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Steinhaus’ Problem on Partition of A Hyperbolic Triangle
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Abstract. Hugo Steinhaus [5, 6] has asked whether inside each acute triangle there is a point from which
perpendiculars to the sides divide the triangle into three parts of equal areas. In this paper, we present a solution of
this problem in the Poincaré disc model of hyperbolic geometry.
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1. Introduction

Let ABC be an Euclidean acute angled triangle in the Euclidean plane. Steinhaus’ problem asks a point P in its
interior with pedals Pa, Pb, Pc on BC, CA, AB such that the quadrilaterals APbPPc, BPcPPa, and CPaPPb have equal
areas. There are some solutions of the problem in literature. To see these, we refer [3, 8] and [4]. In addition to
this, A. Tyszka [7] has also shown that, for some acute triangles with rational coordinates of vertices the point solving
Steinhaus’ problem is not constructible with ruler and compass. Naturally, one may wonder whether the solution of the
Steinhaus’ problem exist in hyperbolic geometry? In this paper we try to give an affirmative answer of this question.

Hyperbolic geometry was created in the first half of the nineteenth century in order to prove the dependence of
Euclids fifth postulate on the first four ones. Carl F. Gauss, Janos Bolyai, and N.I. Lobachevsky are considered the
fathers of hyperbolic geometry. It is well known that there are many principal hyperbolic geometry models, for instance
Poincaré upper-half plane model, Poincaré disc model, Beltrami-Klein model, Weierstrass model, etc. In this paper we
choose the Poincaré disc model of hyperbolic geometry for our results. The points of this model are the points in the
complex unit disc D = {z ∈ C : |z| < 1}. The hyperbolic lines are the diameters of D and circular arcs orthogonal to
the boundary circle of the disc. Two arcs which do not meet correspond to parallel rays, arcs which meet orthogonally
correspond to perpendicular lines, and arcs which meet on the boundary are a pair of limits rays. The angles between
two hyperbolic lines are the usual Euclidean angles between Euclidean tangents to the circular arcs. The advantage of
the Poincaré disk model is that it is conformal, namely circles and angles are not distorted.

The hyperbolic metric density in D with the Gaussian curvature -1 is given by wD = 2
1−|z|2 . The hyperbolic distance

between the points z1, z2 ∈ D defined as

dD(z1, z2) =
|z1 − z2|√

|z1 − z2|
2 + (1 − |z1|

2)((1 − |z2|
2)

.
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Figure 1. A hyperbolic line passing through the points K and L is a circular arc that intersect the
disc D orthogonally. The hyperbolic lines passing through the center of disc are also correspond to
chords of the disc.

In particular, for z ∈ D,

dD(z1, 0) = log
1 + |z|
1 − |z|

= 2arctanh|z|.

In full analogy with Euclidean geometry, a hyperbolic triangle consists of three line segments called sides or edges
and three points called vertices. One of the important result for the hyperbolic triangle is the sum of the measures of
the angles of a hyperbolic triangle must be less than π.

Theorem 1.1 (The Gauss-Bonnet Theorem). Let ABC be a hyperbolic triangle with internal angles α, β, and γ. Then
the hyperbolic area of ABC is ∆(ABC) = π − (α + β + γ).

Theorem 1.2. The area of a hyperbolic disc of radius r is 4πsinh2( r
2 ), see [2].
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Figure 2. A hyperbolic triangle in the unit disc D.

A Möbius transformation f : C ∪ {∞} → C ∪ {∞} (also called a fractional linear transformation) is a mapping
of the form w = (az + b)/(cz + d) satisfying ad − bc , 0, where a, b, c, d ∈ C. Möbius transformations have many
beautiful properties. For example, a map is Möbius if, and only if it preserves cross ratios. As for geometric aspect,
circle-preserving is another important characterization of Möbius transformations. There are well-known elementary
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proofs that if f is a continuous injective map of the extended complex plane C∪ {∞} that maps circles into circles, then
f is Möbius. Möbius transformations are conformal bijective mappings, that is they preserve the measures of the angles
with orientation. Euclidean transformations, Euclidean rotations, inversions (z 7→ 1

z ) and similarities (z 7→ az+b, a , 0)
are the well known Möbius transformations. The most general Möbius transformation defined from D to itself is given
by

z→ eiθ z0 + z
1 + z0z

see [1].

2. Steinhaus’ Problem on Partition of a Hyperbolic Triangle

The following lemma is well known and fundamental in Euclidean geometry.

Lemma 2.1. The circles with the equations

x2 + y2 + 2Ax + 2By + C = 0

and
x2 + y2 + 2A′x + 2B′y + C′ = 0

are orthogonal if and only if 2(AA′ + BB′) = (C + C′).

Lemma 2.2. Let θ1, θ2, · · · , θn be any ordered n-tuple with 0 < θn < (n − 2)π, j = 1, ..., n. Then there exists a
hyperbolic polygon P with interior angles θ1, θ2, · · · , θn, occurring in this order around ∂P (the boundary of P) if and
only if θ1 + θ2 + · · · + θn < (n − 2)π, see see [2].

Lemma 2.3. Let l1 and l2 be two hyperbolic lines in the complex unit disc D with

l1 = {x + iy ∈ D : y = 0}

and
l2 = {x + iy ∈ D : y = mx}

for a fixed m satisfying m > 0. If P = x0 + iy0 is a point in D satisfying x0 > 0, y0 > 0 and y0 < mx0, then the measure
of the angle between the hyperbolic lines k1 and k2 (directed from k2 to k1 with respect to counterclockwise direction)
is

∠(k2, k1) = arctan
−x2 + y2 + 1

2xy
− arctan

x2 + 2mxy − y2 − 1
mx2 − 2xy − my2 + m

,

where k1 and k2 are the hyperbolic lines passing through P and perpendicular to l1 and l2, respectively.

Proof. Let C j be the circle defined by k j with radius r j and M j = a j + ib j be its center for j = 1, 2. Since the center of

the circle C j must be lie on l j, one can easily get M1 = a1 and M2 = a2 +ima2. By Lemma 2.1, we get r1 =

√
a2

1 − 1 and

r2 =

√
m2a2

2 + a2
2 − 1. The Euclidean tangents of the circles C1 and C2 at P are the Euclidean lines with the equations

(x0 − a1)x + y0y − y2
0 − x0(x0 − a1) = 0

and
(x0 − a2)x + (y0 − ma2)y − x0(x0 − a2) − y0(y0 − ma2) = 0,

respectively. Then we get

∠(k2, k1) = arctan
a1 − x0

y0
− arctan

a2 − x0

y0 − ma2
.

Moreover, since P lies on C j for j = 1, 2, this yields a1 =
x2

0+y2
0+1

2x0
and a2 =

x2
0+y2

0+1
2x0+2my0

which implies

∠(k2, k1) = arctan
−x2 + y2 + 1

2xy
− arctan

x2 + 2mxy − y2 − 1
mx2 − 2xy − my2 + m

.

�
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Lemma 2.4. Let l1 and l2 be two hyperbolic lines in the complex unit disc D with

l1 = {x + iy ∈ D : y = 0}

and
l2 = {x + iy ∈ D : y = mx}

for a fixed m satisfying m > 0. Then for any ρ ∈ R+ satisfying 0 < ρ < πsinh2( 1
2 ), the locus of the points in

Dl1l2 = {P = x + iy ∈ C : 0 <
y
x
< m}

satisfying ∆(PPl1 0Pl2 ) = ρ is a curve with the equation

π −

(
arctanm + arctan

−x2 + y2 + 1
2xy

− arctan
x2 + 2mxy − y2 − 1

mx2 − 2xy − my2 + m

)
= ρ

where Pl1 , Pl2 are the (hyperbolic) perpendicular projections of P onto the lines l1 and l2, respectively.

Proof. Let k j be a hyperbolic line passing through P and perpendicular to l j for j = 1, 2. Then by Lemma 2.3, we get

∠(k2, k1) = arctan
−x2 + y2 + 1

2xy
− arctan

x2 + 2mxy − y2 − 1
mx2 − 2xy − my2 + m

.

Since ∠(l1, l2) = arctanm and by Gauss-Bonnet theorem, we get

∆(PPl1 0Pl2 ) = 2π −
(
π

2
+
π

2
+ arctanm + arctan

−x2 + y2 + 1
2xy

− arctan
x2 + 2mxy − y2 − 1

mx2 − 2xy − my2 + m

)
i.e.,

ρ = π −

(
arctanm + arctan

−x2 + y2 + 1
2xy

− arctan
x2 + 2mxy − y2 − 1

mx2 − 2xy − my2 + m

)
. �

In our main result below, we denote the curve defined by the hyperbolic lines l1 and l2 in Lemma 2.4 by Cρα where
α := ∠(l1, l2) = arctanm, the triangular domain defined by the triangle ABC by D(ABC), the boundary of D(ABC) by
∂(ABC), the (hyperbolic) perpendicular projection of P onto the line passing through the points A and B by PAB and
the area of the triangle ABC by ∆(ABC).

Theorem 2.5. Let ABC be a hyperbolic triangle (directed counterclockwise) in D with three acute angles ∠CAB =

α, ∠ABC = β and ∠BCA = γ. Then there exist a point P ∈ D(ABC) such that

∆(PPABAPAC) = ∆(PPABBPBC) = ∆(PPBCCPAC) =
∆(ABC)

3
.

Proof. Assume σ := ∆(ABC). Since the Möbius transformations preserve the measures of the angles, the hyperbolic
angle ∠CAB can be moved to the center of D by an appropriate Möbius transformation f1 such that the images of
the segments AB and AC lie on the hyperbolic line l1 = {x + iy ∈ D : y = 0} and on the hyperbolic line l2 =

{x + iy ∈ D : y = (tanα)x}, respectively. Then by Lemma 2.4, there exist a curve Cσ/3α defined by the hyperbolic
lines l1 and l2. Hence the image of this curve under f −1

1 , which is also Möbius transformation, we get the curve
f −1
1 (Cσ/3α ) in D. Similarly, the angles ∠ABC and ∠BCA can be moved to the center of D under two appropriate Möbius

transformations, say f2 and f3, such that the segments f2(B) f2(C) and f2(B) f2(A) lie on the lines l1 = {x+iy ∈ D : y = 0}
and l3 = {x + iy ∈ D : y = (tanβ)x}, respectively and the segments f3(A) f3(C) and f3(C) f3(B) lie on the lines
l1 = {x + iy ∈ D : y = 0} and l4 = {x + iy ∈ D : y = (tanγ)x}, respectively. Hence we get the curves f −1

2 (Cσ/3β ) and

f −1
3 (Cσ/3γ ) in D. We claim that any of two curves must have a common point in D(ABC). Indeed, if such a point does

not exist, then we get

σ = ∆(ABC) > ∆(EEABAEAC) + ∆(FFABBFBC) + ∆(GGBCCGAC) = 3
σ

3
= σ

where E, F, G ∈ D are arbitrary points on the curves f −1
1 (Cσ/3α ), f −1

2 (Cσ/3β ) and f −1
3 (Cσ/3γ ), respectively. This is a

contradiction. If any of two curves intersects at a point of ∂(ABC), for example f −1
1 (Cσ/3α ) and f −1

2 (Cσ/3β ) have a
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Figure 3. The curves C13π/20
π/4 , C5π/12

π/4 , C7π/36
π/4 are shown by blue, green and red colors, respectively.

The curve with purple color has the equation x2 − 2xy − y2 + 1 = 0
.

common point in ∂(ABC), say Q, then f −1
3 (Cσ/3γ ) must intersect f −1

1 (Cσ/3α ) or f −1
2 (Cσ/3β ) at a interior point of D(ABC).

Otherwise,
σ = ∆(ABC) > ∆(EEABAEAC) + ∆(FFABBFBC) + ∆(GGBCCGAC) = 3

σ

3
= σ

where E, F, G ∈ D are arbitrary points on the curves f −1
1 (Cσ/3α ), f −1

2 (Cσ/3β ) and f −1
3 (Cσ/3γ ), respectively. This is again a

contradiction. Therefore, there exist a point P ∈ D(ABC) such that

∆(PPABAPAC) = ∆(PPABBPBC) = ∆(PPBCCPAC) =
∆(ABC)

3
. �
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