦∗, 𝑧∗) given in (4-5), the 

characteristic function of the model can be written as: 

 

   Δ(𝜆; ℎ) = 𝜆3 + 𝑎2𝜆2 + 𝑎1𝜆 + 𝑎0 + 𝑒−ℎ𝜆(𝑞1𝜆 + 𝑞0)      (11) 

 

where 𝜆 is a complex number, and  

 

   𝑎2 = 𝛾 +
1

𝛿
(1 + 𝑥∗) + 𝛿(𝑦∗ + 2𝜌𝑥∗ − 1)        (12a) 

𝑎1 = (1 + 𝑥∗)(2𝜌𝑥∗ − 1) + 𝑦∗ + 𝛾 (
1

𝛿
(1 + 𝑥∗) + 𝛿(𝑦∗ + 2𝜌𝑥∗ − 1))  (12b) 

𝑎0 = ((1 + 𝑥∗)(2𝜌𝑥∗ − 1) + 𝑦∗ + 𝑓𝑥∗)𝛾         (12c) 

𝑞1 = 𝑦∗              (12d) 

𝑞0 = (𝑦∗ − 𝑓)𝛾.             (12e) 

 

By the given parameters above,  from (12a-12e), it can be shown that  𝑎2 > 0, 𝑎1 < 0,  𝑎0 >
0,  1 > 𝑞1 > 0,  𝑞0 < 0, 𝑎0 + 𝑞0 > 0, and, 𝑎1  + 𝑒−ℎ𝜎𝑞1 < 0, for 𝜎 > 0. Then, since 𝑒−ℎ𝜎 < 1, ℎ ≥ 0,  

by  Descartes’s sign rule, Δ(𝜎; ℎ) =0 only for two real positive 𝜎.  

 

Proposition 4. The characteristic function of the model has no zeros in the right-half plane for  ℎ ≥ 0 

if 𝑓 ≤ 1/2. 

 

Proof   Let us define  

 

                         𝑑(𝜆) ≔ 𝜆3 + 𝑎2𝜆2 + 𝑎1𝜆 + 𝑎0          (13) 

 

where 𝑎2, 𝑎1 and 𝑎0 are defined as in (12a-12c). Then, since  𝑎2 > 0 for positive 𝑓, in addition, as seen 

in Figure 1(a),  𝑎2𝑎1 −  𝑎0 is positive for  𝑓 ≤
1

2
, then, by Hurwitz criterion,  it can be shown that 𝑑(𝜆) ≠

0, 𝜆 ∈ ℂ+. Then, since the characteristic function given in (11) can be written as 

  

  Δ(𝜆; ℎ) = 𝑑(𝜆) (1 + 𝑒−ℎ𝜆 𝑞1𝜆+𝑞0

𝑑(𝜆)
)             (14) 

 

then, the characteristic function has zeros in the right-half-plane (ℂ+) only if  

 

                       𝑒−ℎ𝜆 𝑞1𝜆+𝑞0

𝑑(𝜆)
= −1            (15) 

 

holds for some 𝜆 ∈ ℂ+. Note that, since 𝑑(𝜆) ≠ 0, 𝜆 ∈ ℂ+, 

 

   𝐺(𝜆; ℎ) ≔ 𝑒−ℎ𝜆 𝑞1𝜆+𝑞0

𝑑(𝜆)
 ,       (16) 

 

is analytic and bounded in the open-right-half-plane for ℎ ≥ 0. In addition  as shown in Figure 1(b), 

‖𝐺(𝜆; ℎ)‖∞ = sup
ω∈ℝ

|G(𝑗𝜔; ℎ)| < 1, ℎ ≥ 0. Then, by the maximum modules theorem [16], the 

characteristic function has no zeros in the right-half-plane. 
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(a) (b) 

Figure 1. Stability condition of the characteristic function while f versus in [0,
1

2
 ]: (a), ( a2a1 −  a0)  while f versus in [0,

1

2
 ] 

(b) ||G (λ; h)||∞ while f versus in [0,
1

2
 ] , h ≥ 0. 

 

3. NUMERICAL RESULTS 
 

In this section, some numerical results will be presented to explain the asymptotic properties of the 

model described by dimensionless DDEs in (3a-3c). In addition, numerical solutions of the model will 

be presented to discuss dynamic behaviour of the model.  
 

The characteristic  function of the model, which is given in (11) has infinitely many zeros in the 

complex-plane, however, only finitely many of them appear in the right-half plane [17]. Since their 

computation is difficult, by using QPmR [18], zeros of the characteristic function will be presented only 

a certain interval. As shown in Figure 2(a), the Oregonator model in [6] has two real zeros in the right-

half-plane. As discussed in Proposition 3 and shown in Figure 2(b), presence of delay does not change 

the right-half-plane zeros of the Oregonator model in [6], however, it introduces additional zeros, which 

are infinitely many. As shown in Figure 2(c), the characteristic function has no zeros in the right-half-

plane while ℎ versus in [0,20] and 𝑓 =
1

2
 (see, Proposition 4). In addition, as seen in the figure, as ℎ →

∞, left-half-plane zeros of the characteristic function approaches to the imaginary axis. 
 

In Figure 3, numerical solutions of the Oregonator model in [6] and numerical solutions of (3a-3c) are 

presented for a chosen positive initial condition. As seen in these figures, numerical solutions are 

positive, as shown in Proposition 2, and they exhibit oscillatory behaviour for the considered set of 

parameters and delay values. In addition, the oscillatory behaviour  of the Oregonator model in [6]  and 

delayed-Oregonator model qualitatively match for ``small’’ delay values. If delay is taken “sufficiently” 

large, the oscillatory behavior still exists. As seen by comparing  Figure 3(b) and Figure 3(c), the 

frequency of the oscillations increases if delay increases.  
 

 
 

 
(a) (b) (c) 

 

Figure 2.  Zeros of the  Characteristic function for (a) h=0 f=1, (b) h=0.1, f=1, (c) f=1/2 h versus in [0,20] 
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(a) 

  
(b) 

  
(c) 

 

Figure 3. Numerical solutions of ODEs and DDEs. . In (a), 𝑓 = 1 ,  h= 0 (b) f = 1 ,  h= 0.05 (c) f = 1,  h= 5 and the other 

parameters are kept same and the initial condition is taken as (0,1,0). 

 

4. CONCLUSION 
 

In this work, qualitative analysis of a delayed-Oregonator-based  chemical oscillator is presented to 

discuss the delay effects in chemical reactions. The dynamic model of the considered mechanism is 

obtained by using delay-mass action laws. It is shown that the model is meaningful from the physical 

point of view, since, it has unique positive equilibrium point, in addition, solution of the corresponding 

DDEs is  positive for positive initial history function. It is shown that delayed-concentration does not 

effect the asymptotic stability properties of the reaction mechanism, but it increases the frequency of 

oscillatory behaviour.  
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