Effects of Municipal Sewage Sludge on Mass Loss of Bioplastic

Abstract

Humans have been exercising increasing pressure on the environment due to population pressure, industrialization, and the desire to promote social welfare, which has led to an ever-growing amount of industrial and urban waste, sewage, and plastic packing material. Lately, a similar case goes true for bioplastics, referred to as biodegradable plastics, which are produced from such natural materials as polylactic acid and for treatment sludge increasing as a result of intense urbanization. Because of the difficulty in discharging these wastes and the associated accumulation in soil which can be listed among the most prominent receiving environment, potential biodegradability of so-called plastic materials should be well known. The present experimental study is intended to investigate the effects of treatment sludge retrieved from advanced biological treatment facility in Çanakkale province on the biodegradability of biodegradable plastic materials in soil produced from (corn) starch-based polylactic acid. For the purpose of the study, the researchers determined and used five different doses, namely the dose as allowed by the regulations on the application of treatment sludge to soil, half this dose, double dose, soil:sludge (1:1), and sludge-free control dose. The statistical results concerning the data obtained from the samples having been stored in incubator for four months revealed a significant loss in mass of the soil-buried bioplastic plants (p<0.01). The mass loss varied according to the applied doses of treatment sludge (p<0.01). The most severe loss in the bioplastics was observed in Sample 8 (Day 120) with 1:1 dose applied (p<0.05).

Keywords: Polylactic acid, bioplastic, sewage sludge, soil, biodegradability.

Giriş

Plastikler, çok kullanılışlı olmalarına rağmen, doğaya bırakıldıklarında yüzlerce yıl parçalanmadan kaldıklarindan çevre kirliliği sorununu da beraberinde getirmektedir. Dünyada ve ülkemizde huzla artan sanayileşmeye paralel olarak, atıkların artımı sonucu oluşan arıtma çamurları
miktari ve biyopaçalanabilir plastiklerin kullanım ve tüketimleri gün geçtikçe artmaktadır. Canlı yaşamını etkileyen, çevreyi kirleten ve kirliği oluşturan unsurlar; evsel, endüstriyel ve tarımsal kaynaklı atıklardır (Topbaş ve ark., 1998).

Petrolden elde edilen sentetik polimerler, plastik atık olarak doğaya terk edildiklerinde, toprağa uzun süre parçalanamadıklarından çevre kirliğıne ve toksik madde birikimine neden olmaktadır. Bu nedenle, biyolojik olarak parçalanabilen polimerlerin üretimi önem kazanmış ve plastik atıkların çevresel olmayan alanlarda yonelik çalısmalar arıtılmıştır (Page, 1992; Beyatli, 1996).

Yenilenebilir karbon kaynaklarından yani biyolojik köklenen polimerlerden elde edilen plastikler olarak tanımlanan bioplastikler, bitki, hayvan, mantar, alg veya bakteriler gibi canlı organizmalar tarafından üretilen biyo-plastik meryerallerdir (Luengo ve ark., 2003; Rajendran ve ark., 2012; Reddy ve ark., 2012). Bioplastiklerin geleneksel plastiklerden üstün olan özellikleri; kolay bir şekilde bozunmaları, fosil yakıtlarla olan bağımlılığı azaltmaları, toksik etki bırakmaları, geri dönüşümünü daha kolay olması, üretimlerinde daha az enerjiye ihtiyaç duymaları, yenilenebilir ve ekolojik olmaları şeklinde özetlenebilir (Luengo ve ark., 2003).

Yenilenebilir karaynaklardan elde edilen bioplastiklerde genellikle msr, patates, arpa, batuğan, pirinç, manıvot, zeytin ve sorgumdan elde edilen nişasta kullanılabilmektedir (Lörcks, 1998; Momani, 2009; Cheng-Cheng, 2011). Bu grubun en yaygın örnekleri polilaktikasit (PLA) ve polihidroksialkanotlar (PHA) dır.

Polimerin parçalanmasında, bakteri, mantar, ve yüksek organizmalar biyojik faktörler olarak; hidroliz ve oksidasyon kimyasal faktörler olarak; güzel işiği, ilâhname ve mekanik aşınma ise fiziksel faktörler olarak etki etmektedir (Madison ve Huisman, 1999). Atıksu arıtma tesislerinde, atıksu suyu içindeki maddelerin giderimini iç içe oraya çıkan sıvıya da yararı katı halde çözünmemeyen ve uygulanan arıtma işlemine bağlı olarak ortaya çıkan ağırlıkta %0,25 ile %12 katı madde içeren atıklar, arıtma çamuru olarak isimlendirilmektedir (Filibecli, 1996; Gaspard ve ark., 1997; Bilgin, 1997). Arıtma çamurları, tüm geleneksel arıtın arıtma işlemlerinin kısmız zaman üründür (Bruce ve ark., 1988).

Ülkemizde organik evsel katı atıklar ile arıtma tesislerinden çıkan arıtma çamurları organik atıklar içerisinde önemli yeri tutmaktadır. Türkiye İstatistik Kurumu'nun (TÜİK) yayınlarında belirleyen atıksu istatistikleri haber bünteninde yayınlanan tüm belgeleri uygulanan 2016 yılı “Beldeyle Atıksu İstatistikleri Anketi” sonuçlarına göre, kanalizasyon şebekeşinden deşarj edilen 4,5 milyar m³ atıksuğunun 3,8 milyar m³’ü atıksu arıtma tesislerinde arıtılmış ve arıtılan atıksuğun %44,5’ine gelmiş, %31,6’sına biyojik, %23,6’sına fiziksel ve %6,0’ine doğal arıtma uygulanmıştır. Arıtılan atıksuğun %44,9’u denize, %45’i ayakta, %2’si baraja, %1,4’ü göl-göle, %0,4’ü arazi ve %6,3’ü diğer alıcı ortamlara deşarj edilmiştir. Atıksu arıtma işlemlerini sonucunda 299 bin ton (kuru madde bazında) atıksu arıtma çamuru oluşturmuştur (Anonim, 2016b).

Materyal ve Metot
Deneme materyalleri
Çanakkale Belediyesi Atıksu Arıtma Tesisinden elde edilen arıtma çamuru ve ÇOMÜ Ziraat Fakültesi Dardanos Yerleşkesi’ndeki deneme porselanelerinden alınan toprak örnekleri kurutulup ezildiken sonra 2 mm gözenek çaplı elektren geçirilerek kullanılmıştır. Nature Works LLC firmasından (USA) temin edilen standart Poli Laktik Asit (PLA) toplara (Ingeo™ Biopolymer 4043D) ÇOMÜ FEF Kimya Bölümü Laboratuvarında tetrahidrofuranyon (THF) eklenerek çözülen polimer toplar artırılmış sona temiz petri kaplarna dökülmuştur (çözelti dökme yöntemi) ve ince filmler şeklinde elde edilen PLA materyallerden 2,5 cm çaplı dairesel levhalar şeklinde kesilerek kullanılmıştır.

Denemde kullanılan yöntemler
Alınan arıtma çamuru ve toprak örneklerinden temsilen ayrılan kısımlarda yapılan analizler ve yöntemleri Tablo 1’de belirtilmiştir.

Tablo 1. Deneme materyallerinin özellikleri ve belirlenme yöntemleri

<table>
<thead>
<tr>
<th>Analizler</th>
<th>Uygulanılan Yöntemleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toprakta organik madde</td>
<td>Modifiye Walkley-Black yöntemiyle (Jackson, 1958).</td>
</tr>
<tr>
<td>Çamurda organik madde</td>
<td>Nemi ucuçuldu arıtma çamuruğunun 500 °C de yakılması ile (DIN EN ISO 1172)</td>
</tr>
<tr>
<td>Toprak bünyesi (tekstür)</td>
<td>Hidrometre yöntemi ile belirlenmiştir (Bouyoucos, 1951).</td>
</tr>
<tr>
<td>Toprak ve çamurda trolling</td>
<td>Suya doğuş hale getirilen toprak ve çamur örneklerini bırakılması bir membran alahtında 1/3</td>
</tr>
<tr>
<td>kapasiteler</td>
<td>atravba atmosferik basınca tabi tutularak belirlenmiştir (Klute, 1986).</td>
</tr>
<tr>
<td>Toprakta ve çamurda nem</td>
<td>Toprakta 105°C de, arıtma çamurunda 70 °C de sabit altığa gelen örneklerde artış olarak kaybı esasına göre belirlenmiştir (Allmaras ve Gardner, 1956).</td>
</tr>
<tr>
<td>miktartları</td>
<td>Toprakta ve çamurda pH ve EC değerleri</td>
</tr>
<tr>
<td></td>
<td>Toprakta 1.2.5 topraksu karşımında, çamurda 1.5 topraksu karşımında pH değerleri pH-metre ile potansiyometrik olarak; EC ise EC-metre ile ölçülerek belirlenmiştir (Richards, 1954; Grewelling ve Pech, 1960).</td>
</tr>
<tr>
<td>Toprakta ve çamurda toplam ve</td>
<td>HNO₃ ve HCl asitlerle 3-1 oranında karıştırularak elde edilen asit karışımında (Kral suyu) yangınları gerçekleştiren Perkin Elmer Optima 8000, ICP-OES cihazıyla belirlenmiştir.</td>
</tr>
<tr>
<td>alınabilir ağır metaller</td>
<td>Toprakta kireç</td>
</tr>
<tr>
<td></td>
<td>Scheibler kalsimiortesi kullanılarak komşuların tahmin edilmişdir (Allison ve Moodie, 1965).</td>
</tr>
<tr>
<td>PLA levhalarında kütte kaybı</td>
<td>Ultra hassas terazide PLA ağırlıkları değişimini ölçüler de farklı kaydedilmiştir.</td>
</tr>
<tr>
<td>Toprak ve çamurda toplam N</td>
<td>LECO C-N element analiz cihazı ile (Kirsten, 1983)</td>
</tr>
<tr>
<td>Toprak ve çamurda toplam P</td>
<td>Perkin Elmer Optima 8000, ICP-OES cihazıyla belirlenmiştir.</td>
</tr>
<tr>
<td>Toprak ve çamurda toplam K</td>
<td>Perkin Elmer Optima 8000, ICP-OES cihazıyla belirlenmiştir.</td>
</tr>
</tbody>
</table>

İnkübasyon denemesinin kurulması
İnkübasyon denemesinin kurulması amacıyla, 1L’lik silindirik standart cam kavanozlara 400 g toprak ve farklı oranlarında arıtma çamuru konulmuş ve kodlamaları yapılmıştır. Karışım kodları ve deneme materyalleri miktarları aşağıdaki Tablo 2’de verildiği gibidir.

Tablo 2. Denemede uygulanan deneme materyalleri, dozları, PLA adetleri ve karışım kodları

<table>
<thead>
<tr>
<th>Dozlar</th>
<th>Kod</th>
<th>Aritma Çamurun Miktarı (g)</th>
<th>Toprak Miktarı (g)</th>
<th>Kavanoz x PLA (Adet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>½ x Max</td>
<td>A</td>
<td>43</td>
<td>400</td>
<td>3 x 4</td>
</tr>
<tr>
<td>Max</td>
<td>B</td>
<td>86</td>
<td>400</td>
<td>3 x 4</td>
</tr>
<tr>
<td>2 x Max</td>
<td>C</td>
<td>172</td>
<td>400</td>
<td>3 x 4</td>
</tr>
<tr>
<td>1:1</td>
<td>D</td>
<td>200</td>
<td>200</td>
<td>3 x 4</td>
</tr>
<tr>
<td>Kontrol</td>
<td>K</td>
<td>0</td>
<td>400</td>
<td>3 x 4</td>
</tr>
</tbody>
</table>

polipropilen malzemeden elle yapılmış keselerin içine konularak yaklaşık 45 derecelik açıyla kavanozda oramlara gömülmüştür. Kavanozların ağzı havalanmayı engellemeyecek ve nemi koruyacak şekilde yan geçirilen plastik film (korozo marka) ile kapalıms ve mikroorganizmaların PLA levhalarını parçalayabilmesi için gerekli optimum koşulları sağlamak amacıyla tarla kapasitesi düzeninde her kavanoza farklı miktarlarda su ilavesi yapılmıştır. Hazırlanan örnekler inkubatöre yerleştirilerek ve her iki haftada bir seri örnek seti incelemek üzere inkubatörden çıkarılmıştır. Toplam dört ay ve her ayda iki kez olmak üzere sekiz hafta 24 °C sabit sıcaklıkta ve karantınlık inkübensi tabi tutulan örneklerde kütte kaybı analizleri yapılarak veriler toplanmıştır.

Denemede özetle; kontrol dahiş bez arrıta camur dozu, her dozu üç tekrar ve her tekrarda dört PLA parçası incelemiştir. Bu da; 5 doz x 3 tekrar x her kavanozda 4 levha x 8 inkübensiz zamanı = 480 adet plastik levha incelediği anlamına gelmektedir.

Verilerin istatistiksel analizleri
İstatistik analizler MINITAB16 İstatistik Paket Programı yarımınıyla genel doğrusal modelleme varyans analizi yapılara sonuçlar arası farklı En Küçük Asgari Farkları (LSD) göre değerlendirilerek uygulanmalar arasındaki değişimler farklı harflere ifade edilmiştir.

Bulgular ve Tartışma
Deneme toprağının özellikleri:
Araştırmada materyal olarak kullanılan toprak ve arıtma camurunun özellikleri Tablo 3’te verilmiştir.

Tablo 3. Araştırma materyallerinin temel özellikleri

<table>
<thead>
<tr>
<th>İncelenen Özellik</th>
<th>Toprak</th>
<th>Arıtma Çamuru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organik madde (%)</td>
<td>1,81</td>
<td>42,73</td>
</tr>
<tr>
<td>pH</td>
<td>8,01</td>
<td>6,39</td>
</tr>
<tr>
<td>EC (ds/m)</td>
<td>0,42</td>
<td>1,46</td>
</tr>
<tr>
<td>CaCO₃ (%)</td>
<td>11,86</td>
<td>-------------</td>
</tr>
<tr>
<td>Bünye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(%51 Kum, %35 Tm, %14 Kıl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toplam N (%)</td>
<td>0,07</td>
<td>4,36</td>
</tr>
<tr>
<td>Toplam P (mg/kg)</td>
<td>932</td>
<td>19291</td>
</tr>
<tr>
<td>Toplam K (mg/kg)</td>
<td>1652</td>
<td>1728</td>
</tr>
<tr>
<td>Hava kuru nem (%)</td>
<td>4,21</td>
<td>9,65</td>
</tr>
<tr>
<td>Tarla kapasitesi (%)</td>
<td>21,98</td>
<td>48,66</td>
</tr>
</tbody>
</table>

Elde edilen verilere göre deneme toprağı hafif alkali reaksiyon göstermektedir. Organik madde içeriği az olup, tuşuz, tuhaf bünyeli ve orta derece kireçlidir. Arıtma çamuru ise; organik madde, toplam azot, toplam fosfor ve toplam potasyum bakımından deneme toprağından zengin olup temel analiz değerleri Tablo 3’te görülmektedir.

Deneme materyallerinin toplam ağır metal kapsamları
Araştırmada materyal olarak kullanılan arıtma çamur ve deneme toprağının alnabilir ve toplam bazi ağır metal kapsamları Tablo 4’te verilmiştir. Analiz sonuçlarına göre, kullanılan arıtma çamurunun toplam Zn kapaşı 364,67 mg kg⁻¹, deneme toprağın toplam çinko kapaşı ise 42,44 mg kg⁻¹ olarak tespit edilmiştir. Çanakkale Belediyesi Kentsel Atık ve Arıtma Tesisinden elde edilen arıtma çamurunda yüksek oranda Zn içermesi nedeniyle en kritik olan ağır metal olarak nitelendirilmiştir. Denemede kullanılan maksimum doz miktarını arıtma çamurundaki Zn miktarları dikkate alınarak Çevre Bakanlığı yönetmeliklerinin izin verdiği çinko kapsamına göre hesaplanarak belirlenmiştir.

Tablo 4. Araştırma materyallerinin bazı alnabilir ve toplam ağır metal kapsamları

<table>
<thead>
<tr>
<th>Metaller (mg kg⁻¹)</th>
<th>Alnabilir</th>
<th>Toplam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toprak</td>
<td>Arıtma Çamuru</td>
</tr>
<tr>
<td>Cu</td>
<td>1,587</td>
<td>1,009</td>
</tr>
<tr>
<td>Cr</td>
<td>0,009</td>
<td>0,079</td>
</tr>
<tr>
<td>Pb</td>
<td>0,028</td>
<td>5,911</td>
</tr>
<tr>
<td>Ni</td>
<td>0,996</td>
<td>5,251</td>
</tr>
<tr>
<td>Cd</td>
<td>0,026</td>
<td>0,120</td>
</tr>
<tr>
<td>Zn</td>
<td>1,202</td>
<td>366,0</td>
</tr>
</tbody>
</table>
İnkıbasyon süresi ve dozlar göre biyoplastiklerin kötül kaybı

Yapılan istatistik analizlere göre “Örnekleme zamanı x Arıtma çamuru dozları” interaksiyonu istatistik olarak önemli olmuş, PLA bazı biyobozunur plastik levhalarında, sekizinci örnekleme (120. Gün) zamanından “1:1” uygulama dozunda ağırlik kaybı en fazla olmuştur (p<0,05). Ayrıca örneklemme zamanına göre en az ağırlik kaybı birincisi örneklemde (15. Gün) “1/2 x max. doz” uygulama dozunda elde edilmiştir. Deneme öncesi elastikiyet sahib olan biyoplastiklerde zaman ilerledikçe “2 x Max.” doz ve “1:1 Doz” içerisinde ileri derecede elastikiyet kaybı olmuştur plastiklerde kırlma ve parçalanma artışmıştır (Tablo 5).

Kale ve ark. (2007a), biyoplastiklerin biyodegradasyon oranlarının etkileyen faktörler: ortam koşulları ve polimer özellikleri olarak iki grupa kategorize etmiştir. Araştırıcı diğer bir araştırmasında PLA malzemeden yapılan iki ambalajı 30 günlük kompostlama koşullarına tabi tutmuş ve fiziksel bozunma özelliklerini 1, 2, 4, 6, 9, 15 ve 30 günlerde ölçmüştür ve plastiklerinbeschäftik kristal yapılari ile plastik ambalajların konduzu ortam pH’larının bozunma sürecindeki önemi özeni etkili olduğunu belirtmişlerdir (Kale ve ark., 2007b).

Plastiklerin bozulma hızları konusunda yapılan bir başka çalışmada; ambalajlarınbeschäftik kristalleri ve L-laktid kapsamları değiştirildiği bozunun oranlarının da değiştirilgi ifade edilmiştir. Bu çalışmada kompost yoğunluğunun sıcaklığı, yağmur nemi ve pH değerlerinin paketlerin bozulma hızında önemli bir rol oynamaktadır ve bozunma koşullarındaki nispi nem artışına bozunma hızının hız bir şekilde artığını belirtmişlerdir (Ho ve ark., 1999).

Tablo 5. Plastik levhaların ağrılık kaybaları istatistik analiz sonuçları

<table>
<thead>
<tr>
<th>Haftalar</th>
<th>Kontrol</th>
<th>% x Max. Doz</th>
<th>Max. Doz</th>
<th>2 x Max. Doz</th>
<th>1:1 Doz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,000242 D-E*</td>
<td>0,000158 E</td>
<td>0,000825 B-E</td>
<td>0,000535 C-E</td>
<td>0,000675 B-E</td>
</tr>
<tr>
<td>2</td>
<td>0,001700 A-D</td>
<td>0,001408 B-E</td>
<td>0,001008 B-E</td>
<td>0,001125 B-E</td>
<td>0,001113 B-E</td>
</tr>
<tr>
<td>3</td>
<td>0,001558 B-E</td>
<td>0,001358 B-E</td>
<td>0,001717 A-D</td>
<td>0,001383 B-E</td>
<td>0,001850 A-C</td>
</tr>
<tr>
<td>4</td>
<td>0,001117 B-E</td>
<td>0,001383 B-E</td>
<td>0,001333 B-E</td>
<td>0,002042 AB</td>
<td>0,002117 AB</td>
</tr>
<tr>
<td>5</td>
<td>0,001008 B-E</td>
<td>0,001067 B-E</td>
<td>0,001425 B-E</td>
<td>0,001458 B-E</td>
<td>0,001533 B-E</td>
</tr>
<tr>
<td>6</td>
<td>0,000867 B-E</td>
<td>0,001038 B-E</td>
<td>0,000705 B-E</td>
<td>0,001350 B-E</td>
<td>0,001550 B-E</td>
</tr>
<tr>
<td>7</td>
<td>0,000842 B-E</td>
<td>0,001158 B-E</td>
<td>0,001458 B-E</td>
<td>0,002008 A-C</td>
<td>0,001008 B-E</td>
</tr>
<tr>
<td>8</td>
<td>0,000867 B-E</td>
<td>0,001250 B-E</td>
<td>0,001283 B-E</td>
<td>0,001758 A-C</td>
<td>0,003600 A</td>
</tr>
</tbody>
</table>

*: Farklı hafler zamanı başlamazları olarak uygulamalararası farklıklarını belirtmektedir.

Sonuç ve Öneriler

Dört aylık bir süreçte elde edilen verilere göre biyobozunur plastiklerin bozunum sürecinde arıtma çamuru oranının artması ile plastiklerin bozunum oranının arttığı gözlenmiştir. Bu çalışma sonuçu biyoplastiklerin düzenli katı atık depolama alanlarına kentsel arıtma çamuruya birlikte uygulanması durumunda biyoplastiklerin bozunum sürecinin arttığı belirlenmiştir. Biyobozunur plastiklerin katı atık düzenli depoloni alanlarında arıtma çamuru ile birlikte uygulanması durumunda bozunum sürecine en fazla etki eden dozun “1:1” (toprak;çamur) dozu olduğu bulunmuştur. Arıtma çamur dozları ve değişen zaman başlamazları olarak (interaksiyon etkisi), plastiklerin kötül kaybı sayysal olarak görüle de istatistik olarak bu kütel kayıpların önemiz olmadığı görülmştir. Arıtma çamur dozları her arıtma tesisininde elde edilen çamurlar farklı ağır metal içerebileceğinden her il atıkları için ayrica araştırılmalıdır. Arıtma çamurlarının düzenli depo için alanlarında biyobozunur plastiklerle birlikte bastırılamayış yıldızık gidermek artan PLA bazı plastiklerin de depo alanlarında daha fazla ve hızlı artış gösterilmiştir.

Kaynaklar

