On the Control Invariants of Planar Bézier Curves for the Groups $M(2)$ and SM(2)

İdris Ören
Department of Mathematics, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey.

Received: 05-08-2018 • Accepted: 18-10-2018

Abstract

Let $G=M(2)$ be the group generated by all orthogonal transformations and translations of the 2dimensional Euclidean space E_{2} or $G=S M(2)$ be the subgroup of $M(2)$ generated by rotations and translations of E_{2}. In this paper, global G-invariants of plane Bézier curves in E_{2} are introduced. Using complex numbers and the global G-invariants of a plane Bézier curves, for given two plane Bézier curves $x(t)$ and $y(t)$, evident forms of all transformations $g \in G$, carrying $x(t)$ to $y(t)$, are obtained. Similar results are given for plane polynomial curves.

2010 AMS Classification: 13A50, 53A04, 53A55, 65D17.
Keywords: Bézier curve, invariant, Euclidean space.

1. Introduction

Let E_{2} be the 2-dimensional Euclidean space and $O(2)$ be the group of all orthogonal transformations of E_{2}. Put $S O(2)=\{g \in O(2) \mid \operatorname{det} g=1\}, M(2)=\left\{F: E_{2} \rightarrow E_{2} \mid F x=g x+b, g \in O(2), b \in E_{2}\right\}$ and $S M(2)=$ $\{F \in M(2) \mid \operatorname{detg}=1\}$.

In classic differential geometry, the following theorem is known in [14]:
"Let $x(t)$ and $y(t)$ be two curves in E_{2}. Then, $x(t)$ and $y(t)$ are equivalent if and only if the curvatures and speeds of $x(t)$ and $y(t)$ are equal."

In E_{2}, two different concepts of curvatures were defined: the signed curvature $\kappa_{ \pm}=\frac{\left[x^{\prime}(t) x^{(2)}(t)\right]}{\left\langle x^{\prime}(t), x^{\prime}(t)\right\rangle^{\frac{3}{2}}}$ (see [4, p.64-66], [5, p.14-15], [6, p.25], [17, p.8]) and the curvature $\kappa(x)=\frac{\mid\left[x^{\prime}(t) x^{(2)}(t) \|\right.}{\left\langle x^{\prime}(t), x^{\prime}(t)\right\rangle^{\frac{3}{2}}}$ (see [1, p.31]). The function $\kappa_{ \pm}$is $S M(2)$-invariant, but it is not $M(2)$-invariant. The function κ is $M(2)$-invariant. The signed curvature $\kappa_{ \pm}$is more used for investigation of curves in two dimensional classical differential geometry (see [4, p,64-66], [5, p.14-15]). Thus invariant theory of curves in the classical differential geometry was developed only for the group $S M(2)$. In addition, the method of orthogonal frame in the classical differential geometry give conditions only for the local $S M(2)$-equivalence of curves (see [13, p, 9-19]).

[^0]In [2], by using invariant parametrization of curves, the problem of G-equivalence of curves (that is nonparametric curves) was reduced to the problem of G-equivalence of paths (that is parametric curves) for $G=M(n), S M(n)$. Complete systems of global G-invariants of regular paths and regular curves in classical geometries were obtained in [2]. This approach was developed for curves in papers [9,11,16] and for vector fields in [7, 8].

In books ([4, Theorems 6.1 and 6.8], [5, p.136-137]) existence and uniqueness theorems for regular parametric curves (that is paths) in E_{2} were obtained for the group $G=S M(2)$.

In [14], using differential invariants and Frenet frames of two curves, an isometry transformation which carrying a curve into another curve has been calculated.

In [15], G-equivalence of two Bézier curves for groups $G=M(n)$ and $G=S M(n)$ without using differential invariants of Bézier curves in terms of control invariants of Bézier curves is proved. In this work, starting from the ideas in [15] we address how to compute explicitly an isometry transformation which carrying a Bézier curve into another Bézier curve in terms of control invariants of a Bézier curve for the groups $M(2)$ and $S M(2)$ without using differential invariants of Bézier curves.

2. Preliminaries

Let R be the field of real numbers and \mathbb{C} be the field of complex numbers. The multiplication in \mathbb{C} has the form $\left(a_{1}+i a_{2}\right)\left(b_{1}+i b_{2}\right)=\left(a_{1} b_{1}-a_{2} b_{2}\right)+i\left(a_{1} b_{2}+a_{2} b_{1}\right)$. We will consider element $a=a_{1}+i a_{2}$ also in the form $a=\binom{a_{1}}{a_{2}}$. For $a=a_{1}+i a_{2}$, denote by P_{a} the matrix $\left(\begin{array}{cc}a_{1} & -a_{2} \\ a_{2} & a_{1}\end{array}\right)$ and consider P_{a} also as the transformation $P_{a}: \mathbb{C} \rightarrow \mathbb{C}$, where $P_{a} b=\left(\begin{array}{cc}a_{1} & -a_{2} \\ a_{2} & a_{1}\end{array}\right)\binom{b_{1}}{b_{2}}=\binom{a_{1} b_{1}-a_{2} b_{2}}{a_{1} b_{2}+a_{2} b_{1}}$ for all $b=b_{1}+i b_{2}=\binom{b_{1}}{b_{2}} \in \mathbb{C}$. Then we have the equality

$$
\begin{equation*}
a b=P_{a} b \tag{2.1}
\end{equation*}
$$

for all $a, b \in \mathbb{C}$. Let $P(\mathbb{C})$ denote the set of all matrices P_{a}, where $a \in \mathbb{C}$. We consider on $P(\mathbb{C})$ the following standard matrix operations: the component-wise addition, a scalar multiplication and the multiplication of matrices. Then $P(\mathbb{C})$ is a field, where the unit element is the unit matrix. The following Propositions are known.
Proposition 2.1. The mapping $P: \mathbb{C} \rightarrow P(\mathbb{C})$, where $P: a \rightarrow P_{a}$ for all $a \in \mathbb{C}$, is an isomorphism of fields.
For vectors $a=a_{1}+i a_{2}, b=b_{1}+i b_{2} \in \mathbb{C}$, we put $\langle a, b\rangle=a_{1} b_{1}+a_{2} b_{2}$. Then $\langle a, b\rangle$ is a bilinear form on E_{2} and $\langle a, a\rangle=a_{1}^{2}+a_{2}^{2}$ is a quadratic form on E_{2}. Put $\left.Q(a)=<a, a\right\rangle$. We consider the field \mathbb{C} also as the two-dimensional Euclidean space E_{2} with the scalar product $\langle a, b\rangle$. Then $\|a\|=|a|=\sqrt{Q(a)}, \forall a \in \mathbb{C}$.

Proposition 2.2. (i) Equalities $Q(a)=\operatorname{det}\left(P_{a}\right), Q(a b)=Q(a) Q(b),|a b|=|a||b|, Q(a)=\operatorname{det}\left(P_{a}\right)=$ hold for all $a, b \in \mathbb{C}$.
(ii) Let $a=a_{1}+i a_{2} \in \mathbb{C}^{*}$. Then $\operatorname{det}\left(P_{a}\right)=Q(a)>0$.

An endomorphism ψ of a vector space \mathbb{C} is called an involution of the field \mathbb{C} if $\psi(\psi(a))=a$ and $\psi(a b)=\psi(a) \psi(b)$ for all $a, b \in \mathbb{C}$. For an element $a=a_{1}+i a_{2} \in \mathbb{C}$, we set $\bar{a}=a_{1}-i a_{2}$.

Proposition 2.3. The mapping $a \rightarrow \bar{a}$ is an involution of the field \mathbb{C}. In addition, for an arbitrary element $a=a_{1}+i a_{2} \in$ \mathbb{C}, equalities $a+\bar{a}=2 a_{1},\langle a, a\rangle=a \bar{a}=a_{1}^{2}+a_{2}^{2} \in R$ hold.
Proposition 2.4. Let $x \in \mathbb{C}$. Then the element x^{-1} exists if and only if $Q(x) \neq 0$. In the case $Q(x) \neq 0$, equalities $x^{-1}=\frac{\bar{x}}{Q(x)}$ and $Q\left(x^{-1}\right)=\frac{1}{Q(x)}$ hold.

Let $W=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. We will use W also for the writing of the element \bar{z} in the form $\bar{z}=W z$.
Proposition 2.5. $Q(W x)=Q(x)$ for all $x \in \mathbb{C}$ and $\langle W x, W y\rangle=\langle x, y\rangle$ for all $x, y \in \mathbb{C}$.
Put $\mathbb{C}^{*}=\{z \in \mathbb{C} \mid Q(z) \neq 0\} . \mathbb{C}^{*}$ is a group with respect to the multiplication operation in the field \mathbb{C}. Let $a=$ $a_{1}+i a_{2} \in \mathbb{C}^{*}$ that is $|a| \neq 0$. Put

$$
P_{a}^{+}=\left(\begin{array}{ll}
\frac{a_{1}}{|a|} & \frac{-a_{2}}{|a|} \\
\frac{a_{2}}{|a|} & \frac{a_{1}}{|a|}
\end{array}\right)
$$

Proposition 2.6. Let $a=a_{1}+i a_{2} \in \mathbb{C}^{*}$. Then the equality $P_{a}=|a| P_{a}^{+}$holds, where $P_{a}^{+} \in S O(2)$.
Proof. The equality $P_{a}=|a| P_{a}^{+}$is obvious. Since $\left(\frac{a_{1}}{|a|}\right)^{2}+\left(\frac{a_{2}}{|a|}\right)^{2}=1$, the implication $P_{a}^{+} \in S O(2)$ follows from [3, p.161162].

Put $S\left(\mathbb{C}^{*}\right)=\{z \in \mathbb{C} \mid Q(z)=1\}, P\left(\mathbb{C}^{*}\right)=\left\{P_{z} \mid z \in \mathbb{C}^{*}\right\}$ and $P\left(S\left(\mathbb{C}^{*}\right)\right)=\left\{P_{z} \mid z \in S\left(\mathbb{C}^{*}\right)\right\}$. $S\left(\mathbb{C}^{*}\right)$ is a subgroup of the group \mathbb{C}^{*} and $S\left(\mathbb{C}^{*}\right)=\left\{e^{i \varphi} \mid \varphi \in R\right\}$. Denote the set of all matrices $\left\{g W \mid g \in P\left(\mathbb{C}^{*}\right)\right\}$ by $P\left(\mathbb{C}^{*}\right) W$, where $g W$ is the multiplication of matrices g and W.

Theorem 2.7. (see [3, p.172]) The following equalities are hold:
(i) $S M(2)=\left\{F: E_{2} \rightarrow E_{2} \mid F(x)=P_{a} x+b, a \in S\left(\mathbb{C}^{*}\right), b \in E_{2}, \forall x \in E_{2}\right\}$
(ii) $S M(2) W=\left\{F: E_{2} \rightarrow E_{2} \mid F(x)=P_{a} W(x)+b, a \in S\left(\mathbb{C}^{*}\right), b \in E_{2}, \forall x \in E_{2}\right\}$
(iii) $M(2)=S M(2) \cup S M(2) W$.

Proposition 2.8. (i) Let $u, v \in \mathbb{C}$. Assume that $Q(u) \neq 0$. Then the element $v u^{-1}$ exists, the following equalities hold: $v u^{-1}=\frac{\langle u, v\rangle}{Q(u)}+i \frac{[u v]}{Q(u)}$ and

$$
P_{v u^{-1}}=\left(\begin{array}{cc}
\frac{\langle u, v>}{Q(u)} & -\frac{[u v]}{Q(u)} \\
\frac{[u\rangle]}{Q(u)} & \frac{u, v\rangle}{Q(u)}
\end{array}\right) .
$$

(ii) Assume that $Q(u) \neq 0$. Then $\operatorname{det}\left(P_{v u^{-1}}\right)=\left(\frac{\langle u, v>}{Q(u)}\right)^{2}+\left(\frac{[u v]}{Q(u)}\right)^{2} \neq 0$ if and only if $Q(v) \neq 0$.
(iii) The functions $Q(u),\langle u, v\rangle$ and $[u v]$ are $S O(2)$-invariant.

Proof. The proof of this proposition is given in Theorem 2 in [10].

3. Control Invariants of Planar Bézier Curve

A planar Bézier curve is a parametric curve(or a I-path, where $I=[0,1]]$) whose points $x(t)$ are defined by $x(t)=\sum_{i=0}^{m} p_{i} B_{i, m}(t)$, where the $p_{i} \in E_{2}$ are control points and $B_{i, m}(t)$ are Bernstein basis polynomials.(for more details, see [12].)

A planar polynomial curve is a parametric curve(or a I-path, where $I=[0,1]]$) whose points $x(t)$ are defined by $x(t)=\sum_{i=0}^{m} a_{i} t^{i}$, where the $a_{i} \in E_{2}$ are monomial control points.(for more details, see [12, p.166].)

All polynomial curves can be represented in Bézier form. The following lemma is given in [12, p.166].
Lemma 3.1. The following equalities

$$
\left\{\begin{aligned}
a_{i} & =\frac{n!}{i!(n-i)!} \sum_{j=1}^{i}(-1)^{i-j} \frac{i!}{j!(i-j)!}\left(b_{j}-b_{0}\right) \\
b_{i}-b_{0} & =\sum_{j=1}^{i} \frac{i!(n-j)!}{n!(i-j)!} a_{j}
\end{aligned}\right.
$$

hold for all $i=1,2, \ldots, m$.
Let G be a one of the groups $O(2)$ and $S O(2)$.

Definition 3.2. A function $f\left(z_{0}, z_{1}, \ldots, z_{m}\right)$ of vectors $z_{0}, z_{1}, \ldots, z_{m}$ in E_{2} will be called G-invariant if $f\left(F z_{0}, F z_{1}, \ldots, F z_{m}\right)=$ $f\left(z_{0}, z_{1}, \ldots, z_{m}\right)$ for all $F \in G$.
A G-invariant function $f\left(b_{0}, b_{1}, \ldots, b_{m}\right)$ of control points $b_{0}, b_{1}, \ldots, b_{m}$ of a Bézier curve $x(t)=\sum_{j=0}^{m} b_{j} B_{j, m}(t)$ will be called a control G-invariant of $x(t)$, where $B_{j, m}(t)$ are Bernstein basis polynomials. A G-invariant function $f\left(a_{0}, a_{1}, \ldots, a_{m}\right)$ of monomial control points $a_{0}, a_{1}, \ldots, a_{m}$ of a polynomial curve $x(t)=\sum_{j=0}^{m} a_{j} t^{j}$ will be called a monomial G-invariant of $x(t)$.

Definition 3.3. Bézier curves $x(t)$ and $y(t)$ in E_{2} will be called G-equivalent and written $x \stackrel{G}{\sim} y$ if there exists $F \in G$ such that $y(t)=F x(t)$ for all $t \in[0,1]$.

Since Bézier curves can be introduced by control points, we will define the problem of G-equivalence of points in E_{2}.

Definition 3.4. m-uples $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ of vectors in E_{2} will be called G-equivalent and written by $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\} \stackrel{G}{\sim}\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ if there exists $F \in G$ such that $w_{j}=F z_{j}$ for all $j=1,2, \ldots, m$.
Example 3.5. Since $\langle g(u), g(v)\rangle=\langle u, v>$ for all $g \in O(2)$, we obtain that the scalar product $\langle u, v\rangle$ of points $u, v \in E_{2}$ is $O(2)$-invariant. Similarly, the function $f(u, v, w)=<u-w, v-w>$ is $M(2)$-invariant.

Example 3.6. Let $u_{1}, u_{2}, \ldots, u_{m}$ be points in E_{2}. We denote the the matrix of column-vectors $u_{1}, u_{2}, \ldots, u_{m}$ by $U=$ $\left\|u_{1} u_{2} \ldots u_{m}\right\|$ and its determinant by $\operatorname{det} U$. Then $\operatorname{det} U$ is $S O(2)$-invariant.
In fact, $\operatorname{det}\left\|g u_{1} g u_{2} \ldots g u_{m}\right\|=\operatorname{det} g \operatorname{det} U=\operatorname{det} U$ for all $g \in S O(2)$.
Example 3.7. Let $x(t)$ and $y(t)$ be Bézier curves of degrees of m and k, respectively. Assume that $x \stackrel{O(2)}{\sim} y$. Then $m=k$ that is the degree of a Bézier curve $x(t)$ is $O(2)$-invariant.

4. Equivalence of Planar Bézier Curves

Theorem 4.1. Let $x(t)=\sum_{j=0}^{m} a_{j} t^{j}=\sum_{j=0}^{m} p_{j} B_{j, m}(t)$ and $y(t)=\sum_{j=0}^{m} c_{j} t^{j}=\sum_{j=0}^{m} q_{j} B_{j, m}(t)$ be Bézier curves in E_{2} of degree m, where $m \geq 1$. Then, $x(t) \stackrel{M(2)}{\sim} y(t) \Leftrightarrow x^{\prime}(t) \stackrel{O(2)}{\sim} y^{\prime}(t)$.

Proof. \Rightarrow. Assume that $x(t) \stackrel{M(2)}{\sim} y(t)$. Then there exists $F \in M(2)$ such that $y(t)=F x(t), \forall t \in[0,1]$. Then, there exist $g \in O(2)$ and $b \in E_{2}$ such that $y(t)=F x(t)=g x(t)+b$. This equality implies $y^{\prime}(t)=(F x(t))^{\prime}=g x^{\prime}(t), \forall t \in[0,1]$. That is, $x^{\prime}(t) \stackrel{O(2)}{\sim} y^{\prime}(t)$.
\Leftarrow. Assume that $x^{\prime}(t) \stackrel{O(2)}{\sim} y^{\prime}(t)$. Then there exists $g \in O(2)$ such that $y^{\prime}(t)=g x^{\prime}(t), \forall t \in[0,1]$. Then we have $y^{\prime}(t)=(g x(t))^{\prime}, \forall t \in[0,1]$. This equality implies that $y^{\prime}(t)-(g x(t))^{\prime}=(y(t)-g x(t))^{\prime}=0, \forall t \in[0,1]$. Then there exists $b \in E_{2}$ such that $y(t)=g x(t)+b, \forall t \in[0,1]$. This means that $x(t) \stackrel{M(2)}{\sim} y(t)$. Proofs of other statements are given in [15, Theorem 1].

Theorem 4.2. Let $x(t)=\sum_{j=0}^{m} a_{j} t^{j}=\sum_{j=0}^{m} p_{j} B_{j, m}(t)$ and $y(t)=\sum_{j=0}^{m} c_{j} t^{j}=\sum_{j=0}^{m} q_{j} B_{j, m}(t)$ be Bézier curves in E_{2} of degree m, where $m \geq 1$. Then, $x(t) \stackrel{S M(2)}{\sim} y(t) \Leftrightarrow x^{\prime}(t) \stackrel{S O(2)}{\sim} y^{\prime}(t)$.

Proof. It is similar to proof of Theorem 4.1.
In [15], The following theorems are given as follows:
Theorem 4.3. Let $x(t)=\sum_{j=0}^{m} a_{j} t^{j}=\sum_{j=0}^{m} p_{j} B_{j, m}(t)$ and $y(t)=\sum_{j=0}^{m} c_{j} t^{j}=\sum_{j=0}^{m} q_{j} B_{j, m}(t)$ be Bézier curves in E_{2} of degree m, where $m \geq 1$. Then following conditions are equivalent:
(i) $x(t) \stackrel{M(2)}{\sim} y(t)$
(ii) $\left\{p_{0}, p_{1}, \ldots, p_{m}\right\} \stackrel{M(2)}{\sim}\left\{q_{0}, q_{1}, \ldots, q_{m}\right\}$
(iii) $\left\{p_{1}-p_{0}, p_{2}-p_{0}, \ldots, p_{m}-p_{0}\right\} \stackrel{O(2)}{\sim}\left\{q_{1}-q_{0}, q_{2}-q_{0}, \ldots, q_{m}-q_{0}\right\}$
(iv) $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \stackrel{O(2)}{\sim}\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$

Theorem 4.4. Let $x(t)=\sum_{j=0}^{m} a_{j} t^{j}=\sum_{j=0}^{m} p_{j} B_{j, m}(t)$ and $y(t)=\sum_{j=0}^{m} c_{j} t^{j}=\sum_{j=0}^{m} q_{j} B_{j, m}(t)$ be Bézier curves in E_{2} of degree m, where $m \geq 1$. Then following four conditions are equivalent:
(i) $x \stackrel{S M(2)}{\sim} y$
(ii) $\left\{p_{0}, p_{1}, \ldots, p_{m}\right\} \stackrel{S M(2)}{\sim}\left\{q_{0}, q_{1}, \ldots, q_{m}\right\}$
(iii) $\left\{p_{1}-p_{0}, p_{2}-p_{0}, \ldots, p_{m}-p_{0}\right\} \stackrel{S O(2)}{\sim}\left\{q_{1}-q_{0}, q_{2}-q_{0}, \ldots, q_{m}-q_{0}\right\}$
(iv) $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \stackrel{S_{\sim}^{O(2)}}{\sim}\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$

Remark 4.5. In Theorems 4.3 and 4.4, we have considered the problem of G-equivalence of polynomial curves in the case $m \geq 1$. For the case $m=0$, the problem of G-equivalence of polynomial curves $x(t)=a_{0}$ and $y(t)=c_{0}$ reduces to the problem of G-equivalence of vectors a_{0} and c_{0} in E_{2}. For groups $M(2)$ and $S M(2)$, it is obvious that $a_{0} \stackrel{M(2)}{\sim} c_{0}$ and $a_{0} \stackrel{S M(2)}{\sim} c_{0}$ for all a_{0} and c_{0} in E_{2}. In what follows, $m \geq 1$. The case $m=0$ is easily considered.

Theorem 4.6. (i) Let $x(t)=\sum_{j=0}^{m} a_{j} t^{j}$ and $y(t)=\sum_{j=0}^{m} c_{j} t^{j}$ be two polynomial curves in E_{2} of degree m,where $m \geq 1$ such that $x(t) \stackrel{S M(2)}{\sim} y(t)$. Then, the following equalities hold.

$$
\left\{\begin{array}{r}
<a_{j}, a_{k}>=<c_{j}, c_{k}>, \tag{4.1}\\
{\left[a_{i_{1}} a_{i_{2}}\right]=\left[c_{i_{1}} c_{i_{2}}\right]}
\end{array}\right.
$$

for all $i_{1}, i_{2}=1, \ldots, m ; 1 \leq i_{1}<i_{2} \leq m ; j, k=1,2, \ldots, m ; j \leq k$.
(ii) Conversely, if $x(t)=\sum_{j=0}^{m} a_{j} t^{j}$ and $y(t)=\sum_{j=0}^{m} c_{j} t^{j}$ are two polynomial curves in E_{2} of degree m, where $m \geq 1$ such that the equalities (4.1) hold, then $x(t) \stackrel{S M(2)}{\sim} y(t)$. Moreover, there exists the unique $F \in S M(2)$ such that $y(t)=F x(t)$ for all $t \in[0,1]$. In this case, $F x(t)=U_{1} x(t)+b$, where $U_{1} \in S O(2)$ and U_{1} has the following form

$$
U_{1}=\left(\begin{array}{cc}
\frac{\left\langle a_{m}, c_{m}>\right.}{Q\left(c_{m}\right)} & -\frac{\left[a_{m} c_{m}\right]}{Q\left(c_{m}\right]} \tag{4.2}\\
\frac{\left.\square a_{m} c_{m}\right]}{Q\left(a_{m}\right)} & \frac{\left\langle a_{m}, m_{m}\right\rangle}{Q\left(a_{m}\right)}
\end{array}\right),
$$

and $b=y(t)-U_{1} x(t) \in E_{2} . U_{1}$ and b do not depend on $t \in T$.
Proof. (i) It follows from [15, Corollary 1].
(ii) Assume that the equalities (4.2) hold. From [15, Corollary 1], we have $x(t) \stackrel{S M(2)}{\sim} y(t)$. Then, there exist $F \in S M(2)$ such that $y(t)=F x(t)$ for all $t \in[0,1]$. In this case, $y(t)=F x(t)=U_{1} x(t)+b$, where $U_{1} \in S O(2)$ and $b \in E_{2}$.

Since $x(t)$ and $y(t)$ are two polynomial curves of degree $m \geq 1, m^{t h}$ order derivatives of $x(t)$ and $y(t)$ are $x^{(m)}(t)=m!a_{m}$ and $y^{(m)}(t)=m!c_{m}$, respectively. The equality $y(t)=F x(t)=U_{1} x(t)+b$ implies $y^{(m)}(t)=$ $U_{1} x^{(m)}(t)$. Using this equality, we have $c_{m}=U_{1} a_{m}$ such that $U_{1} \in S O(2)$, where $U_{1}=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$. Using the equality $c_{m}=U_{1} a_{m}$, we obtain $a=\frac{\left\langle a_{m}, c_{m}>\right.}{Q\left(a_{m}\right)}$ and $b=\frac{\left[a_{m} c_{m}\right]}{Q\left(a_{m}\right)}$.

Prove the uniqueness of $U_{1} \in S O(2)$ and uniqueness of b satisfying the condition $y(t)=U_{1} x(t)+b$. Assume that $K \in S O(2)$ and $b_{1} \in E_{2}$ such that $y(t)=K x(t)+b_{1}$. This equality implies $y^{(m)}(t)=K x^{(m)}(t)$. Then by (2.1), Proposition 2.1 and Theorem 2.7, there exists the unique $u \in S\left(\Omega^{*}\right)$ such that $K=P_{u}$. Hence we have $y^{(m)}(t)=P_{u} x^{(m)}(t)$. By (2.1), we obtain $y^{(m)}(t)=u x^{(m)}(t)$. Since $Q\left(x^{(m)}(t)\right)=Q\left(m!a_{m}\right)=m!Q\left(a_{m}\right) \neq 0$, $y^{(m)}(t)=u x^{(m)}(t)$ implies that $u=y^{(m)}(t)\left(x^{(m)}(t)\right)^{-1}=g$. Hence $P_{u}=P_{g}=U_{1}$. The uniqueness of U_{1} is proved. Then $b=y(t)-U_{1} x(t)=y(t)-K x(t)=b_{1}$. Hence the uniqueness of b is proved.

So, the proof is completed.

The following corollary is given in [12, Corollary 1.7].
Corollary 4.7. Let $x(t)=\sum_{j=0}^{m} p_{j} B_{j, m}(t)$ be Bézier curves in E_{2} of degree m, where $m \geq 1$. Then, the $r^{\text {th }}$ derivative of $x(t)$ is

$$
x^{(r)}(t)=\sum_{j=0}^{m-r} p_{j}^{r} B_{j, m-r}(t)
$$

where

$$
p_{i}^{r}=m(m-1) \ldots(m-r+1) \sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j} p_{i+j}
$$

for all $i=0, \ldots, m$

Theorem 4.8. (i) Let $x(t)=\sum_{j=0}^{m} p_{j} B_{j, m}(t)$ and $y(t)=\sum_{j=0}^{m} q_{j} B_{j, m}(t)$ be two Bézier curves in E_{2} of degree m, where $m \geq 1$ such that $x(t) \stackrel{S M(2)}{\sim} y(t)$. Then, the following equalities hold.

$$
\left\{\begin{array}{r}
<p_{j}-p_{0}, p_{k}-p_{0}>=<q_{j}-q_{0}, q_{k}-q_{0}> \tag{4.3}\\
\quad\left[p_{i_{1}}-p_{0} p_{i_{2}}-p_{0}\right]=\left[q_{i_{1}}-q_{0} q_{i_{2}}-q_{0}\right]
\end{array}\right.
$$

for all $i_{1}, i_{2}=1, \ldots, m ; 1 \leq i_{1}<i_{2} \leq m ; j, k=1,2, \ldots, m ; j \leq k$.
(ii) Conversely, if $x(t)=\sum_{j=0}^{m} p_{j} B_{j, m}(t)$ and $y(t)=\sum_{j=0}^{m} q_{j} B_{j, m}(t)$ are two Bézier curves in E_{2} of degree m, where $m \geq 1$ such that the equalities (4.3) hold, then $x(t) \stackrel{S M(2)}{\sim} y(t)$. Moreover, there exists the unique $F \in S M(2)$ such that $y(t)=F x(t)$ for all $t \in[0,1]$. In this case, $F x(t)=V_{1} x(t)+b$, where $V_{1} \in S O(2)$ and V_{1} has the following form

$$
V_{1}=\left(\begin{array}{cc}
\frac{\left\langle p_{0}^{m}, q_{0}^{m}\right\rangle}{Q\left(p_{0}^{m}\right)} & -\frac{\left[p_{0}^{m} q_{0}^{m}\right]}{Q\left(p_{0}^{m}\right)} \tag{4.4}\\
\frac{\left.\square p_{0}^{m} q_{0}^{m}\right]}{Q\left(p_{0}^{m}\right)} & \frac{\left\langle p_{0}^{m}, q_{0}^{n}\right\rangle}{Q\left(p_{0}^{m}\right)}
\end{array}\right),
$$

and $b=y(t)-V_{1} x(t) \in E_{2} . V_{1}$ and b do not depend on $t \in T$.
Proof. It follows from Theorem 4.6 and Corollary 4.7.
Lemma 4.9. For all vectors $y_{1}, y_{2}, z_{1}, z_{2}$ in E_{2}, the equality $\left[y_{1} y_{2}\right]\left[z_{1} z_{2}\right]=\operatorname{det}\left\|<y_{i}, z_{k}>\right\|_{i, k=1}^{2}$ holds.
Proof. A proof of this lemma is given in [9, Lemma 13].
Theorem 4.10. (i) Let $x(t)=\sum_{j=0}^{m} a_{j} t^{j}$ and $y(t)=\sum_{j=0}^{m} c_{j} t^{j}$ be two polynomial curves in E_{2} of degree m,where $m \geq 2$ such that $x(t) \stackrel{M(2)}{\sim} y(t)$. Then, the following equalities hold.

$$
\begin{equation*}
<a_{j}, a_{k}>=<c_{j}, c_{k}> \tag{4.5}
\end{equation*}
$$

for all $j, k=1,2, \ldots, m ; j \leq k$.
(ii) Conversely, if $x(t)=\sum_{j=0}^{m} a_{j} t^{j}$ and $y(t)=\sum_{j=0}^{m} c_{j} t^{j}$ are two polynomial curves in E_{2} of degree m, where $m \geq 2$ such that the equalities (4.5) hold, then $x(t) \stackrel{M(2)}{\sim} y(t)$. Moreover, there exist the unique $F \in M(2)$ such that $y(t)=F x(t)$ for all $t \in[0,1]$. In this case, the following cases exist:
(ii.1) $\left[a_{i_{1}} a_{i_{2}}\right]=\left[c_{i_{1}} c_{i_{2}}\right]$,
(ii.2) $\left[a_{i_{1}} a_{i_{2}}\right]=-\left[c_{i_{1}} c_{i_{2}}\right]$.

In the case (ii.1), $F x(t)=U_{1} x(t)+b_{1}$, where $U_{1} \in S O(2), b_{1} \in E_{2}$. Here U_{1} and b_{1} have the forms (4.2) and $b_{1}=y(t)-U_{1} x(t)$, resp.
In the case (ii.2), $F x(t)=\left(U_{2} W\right) x(t)+b_{2}$, where $U_{2} \in S O(2), b_{2} \in E_{2}$. Here U_{2} and b_{2} have the forms

$$
U_{2}=\left(\begin{array}{cc}
\frac{\left\langle W a_{m}, c_{m}>\right.}{Q\left(W a_{m}\right)} & -\frac{\left[W a_{m} c_{m}\right]}{Q\left(W a_{m}\right)} \tag{4.6}\\
\frac{\left.\mid W a_{m} c_{m}\right]}{Q\left(W a_{m}\right)} & \frac{\left\langle W a_{m}\right)}{Q\left(W c_{m}\right)}
\end{array}\right),
$$

and $b_{2}=y(t)-\left(U_{2} W\right) x(t) \in E_{2}$, resp.
The matrices U_{i} and the constants b_{i} do not depend on $t \in[0,1]$ for $i=1,2$.
Proof. (i) It follows from [15, Theorem 4].
(ii) Assume that the equalities (4.5) hold. Then, from [15, Theorem 4], we have $x(t) \stackrel{M(2)}{\sim} y(t)$. That is, there exist $F \in M(2)$ such that $y(t)=F x(t)$ for all $t \in[0,1]$.

Applying Lemma 4.9 to vectors $y_{1}=a_{i_{1}}, y_{2}=a_{i_{2}}, z_{1}=a_{i_{3}}, z_{2}=a_{i_{4}}$ for all $1 \leq i_{1}<i_{2} \leq m$ and $1 \leq i_{3}<i_{4} \leq$ m, we obtain

$$
\begin{equation*}
\left[a_{i_{1}} a_{i_{2}}\right]\left[a_{i_{3}} a_{i_{4}}\right]=<a_{i_{1}}, a_{i_{3}}><a_{i_{2}}, a_{i_{4}}>-<a_{i_{1}}, a_{i_{4}}><a_{i_{2}}, a_{i_{3}}>. \tag{4.7}
\end{equation*}
$$

Since the inner products in this equality are O (2)-invariants, $\left[a_{i_{1}} a_{i_{2}}\right]\left[a_{i_{3}} a_{i_{4}}\right]$ are $O(2)$-invariants.
The equalities (4.5) and (4.7) imply the equalities $\left[a_{i_{1}} a_{i_{2}}\right]=\left[c_{i_{1}} c_{i_{2}}\right]$ and $\left[a_{i_{1}} a_{i_{2}}\right]=-\left[c_{i_{1}} c_{i_{2}}\right]$. Using the equality (4.5) and the equality $\left[a_{i_{1}} a_{i_{2}}\right]=\left[c_{i_{1}} c_{i_{2}}\right]$ imply the equalities (4.1). Then, by Theorem (4.6), the unique $U_{1} \in S O(2)$ and the unique $b_{1} \in E_{2}$ exist such that $y(t)=U_{1} x(t)+b_{1}$ for all $t \in[0,1]$. Here U_{1} and b_{1} have the forms (4.2) and $b_{1}=y(t)-U_{1} x(t)$, resp.

Now, consider the polynomial curve $W x(t)$. Since the inner products in the equality (4.5) are $O(2)$ invariants, we have $<W a_{j}, W a_{k}>=<a_{j}, a_{k}>=<c_{j}, c_{k}>$ for all $j, k=1,2, \ldots, m ; j \leq k$. Using $\operatorname{det} W=-1$ and the equality $\left[a_{i_{1}} a_{i_{2}}\right]=-\left[c_{i_{1}} c_{i_{2}}\right]$, we obtain $\left[W a_{i_{1}} W a_{i_{2}}\right]=(\operatorname{det} W)\left[a_{i_{1}} a_{i_{2}}\right]=(-1)\left(-\left[c_{i_{1}} c_{i_{2}}\right]\right)=\left[c_{i_{1}} c_{i_{2}}\right]$.

Then the following equalities hold:

$$
\begin{gathered}
<W a_{j}, W a_{k}>=<c_{j}, c_{k}>, \\
{\left[W a_{i_{1}} W a_{i_{2}}\right]=\left[c_{i_{1}} c_{i_{2}}\right] .}
\end{gathered}
$$

Then, by Theorem 4.6, the unique $U_{2} \in S O(2)$ and the unique $b_{2} \in E_{2}$ exist such that $y(t)=U_{2}(W x(t))+b_{2}=$ $\left(U_{2} W\right) x(t)+b_{2}$ for all $t \in[0,1]$. Here U_{2} and b_{2} have the forms (4.6) and $b_{2}=y(t)-\left(U_{2} W\right) x(t)$, resp.

The matrices U_{i} and the constants b_{i} do not depend on $t \in[0,1]$ for $i=1,2$.
Let $F \in M(2)$ such that $y(t)=F x(t)$. Prove that $F x(t)=U_{1} x(t)+b_{1}$ or $F x(t)=\left(U_{2} W\right) x(t)+b_{2}$. Let $y(t)=F x(t)=C x+b$ for some $C \in O(2)$ and some $b \in E_{2}$. Then $C \in S O(2)$ or $C \in S O(2) W$. Assume that $C \in S O(2)$. Then, by the uniqueness in Theorem 4.6, $C=U_{1}$ and $b=b_{1}$. Assume that $C \in S O(2) W$. Then C has the form $C=D W$, where $D \in S O(2)$. We have $y(t)=(D W) x(t)+b=D(W x(t))+b$. Hence paths $y(t)$ and $W x(t)$ are $S M(2)$-equivalent. By the uniqueness in Theorem 4.6, $D=U_{2}$. This implies $b=b_{2}$.

Theorem 4.11. (i) Let $x(t)=\sum_{j=0}^{m} p_{j} B_{j, m}(t)$ and $y(t)=\sum_{j=0}^{m} q_{j} B_{j, m}(t)$ be two Bézier curves in E_{2} of degree m, where $m \geq 2$ such that $x(t) \stackrel{M(2)}{\sim} y(t)$. Then, the following equalities hold.

$$
\begin{equation*}
<p_{j}-p_{0}, p_{k}-p_{0}>=<q_{j}-q_{0}, q_{k}-q_{0}>, \tag{4.8}
\end{equation*}
$$

for all $j, k=1,2, \ldots, m ; j \leq k$.
(ii) Conversely, if $x(t)=\sum_{j=0}^{m} a_{j} t^{j}$ and $y(t)=\sum_{j=0}^{m} c_{j} t^{j}$ are two polynomial curves in E_{2} of degree m, where $m \geq 2$ such that the equalities (4.8) hold, then $x(t) \stackrel{M(2)}{\sim} y(t)$. Moreover, there exist the unique $F \in M(2)$ such that $y(t)=F x(t)$ for all $t \in[0,1]$. In this case, the following cases exist:
(ii.1) $\left[p_{i_{1}}-p_{0} p_{i_{2}}-p_{0}\right]=\left[q_{i_{1}}-q_{0} q_{i_{2}}-q_{0}\right]$,
(ii.2) $\left[p_{i_{1}}-p_{0} p_{i_{2}}-p_{0}\right]=-\left[q_{i_{1}}-q_{0} q_{i_{2}}-q_{0}\right]$.

In the case (ii.1), $F x(t)=V_{1} x(t)+b_{1}$, where $V_{1} \in S O(2), b_{1} \in E_{2}$. Here V_{1} and b_{1} have the forms (4.4) and $b_{1}=y(t)-V_{1} x(t)$, resp.
In the case (ii.2), $F x(t)=\left(V_{2} W\right) x(t)+b_{2}$, where $V_{2} \in S O(2), b_{2} \in E_{2}$. Here V_{2} and b_{2} have the forms

$$
V_{2}=\left(\begin{array}{cc}
\frac{\left\langle W p_{0}^{m}, q_{0}^{m}>\right.}{Q\left(W p_{0}^{m}\right)} & -\frac{\left[W p_{0}^{m} q_{0}^{m}\right]}{Q\left(W p_{0}^{m}\right)} \\
\frac{\left[W p_{0}^{m} q^{m}\right)}{Q\left(W p_{0}^{m}\right)} & \frac{\left\langle W p_{0}^{W}, q_{0}^{n}\right\rangle}{Q\left(W p_{0}^{n}\right)}
\end{array}\right),
$$

and $b_{2}=y(t)-\left(V_{2} W\right) x(t)$, resp.
The matrices V_{i} and the constants b_{i} do not depend on $t \in[0,1]$ for $i=1,2$.
Proof. It follows from Theorems 4.8 and 4.10.

References

[1] Aminov, Yu., Differential Geometry and Topology of Curves, CRC Press, New York, 2000. 1
[2] Aripov, R. G., Khadjiev (Khadzhiev) D., The complete system of global differential and integral invariants of a curve in Euclidean geometry, Russian Mathematics (Iz VUZ), 51(7) (2007), 1-14 . 1
[3] Berger, M., Geometry I, Springer-Verlag, Berlin Heidelberg, 1987. 2, 2.7
[4] Gibson, C. G., Elementary Geometry of Differentiable Curves, Cambridge University Press, 2001. 1
[5] Gray,A., Abbena, E. and Salamon,S., Modern Differential Geometry of Curves and surfaces with Mathematica, Third edition. Studies in Advanced Mathematics. Chapman and Hall/CRC, Boca Raton, FL, 2006. 1
[6] Guggenheimer, H. W., Differential Geometry, Dower Publ, INC., New York, 1977. 1
[7] Khadjiev, D., On invariants of immersions of an n-dimensional manifold in an n-dimensional pseudo-euclidean space, Journal of Nonlinear Mathematical Physics, 17(2010) 49-70. 1
[8] Khadjiev, D., Complete systems of differential invariants of vector fields in a Euclidean space, Turk J. Math., 34(2010), 543-560. 1
[9] Khadjiev, D., Oren, I., Pekșen, O., Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry, Turk. J. Math., 37 (2013) 80-94. 1, 4
[10] Khadjiev, D., Ören, ̇̇., Pekşen, Ö., Global invariants of path and curves for the group of all linear similarities in the two-dimensional Euclidean space, Int.J.Geo. Modern Phys, 15(6)(2018), 1-28. 2
[11] Khadjiev D., Pekşen Ö., The complete system of global differential and integral invariants of equiaffine curves, Diff. Geom. And Appl., 20 (2004) 168-175. 1
[12] Marsh D, Applied geometry for computer graphics and CAD, Springer-Verlag, London, 1999. 3, 4
[13] Montel, S., Ros, A., Curves and Surfaces, American Mathematical Society, 2005. 1
[14] O'Neill, B., Elementary Differential Geometry, Elsevier,Academic Press, Amsterdam, 2006. 1
[15] Ören, İ., Equivalence conditions of two Bé zier curves in the Euclidean geometry, Iran J Sci Technol Trans Sci., 42 (2018),1563-1577. 1, 4, 4, 4, 4
[16] Pekşen, Ö., Khadjiev, D., Ören, İ., Invariant parametrizations and complete systems of global invariants of curves in the pseudo-Euclidean geometry, Turk. J. Math., 36 (2012) 147-160. 1
[17] Spivak, M., Comprehensive Introduction to Differential Geometry, Publish Or Perish, INC., Houston, Texas, 1999. 1

[^0]: Email address: oren@ktu.edu.tr

