
Proceedings of International Conference on Mathematics
and Mathematics Education (ICMME 2018)
Turk. J. Math. Comput. Sci.
10(2018) 126–133
c©MatDer
http://dergipark.gov.tr/tjmcs MATDER

On Fuzzy Sub-H-Groups

Sibel Demiralpa,∗, Gülnur Haçata
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Abstract. In this paper we introduce fuzzy sub-H-group and give some examples. We show that there exist a
natural transformation between [Y,Z] and [X,Z] where Y is a fuzzy sub-H-group of X. Also we prove that if Y is a
fuzzy subspace of X, then ΩY is a fuzzy sub-H-group of ΩX.
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1. Introduction

Zadeh introduced the concepts of fuzzy sets and fuzzy set operations in [13]. In 1968, Chang developed a theory
of fuzzy topological spaces [1]. After that, basic concepts from homotopy theory were discussed in fuzzy settings. In
this direction, Chong-you [3] introduced the concept of fuzzy paths. Also in [2], fuzzy homotopy concepts in fuzzy
topological spaces were conceived. Then the fundamental group of a fuzzy topological space was developed in [7] .
Later many topics of algebraic topology were extended to fuzzy topology. For example, the concept of fuzzy H-spaces
and fuzzy H-groups have been introduced by Demiralp and Guner in [4]. An H-space is a pair (X, µ) where (X, p) is a
pointed topological space, µ : X × X −→ X is a continuous multiplication which makes the diagram

X
(c,1X ) //

1X ""

X × X

µ

��

X
(1X ,c)oo

1X||
X

homotopy commutative, i.e. µ ◦ (1x, c) ' 1x and µ ◦ (c, 1x) ' 1x, for the constant map c(x) = p. An H-group is an
H-space whose multiplication is homotopy associative and has a homotopy inverse [5].

The most important example of an H-group is the loop spaces.
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2. Preliminaries

In this section we recall some basic notions concerning fuzzy set theory.

Definition 2.1. [6] Let X be a non empty set. A fuzzy set A in X is a function A : X → [0, 1]. 1X and 0X are the
constant fuzzy sets taking values 1 and 0 , respectively. The collection of all fuzzy sets in X is denoted by IX . The set

supp A = {x ∈ X | A (x) > 0}

is called the support of fuzzy set A.

Definition 2.2. [9] A fuzzy point pλ in a set X is a fuzzy set such that

pλ (x) =

{
λ, x = p
0, x , p

where 0 < λ 6 1.

Definition 2.3. [8] A fuzzy topology on a set X is a family τ ⊆ IX which satisfies the following conditions:
(i) 0X , 1X ∈ τ.
(ii) A, B ∈ X ⇒ A ∧ B ∈ τ.
(iii) A j ∈ τ for all j ∈ J (where J is an index set)⇒ ∨

j∈J
A j ∈ τ.

Then the pair (X, τ) is called fuzzy topological space. Every member of τ is called fuzzy open sets.

Definition 2.4. [1] Let (X, τ) be a fuzzy topological space and X′ ⊂ X. Then

τ′ = {A |X′ : A ∈ τ}

is a fuzzy topology on X′ and (X′, τ′) is called the fuzzy subspace of (X, τ).

Definition 2.5. [4] Let X and Y be two sets, f : X → Y be a function and A be a fuzzy set in X, B be a fuzzy set in Y .
(1) the image of A under f is the fuzzy set f (A) defined such that,

f (A) (y) =

 ∨
x∈ f −1(y)

A (x) , if f −1 (y) , ∅,

0, otherwise

for all y ∈ Y.
(2) the inverse image of B under f is the fuzzy set f −1 (B) in X defined such that f −1 (B) (x) = B ( f (x)) , for all

x ∈ X.

Definition 2.6. [6] Let (X, τ) and (Y, τ′) be two fuzzy topological spaces.A function f : (X, τ) → (Y, τ′) is fuzzy
continuous if f −1 (V) ∈ τ, for all V ∈ τ′. The set of all fuzzy continuous functions from (X, τ) to (Y, τ′) is denoted by
FC (X,Y).

Let (A, τA) , (B, τB) be fuzzy subspaces of X and Y, respectively, and f ∈ FC (X,Y) such that f (A) ⊂ B. If for all
U ∈ τB, f −1 (U) ∩ A ∈ τA then f is called relative fuzzy continuous.

Definition 2.7. [11] Let (X, .) be a group, (X, τ) be a fuzzy topological space. If the function (X, τ) × (X, τ) → (X, τ) ,
(x, y)→ x.y−1 is relative fuzzy continuous, then (X, τ) is called a fuzzy topological group.

Definition 2.8. [4] Let (X, τ) be a fuzzy topological space and pλ be a fuzzy point in X. The pair (X, pλ) is called a
pointed fuzzy topological space (PFTS) and pλ is called the base point of (X, pλ).

Definition 2.9. [3] Let (X,T ) be a (classical) topological space. Then

T̃ =
{
A ∈ IX | S uppA ∈ T

}
is a fuzzy topology on X, called the fuzzy topology on X introduced by T and (X, T̃ ) is called the fuzzy topological
space introduced by (X,T ) .

Let εI denote Euclidean subspace topology on I and (I, ε̃I) denote the fuzzy topological space introduced by the
topological space (I, εI) .
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Definition 2.10. [10] Let (X, τ) , (Y, τ′) be fuzzy topological spaces and f , g ∈ FC(X,Y). If there exist a fuzzy
continuous function

F : (X, τ) × (I, ε̃I)→
(
Y, τ′

)
such that F (x, 0) = f (x) and F (x, 1) = g (x), for all x ∈ X, then f and g are called fuzzy homotopic. The map F is
called fuzzy homotopy from f to g and it is written f ' g. Also if for a fuzzy point pλ of (X, τ) , F (p, t) = f (p) = g (p)
then f and g are called fuzzy homotopic relative to pλ. If f = g then f ' g with the fuzzy homotopy F (x, t) = f (x) =

g (x) , for all t ∈ I.

Definition 2.11. [9] Let f : (X, τ) → (Y, τ
′

) be a fuzzy continuous function. If there is a fuzzy continuous function
f ′ : (Y, τ

′

)→ (X, τ) satisfies the following conditions:
(i) f ◦ f ′ ' 1Y

(ii) f ′ ◦ f ' 1X

then, f is called a fuzzy homotopy equivalence. Further, fuzzy topological spaces are called fuzzy homotopic
equivalent spaces and denoted by X ' Y .

A map f : (X, τ) −→ (Y, τ′) is a fuzzy monomorphism if and only if when f ◦ g ' f ◦ h , then g ' h .
The fuzzy homotopy relation “'” is an equivalence relation. Thus the set FC(X,Y) is partitioned into equiva-

lence classes, calling fuzzy homotopy classes. The fuzzy homotopy class of a function f is denoted by
[
f
]
. The set

of all fuzzy homotopy classes of the fuzzy continuous functions from (X, pλ) and (Y, q
η
) is denoted by

[
(X, pλ), (Y, qη)

]
. .

Let (X, pλ) and (Y, qη) be pointed fuzzy topological spaces. If f : (X, pλ) → (Y, q
η
) is a fuzzy continuous function

then it is assumed that all subsets contain the basepoint, f preserves the base point, i.e. f (p) = q and that all fuzzy
homotopies are relative to the base point.

Definition 2.12. [5] Let (X, τ) be a fuzzy topological space. If α : (I, ε̃I) −→ (X, τ) is a fuzzy continuous function
and the fuzzy set E is connected in (I, ε̃I) with E (0) > 0 and E (1) > 0, then the fuzzy set α (E) in (X, τ) is called a
fuzzy path in (X, τ). The fuzzy points (α (0))E(0) = α

(
0E(0)

)
and (α (1))E(1) = α

(
1E(1)

)
are called the initial point and the

terminal point of the fuzzy path α (E), respectively.

Definition 2.13. [3] Let A be a fuzzy set in a fuzzy topological space (X, τ) . If for any two fuzzy points aλ, bη ∈ A,
there is a fuzzy path contained in A with initial point aλ and terminal point bη, then A is said to be fuzzy path connected
in (X, τ) .

Definition 2.14. [3] A fuzzy path α (A) which the initial point and the terminal point are pλ, is called a fuzzy loop in
(X, pλ) based at pλ. The set of all fuzzy loops in (X, pλ) based at pλ is called fuzzy loop space. This space is a fuzzy
topological space having the fuzzy compact-open topology. It is denoted by Ω(X, pλ).

3. Fuzzy H-Groups

In this section we recall the concept of fuzzy H-space and fuzzy H-group.

Definition 3.1. [4] Let (X, pλ) be a pointed fuzzy topological space, µ : X×X → X is a fuzzy continuous multiplication
and c : X → X, c : x→ p is a constant function. If µ ◦ (c, 1X) ' 1X ' µ ◦ (1X , c) then (X, pλ) is called a fuzzy H-space
and c is called homotopy identity of (X, pλ). Here, (c, 1X) (x) = (c (x) , 1X (x)) = (p, x) for all x ∈ X.

Definition 3.2. [4] Let the PFTS (X, pλ) be a fuzzy H-space with the fuzzy continuous multiplication µ. If there exist
a function

T : X × X → X × X, T (x, y) = (y, x)

which makes the diagram

X × X T //

µ
""

X × X

µ
||

X
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homotopy commutative, i.e. µ ◦ T ' µ, then µ is called fuzzy homotopy abelian and (X, pλ) is called an abelian fuzzy
H-space. If µ ◦ (µ × 1X) ' µ ◦ (1X × µ) then µ is called fuzzy homotopy associative. If there exist a fuzzy continuous
function φ : X −→ X which makes the diagram

X
(φ,1X ) //

c
""

X × X

µ

��

X
(1X ,φ)oo

c
||

X

homotopy commutative, i.e. µ ◦ (φ, 1X) ' c ' µ ◦ (1X , φ) , then φ is called fuzzy homotopy inverse of µ.

Definition 3.3. [4] A fuzzy H-group is a fuzzy H-space which has a fuzzy homotopy associative multiplication and a
fuzzy homotopy inverse.

Example 3.4. Let X be a fuzzy topological space. Then Ω(X, pλ) is a fuzzy H-group with the base point w0(A) which
is the equal pλ at any point, fuzzy continuous multiplication m : Ω(X, pλ) × Ω(X, pλ) −→ Ω(X, pλ) defined such that,
for any α(E), β(D) ∈ Ω(X, pλ)

m (α (E) , β (D)) (t) =

 α
(
(2t)E(2t)

)
, 0 ≤ t ≤ 1

2

β
(
(2t − 1)D(2t−1)

)
, 1

2 ≤ t ≤ 1.

Example 3.5. Let (X, ·) be a group with the identity element e and (X, eλ, ·) be a fuzzy topological group. Then (X, eλ)
is a fuzzy H-group with the multiplication ” · ”.

4. Main Results

In this section we define fuzzy H-isomorphism and give some examples. Then we define fuzzy sub-H-group and
give some properties.

Throughout this section we assume that X is a fuzzy H-group with the continuous multiplication µ constant map c
and homotopy inverse φ.

Definition 4.1. Let X and Y be fuzzy H-groups. A fuzzy continuous map f : X −→ Y is called a fuzzy H-
homomorphism whenever f ◦µ ' η◦( f × f ) where η is the multiplication of Y . Also, f is called a fuzzy H-isomorphism
if there exists a fuzzy H-homomorphism g : Y −→ X such that f ◦ g ' 1Y and g ◦ f ' 1X . In this case, X and Y are
called fuzzy H-isomorphic.

Example 4.2. Let Y be a fuzzy topological space, pλ, qδ ∈ Y be fuzzy points and α(B) be a fuzzy path with the initial
point pλ and the terminal point qδ. Let define a map

α+ : Ω(Y, pλ) −→ Ω(Y, qδ)

such that α+(β(D)) = m(α−1(B),m(β(D), α(B))). Then it is clear that α+ is a fuzzy H-homomorphism. Also

α+ ◦
(
α−1

)+
' 1ΩX(

α−1
)+
◦ α+ ' 1ΩX .

Therefore α+ is a fuzzy H-isomorphism.

Theorem 4.3. Let (X, pλ) and (Y, qη) be fuzzy topological spaces and f ∈ FC (X,Y). Then f+ : Ω(X, pλ) −→ Ω(Y, qη)
defined by f+ (α(B)) = ( f ◦ α) (B) is a fuzzy H-homomorphism. Also if f is a fuzzy homotopy equivalence, then f+ is a
fuzzy H-isomorphism.
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Proof. Let α (B) , β (C) ∈ Ω (X, pλ) , then

m ◦ ( f+ × f+) (α (B) , β (C)) (t) = m ( f+ (α (B)) , f+(β (C)) (t)

= m (( f ◦ α) (B) , ( f ◦ β) (C)) (t)

=

 ( f ◦ α)
(
(2t)B(2t)

)
, 0 ≤ t ≤ 1

2

( f ◦ β)
(
(2t − 1)C(2t−1)

)
, 1

2 ≤ t ≤ 1

=

 f+
(
α (2t)B(2t)

)
, 0 ≤ t ≤ 1

2

f+
(
β (2t − 1)C(2t−1)

)
, 1

2 ≤ t ≤ 1

= f+ ◦ m (α (B) , β (C)) .

So f+ is a fuzzy H-homomorphism.
Let g : (Y, qη) −→ (X, pλ) be the fuzzy homotopy equivalence of f . Then

g+ : Ω(Y, qη) −→ Ω (X, pλ) , g+ (γ (D)) = (g ◦ γ) (D)

is a fuzzy H-homomorphism.

( f+ ◦ g+) (γ (D)) = f+ ((g ◦ γ) (D))

= (( f ◦ g) ◦ γ) (D)

' (1Y ◦ γ) (D) = γ (D)

(g+ ◦ f+) (α (B)) = g+ (( f ◦ α) (B))

= ((g ◦ f ) ◦ α) (B)

' (1X ◦ α) (B) = α (B)

Therefore f+ is a fuzzy H-isomorphism. �

Definition 4.4. [4] The category whose objects are pointed fuzzy topological spaces and the set of morphisms is

hom
(
(X, pλ) , (Y, qη)

)
=

[
(X, pλ) , (Y, qη)

]
is called the homotopy category of the pointed fuzzy topological spaces.

Theorem 4.5. [12] For any category C and object Y of C, there is a contravariant functor ΠY (or covariant functor
ΠY ) from C to the category of sets and functions which associates to an object X (or Z) of C the set ΠY (X) = hom(X,Y)
(or ΠY (Z) = hom(Y,Z)) and to a morphism f : X −→ X′ (or h : Z −→ Z′) the function

ΠY ( f ) = f ∗ : hom
(
X′,Y

)
−→ hom (X,Y)

(or h∗ : hom(Y,Z) −→ hom(Y,Z′)) defined by f ∗(g′) = g′ ◦ f , for g′ : X′ −→ Y (or h∗(g) = h ◦ g for g : Y −→ Z).

Theorem 4.6. [4] Let a pointed fuzzy topological space (X, pλ) be a fuzzy H-group. Then ΠX is a contravariant functor
from the homotopy category of the fuzzy pointed topological spaces to the category of groups and homomorphisms.

Definition 4.7. [12] Let C, D be two categories and F,G : C −→ D two functors from C to D. A natural transformation
T from F to G is a function which

i) to each X ∈ C assigns a morphism T (X) ∈ homD (F (X) ,G (X)) , i.e. T (X) : F (X) −→ G (X) ;
ii) for each morphism f ∈ homC (X,Y) satisfies

T (Y) ◦ F ( f ) = G ( f ) ◦ T (X) .

Theorem 4.8. Let X and Y be two fuzzy H-groups and g : X −→ Y be a map. Then g∗ is a natural transformation from
ΠX to ΠY .

Proof. For any map f : Z −→ Z′

(g∗ (Z) ◦ f ∗) ([h]) = g∗ (Z)
([

h ◦ f
])

=
[
g ◦ h ◦ f

]
( f ∗ ◦ g∗(Z)) ([h]) = f ∗

([
g ◦ h

])
=

[
g ◦ h ◦ f

]
.

So g∗ is a natural transformation. �
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Theorem 4.9. [4] Let Y be a pointed fuzzy topological space. Let the operation ”~” on
[
(Y, qδ), (X, pλ)

]
be identified

such that, [
g
]
~ [h] =

[
µ ◦ (g, h)

]
for all

[
g
]
, [h] ∈

[
(Y, qδ), (X, pλ)

]
. Then

([
(Y, qδ), (X, pλ)

]
,~

)
is a group with the unit element [c] , where c : X −→ X,

x −→ p is the constant function.

Theorem 4.10. Let Y be a fuzzy H-group and f : X −→ Y be a map. Then f∗ is a natural transformation from ΠX to
ΠY in the category of groups and homomorphisms if and only if f is a fuzzy H-homomorphism.

Proof. It is known that f∗ is a natural transformation. To show that f∗ is a homomorphism, let Z be any pointed fuzzy
topological spaces and g, h : Z −→ X be any functions. Then,

f∗ (Z)
([

g
]
~ [h]

)
= f∗ (Z)

([
µ ◦ (g, h)

])
=

[
f ◦ µ ◦ (g, h)

]
f∗ (Z)

([
g
])
~ f∗ (Z) ([h]) =

[
f ◦ g

]
~

[
f ◦ h

]
=

[
η ◦ ( f ◦ g, f ◦ h)

]
=

[
η ◦ ( f × f ) ◦ (g, h)

]
.

Because f is a fuzzy H-homomorphism, f ◦ µ ' η ◦ ( f × f ) ⇒ [ f ◦ µ] = [η ◦ ( f × f )]. Consequently f∗ is a
homomorphism. �

Definition 4.11. Let Y be a pointed fuzzy subspace of X. If Y is itself an fuzzy H-group with the same base point as
X, continuous multiplication µ |Y×Y= η, homotopy inverse φ |Y×Y= φ′ and constant function c |Y×Y= c′ such that the
inclusion map i : Y −→ X is a fuzzy H-homomorphism, then Y is called a fuzzy sub-H-group of X.

Example 4.12. Let X be a fuzzy H-group. Then X itself and the one point space {pλ} are fuzzy sub-H-groups of X.

Example 4.13. Let (G, eλ, ·) be a fuzzy topological group and H be a fuzzy subgroup of G. Then H is a fuzzy sub-H-
group of G.

Corollary 4.14. If Y is a fuzzy sub-H-group of X, then there exists a fuzzy continuous multiplication η : Y × Y → Y
such that i ◦ η ' µ ◦ (i × i) .

Theorem 4.15. Let (Y, pλ) be a PFTS and (Y ′, pλ) be a pointed fuzzy subspace of Y. Then the fuzzy loop space Ω(Y ′, pλ)
is a fuzzy sub-H-group of the fuzzy loop space Ω(Y, pλ).

Proof. Let i : Ω(Y ′, pλ) −→ Ω (Y, pλ) be the inclusion map. Then it is clear that i ◦ m ' m ◦ (i × i). �

Theorem 4.16. Let Y be a fuzzy sub-H-group of X. Then for the fuzzy constant map c′ : Y → Y, i ◦ c′ = c ◦ i.

Proof. Let qη ∈ Y , then,

(c ◦ i) (qη) = c(i(qη)) = c(qη) = pλ
(i ◦ c′)(qη) = i(c′(qη)) = i (pλ) = pλ.

Therefore i ◦ c′ = c ◦ i. �

Theorem 4.17. Let Y be a fuzzy sub-H-group of X. Then there exists a fuzzy continuous function ϕ : Y −→ Y such that
i ◦ ϕ ' φ ◦ i, where φ is fuzzy homotopy inverse of X.

Proof. Let Z be any pointed fuzzy topological space and f : Z −→ Y be any function. Then i∗ (Z) is a homomorphism
from the group ΠY (Z) to the group ΠX (Z) . Since [c′] is the unit element of ΠY (Z), then[

f
]
~

[
ϕ ◦ f

]
=

[
η ◦ ( f , ϕ ◦ f )

]
=

[
η ◦ (1Y , ϕ) ◦ f

]
=

[
c′ ◦ f

]
=

[
c′
]

Therefore
[
f
]−1

=
[
ϕ ◦ f

]
. Similarly

[
i ◦ f

]−1
=

[
φ ◦ i ◦ f

]
. So

i∗ (Z)
([

f
]−1

)
=

(
i∗ (Z)

([
f
]))−1

=
[
i ◦ f

]−1
=

[
φ ◦ i ◦ f

]
and

i∗ (Z)
([

f
]−1

)
= i∗ (Z)

([
ϕ ◦ f

])
=

[
i ◦ ϕ ◦ f

]
.

Therefore
[
φ ◦ i ◦ f

]
=

[
i ◦ ϕ ◦ f

]
. If we take Z as Y and f as 1Y , then

[
i ◦ ϕ

]
=

[
φ ◦ i

]
. �
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Theorem 4.18. Let Y be a pointed fuzzy subspace of X. If
i) there exists a fuzzy continuous multiplication η : Y × Y → Y such that i ◦ η ' µ ◦ (i × i) ,
ii) for the fuzzy constant map c′ : Y → Y, i ◦ c′ = c ◦ i,
iii) there exists a fuzzy continuous map φ′ : Y −→ Y such that i ◦ φ′ ' φ ◦ i,
iv) the inclusion map i : Y −→ X is a fuzzy monomorphism,
then Y is a fuzzy sub-H-group of X.

Proof. From i) and ii)

i ◦ η ◦
(
1Y , c′

)
' µ ◦ (i × i) ◦

(
1Y , c′

)
= µ ◦

(
i ◦ 1Y , i ◦ c′

)
= µ ◦ (1X ◦ i, c ◦ i)

= µ ◦ (1X , c) ◦ i

' 1X ◦ i = i ◦ 1Y .

Therefore i◦η◦ (1Y , c′) ' i◦1Y . Since i is a fuzzy monomorphism, η◦ (1Y , c′) ' 1Y . By the same way, η◦ (c′, 1Y ) ' 1Y .
Thus c′ is a fuzzy homotopy identity for η.
From i)

i ◦ η ◦ (η × 1Y ) ' µ ◦ (i × i) ◦ (η × 1Y )

= µ ◦
[
(i ◦ η) × (i ◦ 1Y )

]
' µ ◦

[
(µ ◦ (i × i)) × (1X ◦ i)

]
= µ ◦ (µ × 1X) ◦ (i × i × i)

' µ ◦ (1X × µ) ◦ (i × i × i)

= µ ◦
[
(1X ◦ i) × (µ ◦ (i × i))

]
' µ ◦

[
(i ◦ 1Y ) × (i ◦ η)

]
= µ ◦ (i × i) ◦ (1Y × η)

' i ◦ η ◦ (1Y × η) .

Therefore, since i is a fuzzy monomorphism, η ◦ (η × 1Y ) ' η ◦ (1Y × η). So η is fuzzy homotopy associative.
From iii)

i ◦ c′ = c ◦ i

' µ ◦ (1X , φ) ◦ i

= µ ◦ (1X ◦ i, φ ◦ i)

' µ ◦
(
i ◦ 1Y , i ◦ φ′

)
= µ ◦ (i × i) ◦

(
1Y , φ

′)
' i ◦ η ◦

(
1Y , φ

′) .
Since i is a fuzzy monomorphism c′ ' η ◦ (1Y , φ

′). By the same way, c′ ' η ◦ (φ′, 1Y ). Thus, φ′ is a homotopy inverse
for η. Therefore Y is a fuzzy H-group.
Let qδ be the base point of Y . From ii)

(i ◦ c′)(qδ) = i(c′(qδ)) = i(qδ) = qδ
(c′ ◦ i)(qδ) = c(i(qδ)) = c(qδ) = pλ.

So qδ = pλ . Also from i), i is a fuzzy H-homomorphism. Therefore Y is a fuzzy sub-H-group of X. �
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S. Demiralp, G. Haçat, Turk. J. Math. Comput. Sci., 10(2018), 126–133 133

[5] Dugundgi, J., Topology, Allyn ans Boston, Boston, 1996. 1, 2.12
[6] Foster, D.H., Fuzzy Topological Groups, J.Math.Anal.Appl., 67(1979), 549–564. 2.1, 2.6
[7] Freyd, P., Abelian Categories, Harper & Row, New York, 1964. 1
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