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Abstract. In this study, we investigate trees arising from the imprimitive action of the normalizer of Modular
group in the Picard group on extended rational numbers. We determine the farthest vertex from a given vertex
in hyperbolic paths of minimal lengths. We also include some results of the suborbital graph F̄u,N related to a
continued fraction representation of a rational number.

2010 AMS Classification: 11F06, 11A15, 40A15.

Keywords: Normalizer of the modular group, suborbital graphs, continued fraction.

1. Introduction

It is well known, since Cantor’s first works on the theory of cardinality, that the rationals are countable. However, it
is not so simple to give an explicit enumeration of all of them. There are some methods that illustrate the countability
of the positive rational numbers and related sets. Techniques include radix representations, Gödel numbering, the
fundamental theorem of arithmetic, continued fractions, Egyptian fractions, and the sequence of ratios of successive
hyperbinary representation numbers [20]. Among these methods, we mention about Farey fractions and Calkin-Wilf
tree.

Farey fractions which give an useful classification of the rational numbers is one of the oldest, while the Calkin-Wilf
tree is newest. In [10], Jones, Singerman, Wicks studied the the suborbital graphs of the modular group and showed
that the most basic one turns out to be well-known Farey graph related to Farey fractions. The Calkin-Wilf tree is an
infinite binary tree whose vertex set is the set of positive reduced rational numbers. In this tree, every positive reduced
rational number a/b is the tail of the two edges. The heads of these edges are the positive rational numbers a/(a + b)
and (a + b)/b. Then Nathanson describes a generalizaton of the Calkin-Wilf tree to a forest of rooted infinite binary
trees of rational functions of the form (az + b)/(cz + d) [19]. Hence, the close relationship between enumeration of
the rational numbers and the modular group has been presented in both of studies [10, 19]. Inspiring this relation, we
examine the trees of the normalizer of the modular group in the present study.
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We start to remind the groups we will work and some basic properties. Let H denote the upper half plane H :=
{z ∈ C : Im(z) > 0}. The Picard group is denoted by P and contains all linear fractional transformations

T : z→
az + b
cz + d

,where a, b, c and d ∈ Z[i] and ad − bc = 1.

P = PS L(2,Z[i]) is an important subgroup of PS L(2,C). Now PS L(2,R) is the group of all conformal homeomor-
phisms of H. A Fuchsian group is a discrete subgroup of PS L(2,R).The modular group Γ = PS L(2,Z) is perhaps the
most important and certainly best-known Fuchsian group. It is known that every finitely generated Fuchsian groups
has a unique presentation with generators and relations [9]. The normalizer of the modular group Γ in the Picard group
P will be denoted by NP(Γ) and in Lemma 3.2 we give a characterization of NP(Γ). The presentation of NP(Γ) is [23]

NP(Γ) = 〈u =

(
0 1
−1 0

)
, y =

(
1 1
−1 0

)
, r =

(
0 i
i 0

)
; u2 = y3 = r2 = (ry)2 = (ru)2 = 1〉.

2. Continued Fractions

We recall definitions, notations, and some preliminary results of continued fractions for the sake of completeness.
In general, a (simple) continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 + · · ·

where the letters a0, a1, a2, . . . denote independent variables, and may be interpreted as one wants (e.g. real or complex
numbers, functions, etc.). In this study, the letters a1, a2, . . . denote positive integers. The letter a0 denotes an integer.

Notation 2.1. We write
[a0; a1, a2, . . . , an] = a0 +

1

a1 +
1

a2 + · · ·

+
1
an

if the number of terms is finite, and

[a0; a1, a2, . . .] = a0 +
1

a1 +
1

a2 + · · ·

for an infinite number of terms.

We give some well-known facts from [6] as following theorems without proofs.

Theorem 2.2. Any rational number can be represented as a finite continued fraction.

3. Suborbital Graphs of the Normalizer

The reader is refereed to [1–3, 8, 11–17] for some relevant previous work on suborbital graphs. The general de-
scriptions can be found in these papers. Let (G,∆) be a transitive permutation group, consisting of a group G acting
on a set ∆ transitively. An equivalence relation ≈ on ∆ is called G-invariant if, whenever α, β ∈ ∆ satisfy α ≈ β, then
g(α) ≈ g(β) for all g ∈ G.

The equivalence classes are called blocks, and the block containing α is denoted by [α].
We call (G,∆) imprimitive if ∆ admits some G-invariant equivalence relation different from

i. the identity relation, α ≈ β if and only if α = β;
ii. the universal relation, α ≈ β for all α, β ∈ ∆.

Otherwise (G,∆) is called primitive. These two relations are supposed to be trivial relations. Clearly, a primitive
group must be transitive, for if not the orbits would form a system of blocks. The converse is false, but we have the
following useful result.

Lemma 3.1 ( [4]). Let (G,∆) be a transitive permutation group. (G,∆) is primitive if and only if Gα, the stabilizer of
α ∈ ∆, is a maximal subgroup of G for each α ∈ ∆.
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From the above lemma we see that whenever, for some α, Gα � H � G, then Ω admits some G-invariant equivalence
relation other than the trivial cases. Because of the transitivity, every element of Ω has the form g(α) for some g ∈ G.
Thus one of the non-trivial G-invariant equivalence relation on Ω is given as follows:

g(α) ≈ g′(α) if and only if g′ ∈ gH.

Lemma 3.2 ( [23]). The elements of NP(Γ) consist of the mappings of the form :

T (z) =
az + b
cz + d

, a, b, c, d ∈ Z with ad − bc = ±1.

If we set G = NP(Γ), ∆ = Q̂, H = Γ̄0(N) =

{(
a b
c d

)
∈ NP(Γ)| c ≡ 0 mod(N)

}
, and Gα = NP(Γ)∞, then we clearly

see that NP(Γ)∞ � Γ̄0(N) � NP(Γ).
We define the following NP(Γ) invariant equivalence relation “ ≈

N
” on Q̂. Since NP(Γ) acts transitively on Q̂, every

element of Q̂ has the form g(∞) for some g ∈ NP(Γ). So, it is easily seen that,

g(∞) ≈
N

g′(∞)⇐⇒ g′ ∈ gNP(Γ)

gives a NP(Γ)−invariant imprimitive equivalence relation.

Theorem 3.3 ( [23] Block condition). Let v = r
s , w = x

y ∈ Q̂. Then v ≈
N

w if and only if ry − sx ≡ 0(modN) or

sx − ry ≡ 0(modN).

Let (G,∆) be a transitive permutation group. Then G acts on ∆×∆ by g(α, β) = (g(α), g(β)), (g ∈ G , α, β ∈ ∆). The
orbits of this action are called suborbitals of G .

In this study, G is NP(Γ) and ∆ is Q̂. We now consider the suborbital graphs for the action NP(Γ) on Q̂. Since NP(Γ)
acts transitively on Q̂, each suborbital contains a pair (∞, u/N) for some u/N ∈ Q̂ such that (u,N) = 1. We denote this
suborbital by Ō(u,N) and corresponding suborbital graph Ḡ(u,N) by Ḡu,N .

Theorem 3.4 ( [23] Edge condition). r/s −→ x/y is an edge in Ḡu,N if and only if
(i) x ≡ ur (modN), y ≡ us (modN), ry − sx = N or

(ii) x ≡ −ur (modN), y ≡ −us (modN), ry − sx = −N or
(iii) x ≡ ur (modN), y ≡ us (modN), ry − sx = −N or
(iv) x ≡ −ur (modN), y ≡ −us (modN), ry − sx = N.

Since the action NP(Γ) on Q̂ is transitive, NP(Γ) permutes the blocks transitively; so the subgraphs are all isomorphic.
Hence it is sufficient to study only one block. On the other hand, it is clear that each non-trivial suborbital graph contains
a pair (∞, u/n) for some u/n ∈ Q̂ where (u, n) = 1. Therefore, we study on the following case: We denote by F̄u,N the
subgraph of Ḡu,N such that its vertices are in the block [∞] =

{
x
y ∈ Q̂ | y ≡ 0 (modN)

}
.

Theorem 3.5 ( [23]). r/s −→ x/y is an edge in F̄u,N if and only if
(i) x ≡ ur (modN), ry − sx = N or

(ii) x ≡ −ur (modN), ry − sx = −N or
(iii) x ≡ ur (modN), ry − sx = −N or
(iv) x ≡ −ur (modN), ry − sx = N.

Lemma 3.6. If (u,N) = 1 then there exists an integer k such that u2 + ku + 1 ≡ 0 mod N.

Proof. Let (u,N) = 1, then there exists integers x, y such that ux − yN = 1 giving ux ≡ 1 mod N. Thus ux(−u2 − 1) ≡
−u2 − 1 mod N.Putting k = x(−u2 − 1) gives u2 + ku + 1 ≡ 0 mod N. �

4. Main Calculations

Theorem 4.1. Let u, n be relatively prime positive integers. For F̄u,N , the following statements hold:

(i) The farthest vertex which can be joined with u
N is

u + 1
k

N
, where k is the unique integer such that 1 ≤ k ≤ N

and u2 + ku + 1 ≡ 0 (mod N). The nearest vertex does not exist.
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(ii) The farthest vertex which can be joined with u+ 1
k

N is
u + 1

k− 1
k

N
, where k is the unique integer such that 1 ≤ k ≤ N

and u2 + ku + 1 ≡ 0 (mod N). The nearest vertex does not exist.

Proof. We first prove (i). The existence of an integer k such that u2 + ku + 1 ≡ 0 (mod N) is due to Lemma 3.6. Now
we can assume that 1 ≤ k ≤ N. To see this, if k > N we choose k1 such that k ≡ k1 (mod N). We have ku + 1 ≡ k1u + 1
(mod N), this gives

u2 + k1u + 1 ≡ u2 + ku + 1 ≡ 0 (mod N).
Now we show the uniqueness of k. Let m be another integer such that 1 ≤ m ≤ N and u2 + mu + 1 ≡ 0 (mod N). Hence
mu ≡ −u2 − 1 ≡ ku (mod N), so we have (k−m)u ≡ 0 (mod N). Because (u,N) = 1, k−m ≡ 0 (mod N). Thus k = m
since |k − m| < N. Now suppose there exists an edge u

N →
x
y in F̄u,N and u

N < x
y . We can write x

y in the form

x
y

=
u
N

+
Nx
Ny
−

uy
Ny

=
u +

Nx−uy
y

N
.

With this and the fact that uy < Nx, we can replace x
y with u+ t

s
N , where t

s is in Q+. So we have

u
N
→

u + t
s

N
=

su + t
sN

.

Theorem 3.5 gives numerical informations when this edge exists. From this point onward, we aim to analyze each of
the cases of this theorem.

Case 1: In this case we have su + t ≡ u2 (mod N) and u(sN) − N(su + t) = N, which implies t = −1. Therefore
su− 1 ≡ u2 (mod N). Since u2 + ku + 1 ≡ 0 (mod N), we have su− 1 ≡ −ku− 1 (mod N), that is, su ≡ −ku (mod N).
Since (u,N) = 1, we have s ≡ −k (mod N). In other words, s = −k − Nz for some z ∈ N ∪ {0}. Thus t

s = 1
Nz+k . Next,

we find the largest value of t
s by defining a function f : R+ ∪ {0} → R,

f (z) =
u + 1

Nz+k

N
.

The derivative of f is f ′(z) = −1
(Nz+k)2 < 0, which is negative for every non-negative z. This implies that the maximum

occurs at z = 0, that is,
u + 1

k

N
=

uk + 1
kN

. (4.1)

It remains to show that u+ 1
k

N = uk+1
kN is a vertex in F̄u,N . To see this, we show that it is an irreducible fraction.

It is true that (ku + 1, k) = (ku + 1 − ku, k) = (1, k) = 1 and since u2 + ku + 1 = Ny for some y ∈ Z, we have

(ku + 1,N) = (ku + 1 − Ny,N) = (−u2,N) = 1. Thus, (ku + 1, kN) = 1. We conclude that
u + 1

k

N
is vertex in F̄u,N and is

the farthest one being joined with u
N . We also see that

lim
z→∞

u + 1
Nz+k

N
=

u
N
. (4.2)

This implies that there is no such nearest point being joined with the vertex u
N .

Case 2: In this case, we obtain that su + t ≡ −u2 (mod N) and u(sN) − N(us + t) = −N, which implies t = 1. Thus,
su + 1 ≡ −u2 (mod N) and we know u2 + ku + 1 ≡ 0 (mod N). This implies that su + 1 ≡ ku + 1 (mod N), that is,
su ≡ ku (mod N). The fact (u,N) = 1 implies that s ≡ k (mod N). Therefore, s = Nz + k for some z ∈ N ∪ {0} and

t
s

=
1

Nz + k
.

This case is done by using a similar argument to that of the first case.
Case 3: We have su+ t ≡ u2 (mod N) and u(sN)−N(su+ t) = −N, which implies t = 1. Then su+1 ≡ u2 (mod N).

Since u2 + ku + 1 ≡ 0 (mod N), su + 1 ≡ −ku − 1 (mod N). Hence su + 1 + ku + 1 = Nz for some zN ∪ {0}, that is,
s = Nz−ku−2

u . Thus
t
s

=
u

Nz − ku − 2
.
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We again find the greatest value of t
s by defining a function f : R+ ∪ {0} → R,

f (z) =
u + u

Nz−ku−2

N
.

And the derivative of f is f ′(z) =
−u

(Nz − ku − 2)2 < 0, so the greatest value of the function f is taken at z = 0 and

this value is
u − 1

k+ 2
u

N
.

But
u − 1

k+ 2
u

N
is nearer to u

N than
u + 1

k

N
. Therefore the farthest vertex which can be joined with u

N is
u + 1

k

N
. Now we

know that

lim
z→∞

u + u
Nz−ku−2

N
=

u
N
.

Hence the nearest vertex does not exist.
Case 4: We obtain that su + t ≡ −u2 (mod N) and u(sN)−N(su + t) = N, which implies t = −1. Thus su− 1 ≡ −u2

(mod N). Because u2 + ku + 1 ≡ 0 (mod N), su − 1 ≡ ku + 1 (mod N), that is, −su + 1 ≡ −ku − 1 (mod N). So
−su + 1 + ku + 1 = Nz for some z ∈ N ∪ {0}, then s =

−(Nz−ku−2)
u . Therefore

t
s

=
u

Nz − ku − 2
.

The remaining proof is similar to the third case.
Now we prove the (ii). By the above proof of existence, let k be an integer such that 1 ≤ k ≤ N and u2 + ku + 1 ≡ 0

(mod N). We have shown that k is unique. From the proof of (i), we can suppose that

u + 1
k

N
<

u + t
s

N
and

ku + 1
kN

=
u + 1

k

N
→

u + t
s

N
=

us + t
sN

,

where t
s is in Q+. We start working on each case as in the proof of (i).

Case 1: In this case, we have us + t ≡ u2k + u (mod N) and Ns(ku + 1) − kN(su + t) = N, which implies s = kt + 1.
Thus u + kut + t ≡ u2k + u (mod N) and we get t(ku + 1) ≡ u2k (mod N). We observe that −u2t ≡ u2k (mod N).
Moreover, −t ≡ k (mod N) since (u,N) = 1. So t = −Nz − k for some t ∈ N∪ {0}, that is, s = 1 − k(Nz + k). Therefore

t
s

=
Nz + k

k(Nz + k) − 1
.

Next, we find the largest value of t
s by defining a function f : R+ ∪ {0} → R by

f (z) =
u + Nz+k

k(Nz+k)−1

N
.

Since the derivative of f is f ′(z) =
−1

(k(Nz + k) − 1)2 < 0, then f has a maximum at z = 0 and this value is

u + k
k2−1

N
=

(k2 − 1)u + k
(k2 − 1)N

.

Now we will show ((k2 − 1)u + k, (k2 − 1)N) = 1. Suppose that ((k2 − 1)u + k, k2 − 1) = a, then a divides k2 − 1, which
means a divides (k2 − 1)u. Since a divides (k2 − 1)u + k, a divides k. Because a divides k2 − 1, a divides −1 and hence
a = ±1.

Next we assume that ((k2 − 1)u + k,N) = b, then b divides (k2 − 1)u + k. So we have k(ku + 1)− u = (k2 − 1)u + k ≡ 0
(mod b). Since u2 +ku+1 ≡ 0 (mod N) and b divides N, u2 +ku+1 ≡ 0 (mod b). As we have shown k(ku+1)−u ≡ 0
(mod b) and −u2 ≡ ku + 1 (mod b), then k(−u2) − u ≡ 0 (mod b).
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Suppose b does not divide u. As (u,N) = 1 and b divides N, so (u, b) = 1. Moreover, −ku − 1 ≡ 0 (mod b). Since
we have u2 ≡ −ku − 1 (mod b), then b divides u2, which gives a contradiction. Hence b divides u. Thus b = 1 since
(u,N) = 1. And b divides N. Therefore ((k2 − 1)u + k, (k2 − 1)N) = 1, that is,

u + k
k2−1

N
=

u + 1
k− 1

k

N

is a vertex in F̄u,N and is also the farthest vertex which can be joined with
u + 1

k

N
. Since

lim
z→∞

u + Nz+k
k(Nz+k)−1

N
=

u + 1
k

N
,

there is no such a nearest vertex.
Case 2: We obtain that su + t ≡ −u2k − u (mod N) and Ns(ku + 1) − kN(su + t) = −N, which implies s = kt − 1.

Thus kut − u + t ≡ −u2k − u (mod N). We observe that t(ku + 1) ≡ −uk (mod N). Since u2 + ku + 1 ≡ 0 (mod N),
u2t ≡ u2k (mod N). As (u,N) = 1, t ≡ k (mod N), that is, t = Nz + k for some z ∈ N ∪ {0}. So s = k(Nz + k) − 1.
Hence

t
s

=
Nz + k

k(Nz + k) − 1
and the remaining proof is the same as the above proof.

Case 3: We have su + t ≡ u2k + u (mod N) and Ns(ku + 1)− kN(su + t) = −N, which implies s = kt−1. So we have
kut − u + t ≡ u2k + u (mod N), that is, t(ku + 1)− ku2 ≡ 2u (mod N). Since u2 + ku + 1 ≡ 0 (mod N), −tu2 − ku2 ≡ 2u
(mod N). Moreover, −tu − ku ≡ 2 (mod N) by (u,N) = 1. Then tu + ku ≡ −2 (mod N), that is, t = Nz−ku−2

u for some
z ∈ N ∪ {0}. Thus s =

k(Nz−ku−2)−u
u , so

t
s

=
Nz − ku − 2

k(Nz − ku − 2) − u
.

Now we find the greatest value of t
s by defining a function f : R+ ∪ {0} → R,

f (z) =
u + Nz−ku−2

k(Nz−ku−2)−u

N
.

Since f ′(z) =
−u

(k(Nz − ku − 2) − u)2 < 0, the greatest value of f is taken at z = 0 and this value is

u +
1

k +
1

k + 2
u

N
.

But,

u +
1

k +
1

k + 2
u

N
is nearer to

u + 1
k

N
than

u + 1
k− 1

k

N
. So the farthest one being joined with

u + 1
k

N
is

u + 1
k− 1

k

N
. As we

have

lim
z→∞

u + Nz−ku−2
k(Nz−ku−2)−u

N
=

u + 1
k

N
,

the nearest vertex does not exist.
Case 4: We obtain that su + t ≡ −u2k − u (mod N) and Ns(ku + 1) − kN(su + t) = N, which implies s = kt + 1.

Therefore u + kut + t ≡ −u2k − u (mod N) and we have t(ku + 1) ≡ −ku2 − 2u (mod N). As u2 + ku + 1 ≡ 0 (mod N),
−tu2 ≡ −ku2 − 2u (mod N). Since (u,N) = 1, −tu ≡ −uk − 2 (mod N), that is, t =

−(Nz−ku−2)
u for some z ∈ N ∪ {0}.

Moreover, s =
−(k(Nz−ku−2)−u)

u . Thus
t
s

=
Nz − ku − 2

k(Nz − ku − 2) − N
.

The proof is similar to the proof for the third case. �
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Corollary 4.2. If (u,N) = 1 and u2 + ku + 1 ≡ 0 (mod N), then

ϕ(
u
N

) =
u + 1

k

N
, ϕ(

u + 1
k

N
) =

u + 1
k− 1

k

N
.

Definition 4.3. Let v1, v2, ..., vm be vertices of F̄u,N , then configurations v1 → v2 → ... → vm and v1 → v2 → ... are
called a path and an infinite path in F̄u,N , respectively.If vm = v1, then the above path is said to be a circuit (or closed
path) in F̄u,N .

Let {tm} be a sequence of Möbius transformation

tm(z) =
am

bm + z
, am , 0,

and let Tm(z) = t1t2...tm(z), m ≥ 1 such that T0 is the identity map.
Note that Tm(∞) = Tm−1(0). If one computes t1(0), t2(0), t1t2t3(0) and so on, form a continued fraction

a1

b1 +
a2

b2 +
a3

b3 +
. . .

(4.3)

and the value of the continued fraction (4.3) when it exists is equal to the limit of the sequence {Tm(0)}. In this study
we work with special Möbius transformation

tm(z) := t(z) =
1

k − z
=
−1
−k + z

.

To see some relations between continued fractions and hyperbolic paths of suborbital graphs, by using Theorem 4.1
we can give the following infinite path

1
0
→

u
N
→

u + 1
k

N
→

u +
1

k − 1
k

N
→

u +
1

k −
1

k − 1
k

N
→ ....

The above path gives rise to a continued fraction, if k ≤ 2,

1

k −
1

k −
1

k −
. . .

(4.4)

which is a special case of the continued fractions from the following theorem.

Theorem 4.4 ( [22]). Let |bm| ≥ 1 + |am| for all m ∈ N. Then the continued fraction (4.3) converges to some value v
with |v| ≤ 1.

Corollary 4.5. The continued fraction (4.4) converges to k−
√

k2−4
2 .

Proof. Since we have am = −1 and bm = −k where k ≥ 2, then |bm| ≥ 1 + |am|. By Theorem 4.4, the continued fraction
(4.4) converges to v with |v| ≤ 1, that is, limm→∞ Tm(0) = v. As we know

Tm(0) =
1

k − Tm−1(0)
,

Tm(0)(k − Tm−1(0)) = 1 and since limm→∞ Tm(0) = limm→∞ Tm−1(0), we have v(k − v) = 1. Moreover, v2 − kv + 1 = 0

and v =
k ±
√

k2 − 4
2

. We observe that if k = 2, then v = 1. If k > 2, then v =
k −
√

k2 − 4
2

since v ≤ 1. �
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5. Conclusions

First time, Jones et al. shows that a shortest path in suborbital graphs of the modular group can be expressed as a
continued fraction [10]. Then, Değer et al. prove that a shortest path in trees of these suborbital graphs is a special case
of Pringsheim continued fraction [7]. The main important development is revealed by Sarma et al [21]. The authors
shows that the subgraph F1,2 can be defined as a new kind of continued fraction and any irrational numbers has a unique
F1,2 expansion. Similar one is done for the subgraph F1,3 in [18]. We can deduce from all these studies that suborbital
graphs of modular groups can be considered as a method in the classification of rational numbers. Present study is an
extension of some results in [7]. Their proofs are straightforward adjustment of those in [5, 7].
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[11] Güler, B.Ö. et al., Elliptic elements and circuits in suborbital graphs, Hacet. J. Math. Stat., 40(2)(2011), 203–210. 3
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