Introduction to Timelike Uniform B-spline Curves in Minkowski-3 Space

Hatice Kuşak Samancı

*Department of Mathematics, Faculty of Science and Arts, Bitlis Eren University, Bitlis, Turkey
*Corresponding author

Abstract

The intention of this article is to study on timelike uniform B-spline curves in Minkowski-3 space. In our paper, we take the control points of uniform B-spline curves as a timelike point in Minkowski-3 space. Then we calculate some geometric elements for this new curve in Minkowski-3 space.

1. Introduction

B-spline curves were described by Schoenberg who was worked on B-spline curves for statistical data collection in [1]. The B-spline curves was constructed for computing a convolution of some probability distributions. Moreover, de Boor and Hollig considered a different approach to B-spline curves in [2]. Recently, in Computer Aided Geometric Design (CAGD), B-spline curves have been commonly used for designing an automobile, a boat, an aircraft, [3] and [4]. There are many studies on the B-spline curves, see some of them in [5], [6], [7] and [8]. Although degree d of a Bezier curve has $d+1$ control points, degree d of a B-spline curves can have any number of control points supplied a sufficient number of knots are defined in [9]. In addition, the control points of the Bezier curves provide a global change on the curve, while the control points of the B-spline curves provide a local change on the curve. For this reason, B-spline curves can be given additional freedom by increasing the number of control points in order to define complex curve shapes without increasing the degree of the curve, [10]. Minkowski space was introduced by H. Minkowski. In our paper, we try to investigate some geometric properties of the B-spline curves in Minkowski 3-space. We present the curvature and torsion of the B-spline curves in Minkowski 3-space.

2. Preliminaries

In this section the B-spline curves are defined and some preliminaries are given. Then some basics of Minkowski space is given.

Definition 2.1. Let $t_0, t_1, ..., t_n$ be knot vectors of the B-spline basis function of degree d. The B-spline basis function denoted $N_{i,d}(t)$ is defined by

$$N_{i,0}(t) = \begin{cases} 1, & \text{if } t \in [t_i, t_{i+1}) \\ 0, & \text{otherwise} \end{cases} \tag{2.1}$$

$$N_{i,d}(t) = \frac{t-t_i}{t_{i+d}-t_i}N_{i,d-1}(t) + \frac{t_{i+d+1}-t}{t_{i+d+1}-t_{i+1}}N_{i+1,d-1}(t) \tag{2.2}$$

for $i = 0, ..., n$ and $d \geq 1$.

Email address and ORCID number: hkusak@beu.edu.tr, 0000-0001-6685-236X (H. Kuşak Samancı)
Definition 2.2. If the B-spline curve of degree d with control points b_0, \ldots, b_n and knots t_0, t_1, \ldots, t_m is defined on the interval $[a, b] = [t_d, t_{m-d}]$, then the curve can be written in the form

$$B(t) = \sum_{i=0}^{n} b_i N_{i,d}(t).$$

When the B-spline curves are in the rational form, they are often called integral B-spline curves. Moreover, if the knots are equally spaced, then the B-spline curve has the convex hull. If p shows us that the B-spline curve is achieved by the local control. If ν is the multiplicity of the breakpoint $t = u_i$ then $B(t)$ is C^{d-p} (or greater) at $t = u_i$.

3. Main result

Definition 3.1. Let $X = \{b_0, b_1, \ldots, b_n\}$ be a timelike points set in \mathbb{R}^3_1. The

$$TCH\{X\} = \left\{ \lambda_0 b_0 + \ldots + \lambda_n b_n | \sum_{i=0}^{n} \lambda_i = 1, \lambda_i \geq 0 \right\}$$

set formed by these X points are called timelike convex hull of a timelike uniform B-spline curve.

Definition 3.2. If the control points $b_0, \ldots, b_n \in TCH\{X\}$ and the knots t_0, t_1, \ldots, t_m on the interval $[a, b] = [t_d, t_{m-d}]$ are equally spaced, then the timelike uniform B-spline curve of degree d in Minkowski 3-space is defined by

$$B(t) = \sum_{i=0}^{n} b_i N_{i,d}(t),$$

where $N_{i,d}(t)$ are the basis functions.

Example: Let consider the timelike uniform B-spline curve $B(t)$ of degree $d = 2$ defined on the knots $t_0 = 0, t_1 = 1, t_2 = 2, t_3 = 3, t_4 = 4, t_5 = 5, t_6 = 6, t_7 = 7$ and with control points $b_0(2, 3), b_1(-1, 7), b_2(2, 5), b_3(4, 5), b_4(1, 3)$. The basis graphic and the curve shape are in the following figures.

![Figure 3.1: a) Basis function graphic b) A timelike uniform B-spline curve](image-url)
Let $B(t)$ be a timelike uniform B-spline curve of degree d with the knot vector t_0, \ldots, t_m in Minkowski 3-space. The second and third derivative of the control points b_i are calculated by

$$
\begin{align*}
 b_i^{(2)} &= (d-1) m_i \Delta b_i^{(1)} \\
 b_i^{(3)} &= (d-1)(d-2) p_i (n_i \Delta b_i^{(1)} - m_i \Delta b_i^{(1)})
\end{align*}
$$

where m_i, n_i, p_i are some constants of t_i.

Proof. Using the Eq.(2.1) and Eq.(2.2) the control points can be written as

$$
\begin{align*}
 b_i^{(2)} &= (d-1) \frac{b_i^{(1)} - b_i^{(1)}}{t_{i+d} - t_{i+2}} \\
 b_i^{(3)} &= (d-1) m_i \Delta b_i^{(1)} + (d-2) \frac{b_i^{(2)} - b_i^{(2)}}{t_{i+d} - t_{i+3}} \\
 &= \frac{(d-1)(d-2)}{t_{i+d} - t_{i+3}} \left((d-1) n_i (b_i^{(2)} - b_i^{(2)}) - (d-1) m_i (b_i^{(1)} - b_i^{(1)}) \right)
\end{align*}
$$

where $m_i = \frac{1}{n_i + 1 - t_{i+2}}$, $n_i = \frac{1}{n_i + 1 - t_{i+3}}$ and $p_i = \frac{1}{n_i + 1 - t_{i+3}}$.

Theorem 3.5. Let $B(t)$ be a timelike uniform B-spline curve of degree d with the knot vector t_0, \ldots, t_m in Minkowski 3-space. The derivatives of $B(t)$ are computed by

$$
\begin{align*}
 B^{(1)}(t) &= \sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t) \\
 B^{(2)}(t) &= (d-1) \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_{i,d-2}^{(2)} \\
 B^{(3)}(t) &= (d-1)(d-2) \sum_{i=0}^{n-3} p_i (n_i \Delta b_i^{(1)} - m_i \Delta b_i^{(1)}) N_{i,d-3}^{(3)}.
\end{align*}
$$

Proof. Substituting the above results in Eq.(2.2), the proof is obvious.

Theorem 3.6. Let $B(t)$ be an arbitrary timelike uniform B-spline curve and $\{ T, N, B \}_{i=0}^n$ be the Serret-Frenet frame of $B(t)$, where T is timelike, N and B are spacelike. Then the following conditions are satisfied

$$
\begin{align*}
 g(T,T) &= -1, g(N,N) = 1, g(B,B) = 1 \\
 g(T,N) &= 0, g(T,B) = 0, g(N,B) = 0.
\end{align*}
$$

The Serret-Frenet frame of the timelike uniform B-spline curve $B(t)$ is obtained by

$$
\begin{align*}
 T &= \frac{\sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t)}{\| \sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t) \|} \\
 B &= \frac{\sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t) \wedge \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_{i,d-2}^{(2)}}{\| \sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t) \wedge \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_{i,d-2}^{(2)} \|} \\
 N &= \frac{-g \left(\sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t), \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_{i,d-2}^{(2)} \right) \oplus g \left(\sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_{i,d-2}^{(2)}, \sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t) \right)}{\| \sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t) \wedge \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_{i,d-2}^{(2)} \|}.
\end{align*}
$$
Proof. Let consider the B-spline curve $B(t)$ is non unit speed curve in Minkowski 3-space. Using the scalar and vector product in Minkowski 3-space, the tangent vector of the timelike uniform B-spline curve $B(t)$ is calculated as

$$ T = \frac{B^{(1)}(t)}{\|B^{(1)}(t)\|} = \sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t) $$

and the binormal vector of the timelike B-spline curve is

$$ B = \frac{B^{(1)}(t) \wedge B^{(2)}(t)}{\|B^{(1)}(t) \wedge B^{(2)}(t)\|} = \sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t) \wedge (d-1) \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_{i,d-2}^{(2)} $$

The principal normal can be obtained as

$$ N = -B \wedge T = \frac{-\sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t) \wedge \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_{i,d-2}^{(2)}}{\|B^{(1)}(t) \wedge B^{(2)}(t)\|} $$

Theorem 3.7. If the B-spline curve of degree d with control points $b_0,...,b_m$ and knots $t_0,t_1,...,t_m$ is defined on the interval $[a,b] = [t_d,t_{m-d}]$, the curvatures of timelike uniform B-spline curve $B(t)$ is found as

$$ \kappa = |d-1| \frac{\|\sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t) \wedge \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_{i,d-2}^{(2)}\|}{\|\sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t)\|^3} $$

Proof. From the definition of curvature of the non-unit speed curve, we have

$$ \kappa = \frac{\|B^{(1)}(t) \wedge B^{(2)}(t)\|}{\|B^{(1)}(t)\|^3} $$

$$ = \frac{\|\sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t) \wedge (d-1) \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_{i,d-2}^{(2)}\|}{\|\sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t)\|^3} $$

$$ = |d-1| \frac{\|\sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t) \wedge \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_{i,d-2}^{(2)}\|}{\|\sum_{i=0}^{n-1} b_i^{(1)} N_{i,d-1}^{(1)}(t)\|^3} $$

\qed
Theorem 3.8. If $B(t)$ is a timelike uniform B-spline curve of degree d with the knot vector t_0, \ldots, t_m in Minkowski 3-space, the torsion of a timelike uniform B-spline curve $B(t)$ is computed by

$$
\tau = -(d-2) \frac{\det \left(\sum_{i=0}^{n} b_i^{(1)} N_i^{(0)}(t), \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_i^{(2)}_{d-2} \sum_{i=0}^{n-3} p_i, \left(n_i, \Delta b_i^{(1)} - m_i \Delta b_i^{(1)} \right) N_i^{(3)}_{d-3} \right)}{\left\| \sum_{i=0}^{n-1} b_i^{(1)} N_i^{(0)}(t) \wedge \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_i^{(2)}_{d-2} \right\|^2}
$$

Proof. Using the definition of torsion, we have the following equations:

$$
\tau = \frac{\left(B^{(1)}(t) B^{(2)}(t) B^{(3)}(t) \right)}{\left\| B^{(1)}(t) \wedge B^{(2)}(t) \right\|^2}
$$

$$
= \frac{\left(\sum_{i=0}^{n} b_i^{(1)} N_i^{(0)}(t), (d-1) \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_i^{(2)}_{d-2}. (d-1)(d-2) \sum_{i=0}^{n-3} p_i, \left(n_i, \Delta b_i^{(1)} - m_i \Delta b_i^{(1)} \right) N_i^{(3)}_{d-3} \right)}{\left\| \sum_{i=0}^{n-1} b_i^{(1)} N_i^{(0)}(t) \wedge \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_i^{(2)}_{d-2} \right\|^2}
$$

$$
= -(d-2) \frac{\det \left(\sum_{i=0}^{n-1} b_i^{(1)} N_i^{(0)}(t), \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_i^{(2)}_{d-2} \sum_{i=0}^{n-3} p_i, \left(n_i, \Delta b_i^{(1)} - m_i \Delta b_i^{(1)} \right) N_i^{(3)}_{d-3} \right)}{\left\| \sum_{i=0}^{n-1} b_i^{(1)} N_i^{(0)}(t) \wedge \sum_{i=0}^{n-2} m_i \Delta b_i^{(1)} N_i^{(2)}_{d-2} \right\|^2}
$$

4. Conclusion

In this paper, we present a theoretical work about the timelike uniform B-spline curves in Minkowski-3 space. The timelike B-spline curve in Minkowski 3-space at first time is introduced. The derivatives of control points are calculated. Later Serret-Frenet frame of the timelike uniform B-spline curve is given. Moreover, the curvature and torsion of the B-spline curve are computed.

Acknowledgement

We would like to express our sincere thanks to the referee for the careful reading and very helpful comments on the earlier versions of this manuscript.

References