Notes on Sophie Germain Primes

Recep BAŞTAN ${ }^{a}$, Canan AKIN* ${ }^{*} b$
${ }^{a}$ Institute of Science, Giresun University, 28100, Giresun, Turkey.
${ }^{b}$ Department of Mathematics, Faculty of Arts and Science, Giresun University, 28200, Giresun, Turkey.

Received: 24-07-2018 • Accepted: 12-10-2018

Abstract

In this paper, a pair of Sophie Germain prime and connected safe prime is referred to as $S G-S$-prime pair in short. We focus on a characterization to obtain $S G-S$-prime pairs owing to an eliminating method. We form some certain instructions for a sieve as an elementary method to find the $S G$ - S-prime pairs and we also give an example in which we use our instructions to obtain the $S G$ - S-prime pairs up to 250 . Wilson's fundamental theorem in number theory gives a characterization of prime numbers via a congruence. Moreover, in this paper, we give a characterization of Sophie Germain primes via a congruence.

2010 AMS Classification: 11A41

Keywords: Prime number, Sophie Germain primes, safe primes.

1. Introduction

If p is a prime and $2 p+1$ is also prime, then p is called a Sophie Germain prime. If p is a Sophie Germain prime, then $2 p+1$ is called safe prime. These primes are considered in the Sophie Germain's paper, in connection with the first case of Fermat's last theorem. She proves that if p is a Sophie Germain prime, then $x^{p}+y^{p}=z^{p}$ has no solution in the case $p \nmid x y z$. It can be found details related to Fermat's last theorem and these primes in Ribenboim's books [10-12]. It is unknown whether there exist infinitely many such primes. The largest known proven Sophie Germain prime pair as of Feb. 29, 2016 is given by $(p, 2 p+1)$, where $p=2618163402417.2^{1290000}-1$, each of which has 388342 decimal digits [4]. It can be seen more details on Sophie Germain primes in some present references [1-3, 6, 8, 9]. This paper consists in two observation on Sophie Germain primes.
$2 m$-prime pairs are related the twin prime pairs since a $2 m$-prime pair is a twin prime pair if $m=1$, where m is an arbitrary positive integer. In [7], Lampret gives sieves as an elementary method for eliminating $2 m$-prime pairs. He divide all $2 m$-prime pairs into the four groups. One of them is $6 n$-prime pairs, whose both members are congruent to -1 modulo 6 . These are of the form: $(6 k-1,6 k+6 n-1)$ for some positive integers n and k. He give a characterization for $6 n$-prime pairs of the form $(6 k-1,6 k+6 n-1)$ in Theorem 2.7 in his study. In this paper, a Sophie Germain prime and the related safe prime is called $S G$ - S-prime pair. One of the our observation is that we can use Lampret's results to find $S G$-S-prime pairs. In section 2, we give a method to find $S G$ - S-prime pairs by using Lampret's results.

A theorem based on Wilson's theorem is formulated by Clement in [5]. Clement has a characterization of twin prime

[^0]pairs. The other observation is related in a characterization of Sophie Germain primes. In section 3, we characterize the Sophie Germain primes with a congruence according to the $\bmod p(2 p+1)$ in the light of the inspiration of Clement's theorem, where p is an integer.

2. $S G$ - S-prime pairs by Lampret's results

In [7], Lampret give the following theorem:
Theorem 2.1 ([7]). Let k and n be positive integers. $(6 k-1,6 k+6 n-1)$ is not a $(6 n-2)$-prime pair if and only if there exist positive integers i and j such that one of the following holds true:
(i) $p:=6 j-1$ is a prime and $k=p i+j$ or $k=p i+j-n$,
(ii) $p:=6 j+1$ is a prime and $k=p i-j$ or $k=p i-j-n$.

In both cases $p \leq \sqrt{6 k+6 n-1}$.
Except 2 and 3 each prime number is of the form $6 k-1$ or $6 k+1$ for some positive integer k. If the prime p is the form of $6 k+1$, then it is not a Sophie Germain prime since $2 p+1$ is not a prime. Hence, $(6 k+1,12 k+3)$ is not $S G$ - S-prime pair. Thus, $S G$ - S-prime pairs are the form $(6 k-1,12 k-1)$ for some positive integer k. So, $S G$ - S-prime pairs become an $2 m$-prime pair in Lampret's paper since $(12 k-1)-(6 k-1)=6 k$, where $2 m=6 k$ for some positive integer k. By writing $n=k$ in Theorem 2.1, we obtain the following result.

Result 2.2. Let k be a positive integer. $(6 k-1,12 k-1)$ is not a $S G$ - S-prime pair if and only if there exist positive integers i and j such that one of the following holds true:
(i) $p:=6 j-1$ is a prime and $k=p i+j$ or $k=(p i+j) / 2$.
(ii) $p:=6 j+1$ is a prime and $k=p i-j$ or $k=(p i-j) / 2$.

In both cases $p \leq \sqrt{12 k-1}$.
Let us describe this method for sieving $S G$ - S-prime pairs up to a given positive integer z.

1. Write down a list of all integers $k=1,2, \ldots,\lceil z / 6\rceil$.
2. Find all primes $3<p \leq \sqrt{z}$.
3. For each prime $3<p \leq \sqrt{z}$, we do the following:
-if $6 \mid p+1$ then $j=(p+1) / 6$ and so, cross out integers $k=p i+j$ and $k=(p i+j) / 2$, and
-if $6 \mid p-1$ then $j=(p-1) / 6$ and so, cross out integers $k=p i-j$ and $k=(p i-j) / 2$ for all $i=1,2, \ldots$, from the list. 4. Each remaining integer k in the list gives us a $S G$ - S-prime pair $(6 k-1,12 k-1)$.

Example 2.3. Let us find all $S G$-S -prime pairs up to 250. We list all integers $k=1,2, \ldots, 41$. Next, we find all primes $3<p \leq \sqrt{250}$, these are 5, 7, 11, 13 .
(i) For $p=5=6.1-1$, we have $j=1$ and hence, we cross out all integers k of the form $5 i+1$ and $(5 i+1) / 2$ from the list.
(ii) For $p=7=6.1+1$, we have $j=1$ and hence, we cross out all integers k of the form $7 i-1$ and $(7 i-1) / 2$ from the list.
(iii) For $p=11=6.2-1$, we have $j=2$ and hence, we cross out all integers k of the form $11 i+2$ and $(11 i+2) / 2$ from the list.
(iv) For $p=13=6.2+1$, we have $j=2$ and hence, we cross out all integers k of the form $13 i-2$ and $(13 i-2) / 2$ from the list.
Thus, it must be crossed out the bold integers from the following list:

1	2	$\mathbf{3}$	4	5	$\mathbf{6}$	7	$\mathbf{8}$	9	$\mathbf{1 0}$
$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	14	15	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	19	$\mathbf{2 0}$
$\mathbf{2 1}$	22	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	29	30
$\mathbf{3 1}$	32	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	39	40
$\mathbf{4 1}$									

For each remaining integer k in the list, we get a $S G$-S-prime pair $(6 k-1,12 k-1)$. Thus, by adding $(2,5),(3,7)$, we obtain all $S G$-S-prime pairs up to 250 :
$(2,5),(3,7),(5,11),(11,23),(23,47),(29,59),(41,83),(53,107),(83,167),(89,179)$,
$(113,227),(131,263),(173,347),(179,359),(191,383),(233,467),(239,479)$

3. A Characterization of Sophie Germain Primes

We give two lemmas which are required for the proof of main theorem.
Lemma 3.1. Let $p>1$ be an integer. p is a prime number $\Leftrightarrow(p+1)^{2}[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad p)$.
Proof. Using Wilson's Theorem

$$
\begin{aligned}
p \text { is prime number } & \Rightarrow(p-1)!\equiv-1 \quad(\bmod \quad p) \\
& \Rightarrow[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad p) \\
& \Rightarrow(p+1)^{2}[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad p)
\end{aligned}
$$

On the contrary, let $(p+1)^{2}[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad p)$ and let p be not a prime number. Thus, there exists a divisor t for p such that $1<t<p$. On the other hand, if $(p+1)^{2}[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad p)$, then $[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad p)$. Hence, $[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad t)$. It is a contradiction since t is also a divisor for $[(p-1)!]^{2}$. So, p is a prime number.

Lemma 3.2. $p>2$ is a Sophie Germain prime if and only if $(p+1)^{2}[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad 2 p+1)$.
Proof. Using Wilson's Theorem

$$
\begin{aligned}
2 p+1 \quad \text { is prime number } & \Leftrightarrow(2 p)!\equiv-1 \quad(\bmod \quad 2 p+1) \\
& \Leftrightarrow 2 p \cdot(2 p-1) \cdot(2 p-2) \ldots(2 p-p)(2 p-p-1)!\equiv-1 \quad(\bmod \quad 2 p+1) \\
& \Leftrightarrow(-1) \cdot(-2) \cdot(-3) \ldots \cdot(-p-1)(p-1)!\equiv-1 \quad(\bmod \quad 2 p+1) \\
& \Leftrightarrow(-1)^{p+1} \cdot(p+1)!(p-1)!\equiv-1 \quad(\bmod \quad 2 p+1) \\
& \Leftrightarrow(p+1)!(p-1)!\equiv-1 \quad(\bmod \quad 2 p+1) \\
& \Leftrightarrow(p+1) \cdot p \cdot(p-1)!(p-1)!\equiv-1 \quad(\bmod \quad 2 p+1) \\
& \Leftrightarrow(p+1) \cdot p \cdot[(p-1)!]^{2} \equiv-1 \quad(\bmod \quad 2 p+1) \\
& \Leftrightarrow(p+1) \cdot(p+p+1-p-1) \cdot\left[\begin{array}{llll}
p-1)!]^{2} \equiv-1 & (\bmod & 2 p+1) \\
& \Leftrightarrow(p+1) \cdot(-p-1) \cdot[(p-1)!]^{2} \equiv-1 \quad(\bmod \quad 2 p+1)
\end{array}\right. \\
& \Leftrightarrow(p+1) \cdot(p+1) \cdot[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad 2 p+1) \\
& \Leftrightarrow(p+1)^{2} \cdot[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad 2 p+1) .
\end{aligned}
$$

On the contrary, let $(p+1)^{2} \cdot[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad 2 p+1)$ and let $2 p+1$ be not a prime number. Thus, there exists a divisor tfor $2 p+1$ such that $1<t<2 p+1$. On the other hand, since

$$
\begin{aligned}
(p+1)^{2} \cdot[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad 2 p+1) & \Leftrightarrow(p+1)!(p-1)!\equiv-1 \quad(\bmod \quad 2 p+1) \\
& \Rightarrow(1) \cdot(2) \cdot(3) \ldots \cdot(p+1)(p-1)!\equiv-1 \quad(\bmod \quad 2 p+1) \\
& \Rightarrow(-2 p) \cdot-(2 p-1) \cdot-(2 p-2) \ldots-(2 p-p)(p-1)!\equiv-1 \quad(\bmod \quad 2 p+1) \\
& \Rightarrow(-1)^{p+1} \cdot 2 p \cdot(2 p-1) \cdot(2 p-2) \ldots(2 p-p)(p-1)!\equiv-1 \quad(\bmod \quad 2 p+1) \\
& \Rightarrow(-1)^{p+1} \cdot(2 p)!\equiv-1 \quad(\bmod \quad 2 p+1)
\end{aligned}
$$

then $(-1)^{p+1} .(2 p)!\equiv-1 \quad(\bmod \quad t)$. It is a contradiction since t is also a divisor for $(2 p)!$. So, $2 p+1$ is a prime number.

Theorem 3.3. Let $p>2$ be an integer. Then p is a Sophie Germain prime number if and only if $(p+1)^{2} \cdot[(p-1)!]^{2} \equiv$ $1(\bmod p(2 p+1))$.
Proof. It is straightforward from Lemma 3.1 and Lemma 3.2. Let $p>2$ be a Sophie Germain prime number. By Lemma 3.2, $(p+1)^{2} \cdot[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad 2 p+1)$ and p is prime. Thus, by Lemma 3.1, $(p+1)^{2} \cdot[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad p)$. Hence, $(p+1)^{2} \cdot[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad p(2 p+1))$ since $\operatorname{gcd}(p, 2 p+1)=1$. Conversely, let $(p+1)^{2} \cdot[(p-1)!]^{2} \equiv$ $1 \quad(\bmod \quad p(2 p+1))$. Thus, $(p+1)^{2} \cdot[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad 2 p+1)$ and $(p+1)^{2} \cdot[(p-1)!]^{2} \equiv 1 \quad(\bmod \quad p)$. Hence, p is prime by Lemma 3.1. Therefore, p is a Sophie Germain prime number by Lemma 3.2.

References

[1] Alkalay-Houlihan C., Sophie Germain and Special Cases of Fermat's Last Theorem. http://www.math.mcgill.ca/darmon/courses/12-13/nt/projects/Colleen-Alkalay-Houlihan.pdf. Accessed: 2017-03-20. 1
[2] Bishop, S. A., Okagbue, H. I., Adamu, M. O., Olajide, F. A., Sequences of numbers obtained by digit and iterative digit sums of Sophie Germain primes and its variants, Global Journal of Pure and Applied Mathematics 12, 2 (2016), 1473-1480. 1
[3] Bucciarelli, L.L., Dworsky N., Sophie Germain: An essay in the history of the theory of elasticity, Vol. 6., Springer Science and Business Media, Netherland, 2012. 1
[4] Caldwell, C.K., Prime Pages. The Top Twenty: Sophie Germain. http://primes.utm.edu/top20/page.php?id=2. 1
[5] Clement, P. A., Congruences to sets of primes, Am. Math. Mon. 56 (1949), 23-25. 1
[6] Daniloff, L.L., The Work of Sophie Germain and Niels Henrik Abel on Fermat's Last Theorem. MS thesis. 2017. 1
[7] Lampret, S., Sieving 2m-prime pairs, Notes on Number Theory and Discrete Mathematics 20 (2014), 54-46. 1, 2, 2.1
[8] Liu, F., On the Sophie Germain prime conjecture, WSEAS Transactions in Math 10, 2 (2011), 421-430. 1
[9] Meireles, M., On Sophie Germain primes. Proc. 13th WSEAS Int. Conf. App. Math. (2008), 370-373. 1
[10] Ribenboim, P., 13 Lectures on Fermat's Last Theorem, Springer-Verlag, New York, 1979. 1
[11] Ribenboim, P., Fermat's Last Theorem for Amateurs, Springer-Verlag, New York, 1999. 1
[12] Ribenboim, P., The Little Book of Bigger Primes, 2nd ed., Springer-Verlag, New York, 2004. 1

[^0]: *Corresponding Author
 Email addresses: canan.ekiz@giresun.edu.tr, cananekiz28@gmail.com (C. Akın), recepbastan61@gmail.com(R. Baştan)

