Proceedings of International Conference on Mathematics and Mathematics Education (ICMME 2018)

Turk. J. Math. Comput. Sci.

10(2018) 126–133

© MatDer

http://dergipark.gov.tr/tjmcs

On Fuzzy Sub-H-Groups

SIBEL DEMIRALP^{a,*}, GÜLNUR HAÇAT^a

^aDepartment of Mathematics, Faculty of Science and Letter, Kastamonu University, 37000, Kastamonu, Turkey.

Received: 15-08-2018 • Accepted: 13-11-2018

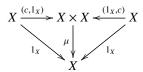
ABSTRACT. In this paper we introduce fuzzy sub-H-group and give some examples. We show that there exist a natural transformation between [Y, Z] and [X, Z] where Y is a fuzzy sub-H-group of X. Also we prove that if Y is a fuzzy subspace of X, then ΩY is a fuzzy sub-H-group of ΩX .

2010 AMS Classification: 55P45, 54A40, 20N25.

Keywords: Fuzzy H-space, fuzzy sub-H-group, fuzzy H-homomorphism, fuzzy H-isomorphism.

1. Introduction

Zadeh introduced the concepts of fuzzy sets and fuzzy set operations in [13]. In 1968, Chang developed a theory of fuzzy topological spaces [1]. After that, basic concepts from homotopy theory were discussed in fuzzy settings. In this direction, Chong-you [3] introduced the concept of fuzzy paths. Also in [2], fuzzy homotopy concepts in fuzzy topological spaces were conceived. Then the fundamental group of a fuzzy topological space was developed in [7]. Later many topics of algebraic topology were extended to fuzzy topology. For example, the concept of fuzzy H-spaces and fuzzy H-groups have been introduced by Demiralp and Guner in [4]. An H-space is a pair (X, μ) where (X, p) is a pointed topological space, $\mu: X \times X \longrightarrow X$ is a continuous multiplication which makes the diagram



homotopy commutative, i.e. $\mu \circ (1_x, c) \simeq 1_x$ and $\mu \circ (c, 1_x) \simeq 1_x$, for the constant map c(x) = p. An H-group is an H-space whose multiplication is homotopy associative and has a homotopy inverse [5].

The most important example of an H-group is the loop spaces.

Email addresses: sdemiralp@kastamonu.edu.tr (S. Demiralp), ghacat@ogr.kastamonu.edu.tr (G. Haçat)

^{*}Corresponding Author

2. Preliminaries

In this section we recall some basic notions concerning fuzzy set theory.

Definition 2.1. [6] Let X be a non empty set. A fuzzy set A in X is a function $A: X \to [0, 1]$. 1_X and 0_X are the constant fuzzy sets taking values 1 and 0, respectively. The collection of all fuzzy sets in X is denoted by I^X . The set

$$supp A = \{x \in X \mid A(x) > 0\}$$

is called the support of fuzzy set A.

Definition 2.2. [9] A fuzzy point p_{λ} in a set X is a fuzzy set such that

$$p_{\lambda}(x) = \begin{cases} \lambda, & x = p \\ 0, & x \neq p \end{cases}$$

where $0 < \lambda \le 1$.

Definition 2.3. [8] A fuzzy topology on a set X is a family $\tau \subseteq I^X$ which satisfies the following conditions:

- (i) 0_X , $1_X \in \tau$.
- (ii) $A, B \in X \Rightarrow A \land B \in \tau$.
- (iii) $A_j \in \tau$ for all $j \in J$ (where J is an index set) $\Rightarrow \bigvee_{j \in J} A_j \in \tau$.

Then the pair (X, τ) is called fuzzy topological space. Every member of τ is called fuzzy open sets.

Definition 2.4. [1] Let (X, τ) be a fuzzy topological space and $X' \subset X$. Then

$$\tau' = \{A \mid_{X'} : A \in \tau\}$$

is a fuzzy topology on X' and (X', τ') is called the fuzzy subspace of (X, τ) .

Definition 2.5. [4] Let X and Y be two sets, $f: X \to Y$ be a function and A be a fuzzy set in X, B be a fuzzy set in Y. (1) the image of A under f is the fuzzy set f(A) defined such that,

$$f(A)(y) = \begin{cases} \bigvee_{x \in f^{-1}(y)} A(x), & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise} \end{cases}$$

for all $y \in Y$.

(2) the inverse image of B under f is the fuzzy set $f^{-1}(B)$ in X defined such that $f^{-1}(B)(x) = B(f(x))$, for all $x \in X$.

Definition 2.6. [6] Let (X, τ) and (Y, τ') be two fuzzy topological spaces. A function $f: (X, \tau) \to (Y, \tau')$ is fuzzy continuous if $f^{-1}(V) \in \tau$, for all $V \in \tau'$. The set of all fuzzy continuous functions from (X, τ) to (Y, τ') is denoted by FC(X, Y).

Let (A, τ_A) , (B, τ_B) be fuzzy subspaces of X and Y, respectively, and $f \in FC(X, Y)$ such that $f(A) \subset B$. If for all $U \in \tau_B$, $f^{-1}(U) \cap A \in \tau_A$ then f is called relative fuzzy continuous.

Definition 2.7. [11] Let (X, .) be a group, (X, τ) be a fuzzy topological space. If the function $(X, \tau) \times (X, \tau) \to (X, \tau)$, $(x, y) \to x.y^{-1}$ is relative fuzzy continuous, then (X, τ) is called a fuzzy topological group.

Definition 2.8. [4] Let (X, τ) be a fuzzy topological space and p_{λ} be a fuzzy point in X. The pair (X, p_{λ}) is called a pointed fuzzy topological space (PFTS) and p_{λ} is called the base point of (X, p_{λ}) .

Definition 2.9. [3] Let (X, T) be a (classical) topological space. Then

$$\widetilde{T} = \left\{ A \in I^X \mid SuppA \in T \right\}$$

is a fuzzy topology on X, called the fuzzy topology on X introduced by T and (X, \widetilde{T}) is called the fuzzy topological space introduced by (X, T).

Let ε_I denote Euclidean subspace topology on I and $(I, \widetilde{\varepsilon_I})$ denote the fuzzy topological space introduced by the topological space (I, ε_I) .

On Fuzzy Sub-H-Groups 128

Definition 2.10. [10] Let (X, τ) , (Y, τ') be fuzzy topological spaces and $f, g \in FC(X, Y)$. If there exist a fuzzy continuous function

$$F: (X, \tau) \times (I, \widetilde{\varepsilon_I}) \to (Y, \tau')$$

such that F(x,0) = f(x) and F(x,1) = g(x), for all $x \in X$, then f and g are called fuzzy homotopic. The map F is called fuzzy homotopy from f to g and it is written $f \simeq g$. Also if for a fuzzy point p_{λ} of (X, τ) , F(p, t) = f(p) = g(p) then f and g are called fuzzy homotopic relative to p_{λ} . If f = g then $f \simeq g$ with the fuzzy homotopy F(x, t) = f(x) = g(x), for all $t \in I$.

Definition 2.11. [9] Let $f:(X,\tau)\to (Y,\tau')$ be a fuzzy continuous function. If there is a fuzzy continuous function $f':(Y,\tau')\to (X,\tau)$ satisfies the following conditions:

- (i) $f \circ f' \simeq 1_Y$
- (ii) $f' \circ f \simeq 1_X$

then, f is called a fuzzy homotopy equivalence. Further, fuzzy topological spaces are called fuzzy homotopic equivalent spaces and denoted by $X \simeq Y$.

A map $f:(X,\tau)\longrightarrow (Y,\tau')$ is a fuzzy monomorphism if and only if when $f\circ g\simeq f\circ h$, then $g\simeq h$.

The fuzzy homotopy relation " \simeq " is an equivalence relation. Thus the set FC(X, Y) is partitioned into equivalence classes, calling fuzzy homotopy classes. The fuzzy homotopy class of a function f is denoted by [f]. The set of all fuzzy homotopy classes of the fuzzy continuous functions from (X, p_{λ}) and (Y, q_n) is denoted by $[(X, p_{\lambda}), (Y, q_n)]$.

Let (X, p_{λ}) and (Y, q_{η}) be pointed fuzzy topological spaces. If $f: (X, p_{\lambda}) \to (Y, q_{\eta})$ is a fuzzy continuous function then it is assumed that all subsets contain the basepoint, f preserves the base point, i.e. f(p) = q and that all fuzzy homotopies are relative to the base point.

Definition 2.12. [5] Let (X, τ) be a fuzzy topological space. If $\alpha: (I, \widetilde{\varepsilon_I}) \longrightarrow (X, \tau)$ is a fuzzy continuous function and the fuzzy set E is connected in $(I, \widetilde{\varepsilon_I})$ with E(0) > 0 and E(1) > 0, then the fuzzy set $\alpha(E)$ in (X, τ) is called a fuzzy path in (X, τ) . The fuzzy points $(\alpha(0))_{E(0)} = \alpha(0_{E(0)})$ and $(\alpha(1))_{E(1)} = \alpha(1_{E(1)})$ are called the initial point and the terminal point of the fuzzy path $\alpha(E)$, respectively.

Definition 2.13. [3] Let A be a fuzzy set in a fuzzy topological space (X, τ) . If for any two fuzzy points $a_{\lambda}, b_{\eta} \in A$, there is a fuzzy path contained in A with initial point a_{λ} and terminal point b_{η} , then A is said to be fuzzy path connected in (X, τ) .

Definition 2.14. [3] A fuzzy path $\alpha(A)$ which the initial point and the terminal point are p_{λ} , is called a fuzzy loop in (X, p_{λ}) based at p_{λ} . The set of all fuzzy loops in (X, p_{λ}) based at p_{λ} is called fuzzy loop space. This space is a fuzzy topological space having the fuzzy compact-open topology. It is denoted by $\Omega(X, p_{\lambda})$.

3. Fuzzy H-Groups

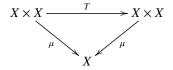
In this section we recall the concept of fuzzy H-space and fuzzy H-group.

Definition 3.1. [4] Let (X, p_{λ}) be a pointed fuzzy topological space, $\mu : X \times X \to X$ is a fuzzy continuous multiplication and $c : X \to X$, $c : x \to p$ is a constant function. If $\mu \circ (c, 1_X) \simeq 1_X \simeq \mu \circ (1_X, c)$ then (X, p_{λ}) is called a fuzzy H-space and c is called homotopy identity of (X, p_{λ}) . Here, $(c, 1_X)(x) = (c(x), 1_X(x)) = (p, x)$ for all $x \in X$.

Definition 3.2. [4] Let the PFTS (X, p_{λ}) be a fuzzy H-space with the fuzzy continuous multiplication μ . If there exist a function

$$T: X \times X \to X \times X, \ T(x, y) = (y, x)$$

which makes the diagram



homotopy commutative, i.e. $\mu \circ T \simeq \mu$, then μ is called fuzzy homotopy abelian and (X, p_{λ}) is called an abelian fuzzy H-space. If $\mu \circ (\mu \times 1_X) \simeq \mu \circ (1_X \times \mu)$ then μ is called fuzzy homotopy associative. If there exist a fuzzy continuous function $\phi : X \longrightarrow X$ which makes the diagram

$$X \xrightarrow{c} X \times X \xrightarrow{c} X$$

homotopy commutative, i.e. $\mu \circ (\phi, 1_X) \simeq c \simeq \mu \circ (1_X, \phi)$, then ϕ is called fuzzy homotopy inverse of μ .

Definition 3.3. [4] A fuzzy H-group is a fuzzy H-space which has a fuzzy homotopy associative multiplication and a fuzzy homotopy inverse.

Example 3.4. Let X be a fuzzy topological space. Then $\Omega(X, p_{\lambda})$ is a fuzzy H-group with the base point $w_0(A)$ which is the equal p_{λ} at any point, fuzzy continuous multiplication $m: \Omega(X, p_{\lambda}) \times \Omega(X, p_{\lambda}) \longrightarrow \Omega(X, p_{\lambda})$ defined such that, for any $\alpha(E), \beta(D) \in \Omega(X, p_{\lambda})$

$$m\left(\alpha\left(E\right),\beta\left(D\right)\right)\left(t\right) = \left\{ \begin{array}{ll} \alpha\left((2t)_{E(2t)}\right) & , 0 \leq t \leq \frac{1}{2} \\ \beta\left((2t-1)_{D(2t-1)}\right) & , \frac{1}{2} \leq t \leq 1. \end{array} \right.$$

Example 3.5. Let (X, \cdot) be a group with the identity element e and (X, e_{λ}, \cdot) be a fuzzy topological group. Then (X, e_{λ}) is a fuzzy H-group with the multiplication " \cdot ".

4. Main Results

In this section we define fuzzy H-isomorphism and give some examples. Then we define fuzzy sub-H-group and give some properties.

Throughout this section we assume that X is a fuzzy H-group with the continuous multiplication μ constant map c and homotopy inverse ϕ .

Definition 4.1. Let X and Y be fuzzy H-groups. A fuzzy continuous map $f: X \longrightarrow Y$ is called a fuzzy H-homomorphism whenever $f \circ \mu \simeq \eta \circ (f \times f)$ where η is the multiplication of Y. Also, f is called a fuzzy H-isomorphism if there exists a fuzzy H-homomorphism $g: Y \longrightarrow X$ such that $f \circ g \simeq 1_Y$ and $g \circ f \simeq 1_X$. In this case, X and Y are called fuzzy H-isomorphic.

Example 4.2. Let Y be a fuzzy topological space, $p_{\lambda}, q_{\delta} \in Y$ be fuzzy points and $\alpha(B)$ be a fuzzy path with the initial point p_{λ} and the terminal point q_{δ} . Let define a map

$$\alpha^+:\Omega(Y,p_\lambda)\longrightarrow\Omega(Y,q_\delta)$$

such that $\alpha^+(\beta(D)) = m(\alpha^{-1}(B), m(\beta(D), \alpha(B)))$. Then it is clear that α^+ is a fuzzy H-homomorphism. Also

$$\alpha^+ \circ (\alpha^{-1})^+ \simeq 1_{\Omega X}$$
 $(\alpha^{-1})^+ \circ \alpha^+ \simeq 1_{\Omega X}.$

Therefore α^+ is a fuzzy H-isomorphism.

Theorem 4.3. Let (X, p_{λ}) and (Y, q_{η}) be fuzzy topological spaces and $f \in FC(X, Y)$. Then $f_{+}: \Omega(X, p_{\lambda}) \longrightarrow \Omega(Y, q_{\eta})$ defined by $f_{+}(\alpha(B)) = (f \circ \alpha)(B)$ is a fuzzy H-homomorphism. Also if f is a fuzzy homotopy equivalence, then f_{+} is a fuzzy H-isomorphism.

On Fuzzy Sub-H-Groups 130

Proof. Let $\alpha(B)$, $\beta(C) \in \Omega(X, p_{\lambda})$, then

$$m \circ (f_{+} \times f_{+}) (\alpha(B), \beta(C)) (t) = m (f_{+} (\alpha(B)), f_{+} (\beta(C)) (t)$$

$$= m ((f \circ \alpha)(B), (f \circ \beta)(C)) (t)$$

$$= \begin{cases} (f \circ \alpha) ((2t)_{B(2t)}) &, 0 \le t \le \frac{1}{2} \\ (f \circ \beta) ((2t - 1)_{C(2t - 1)}) &, \frac{1}{2} \le t \le 1 \end{cases}$$

$$= \begin{cases} f_{+} (\alpha(2t)_{B(2t)}) &, 0 \le t \le \frac{1}{2} \\ f_{+} (\beta(2t - 1)_{C(2t - 1)}) &, \frac{1}{2} \le t \le 1 \end{cases}$$

$$= f_{+} \circ m (\alpha(B), \beta(C)).$$

So f_+ is a fuzzy H-homomorphism.

Let $g:(Y,q_{\eta})\longrightarrow (X,p_{\lambda})$ be the fuzzy homotopy equivalence of f. Then

$$g_+: \Omega(Y, q_\eta) \longrightarrow \Omega(X, p_\lambda), g_+(\gamma(D)) = (g \circ \gamma)(D)$$

is a fuzzy H-homomorphism.

$$(f_{+} \circ g_{+}) (\gamma(D)) = f_{+} ((g \circ \gamma)(D))$$

$$= ((f \circ g) \circ \gamma)(D)$$

$$\simeq (1_{Y} \circ \gamma)(D) = \gamma(D)$$

$$(g_{+} \circ f_{+}) (\alpha(B)) = g_{+} ((f \circ \alpha)(B))$$

$$= ((g \circ f) \circ \alpha)(B)$$

$$\simeq (1_{Y} \circ \alpha)(B) = \alpha(B)$$

Therefore f_+ is a fuzzy H-isomorphism.

Definition 4.4. [4] The category whose objects are pointed fuzzy topological spaces and the set of morphisms is

$$hom((X, p_{\lambda}), (Y, q_{\eta})) = [(X, p_{\lambda}), (Y, q_{\eta})]$$

П

is called the homotopy category of the pointed fuzzy topological spaces.

Theorem 4.5. [12] For any category C and object Y of C, there is a contravariant functor Π^Y (or covariant functor Π_Y) from C to the category of sets and functions which associates to an object X (or Z) of C the set $\Pi^Y(X) = hom(X, Y)$ (or $\Pi_Y(Z) = hom(Y, Z)$) and to a morphism $f: X \longrightarrow X'$ (or $h: Z \longrightarrow Z'$) the function

$$\Pi^{Y}(f) = f^{*} : \text{hom}(X', Y) \longrightarrow \text{hom}(X, Y)$$

 $(or\ h_*:hom(Y,Z)\longrightarrow hom(Y,Z'))$ defined by $f^*(g')=g'\circ f$, for $g':X'\longrightarrow Y$ $(or\ h_*(g)=h\circ g$ for $g:Y\longrightarrow Z)$.

Theorem 4.6. [4] Let a pointed fuzzy topological space (X, p_{λ}) be a fuzzy H-group. Then Π^{X} is a contravariant functor from the homotopy category of the fuzzy pointed topological spaces to the category of groups and homomorphisms.

Definition 4.7. [12] Let C, D be two categories and $F, G : C \longrightarrow D$ two functors from C to D. A natural transformation T from F to G is a function which

- i) to each $X \in C$ assigns a morphism $T(X) \in \text{hom}_D(F(X), G(X))$, i.e. $T(X) : F(X) \longrightarrow G(X)$;
- ii) for each morphism $f \in \text{hom}_C(X, Y)$ satisfies

$$T(Y) \circ F(f) = G(f) \circ T(X)$$
.

Theorem 4.8. Let X and Y be two fuzzy H-groups and $g: X \longrightarrow Y$ be a map. Then g_* is a natural transformation from Π^X to Π^Y .

Proof. For any map $f: Z \longrightarrow Z'$

$$(g_*(Z) \circ f^*)([h]) = g_*(Z)([h \circ f]) = [g \circ h \circ f]$$

$$(f^* \circ g_*(Z))([h]) = f^*([g \circ h]) = [g \circ h \circ f].$$

So g_* is a natural transformation.

П

Theorem 4.9. [4] Let Y be a pointed fuzzy topological space. Let the operation " \circledast " on $[(Y, q_{\delta}), (X, p_{\lambda})]$ be identified such that,

$$[g] \circledast [h] = [\mu \circ (g, h)]$$

for all [g], $[h] \in [(Y, q_{\delta}), (X, p_{\lambda})]$. Then $([(Y, q_{\delta}), (X, p_{\lambda})], \circledast)$ is a group with the unit element [c], where $c: X \longrightarrow X$, $x \longrightarrow p$ is the constant function.

Theorem 4.10. Let Y be a fuzzy H-group and $f: X \longrightarrow Y$ be a map. Then f_* is a natural transformation from Π^X to Π^Y in the category of groups and homomorphisms if and only if f is a fuzzy H-homomorphism.

Proof. It is known that f_* is a natural transformation. To show that f_* is a homomorphism, let Z be any pointed fuzzy topological spaces and $g, h: Z \longrightarrow X$ be any functions. Then,

$$f_*(Z)([g] \circledast [h]) = f_*(Z)([\mu \circ (g,h)])$$

$$= [f \circ \mu \circ (g,h)]$$

$$f_*(Z)([g]) \circledast f_*(Z)([h]) = [f \circ g] \circledast [f \circ h]$$

$$= [\eta \circ (f \circ g, f \circ h)]$$

$$= [\eta \circ (f \times f) \circ (g,h)].$$

Because f is a fuzzy H-homomorphism, $f \circ \mu \simeq \eta \circ (f \times f) \Rightarrow [f \circ \mu] = [\eta \circ (f \times f)]$. Consequently f_* is a homomorphism.

Definition 4.11. Let Y be a pointed fuzzy subspace of X. If Y is itself an fuzzy H-group with the same base point as X, continuous multiplication $\mu \mid_{Y \times Y} = \eta$, homotopy inverse $\phi \mid_{Y \times Y} = \phi'$ and constant function $c \mid_{Y \times Y} = c'$ such that the inclusion map $i: Y \longrightarrow X$ is a fuzzy H-homomorphism, then Y is called a fuzzy sub-H-group of X.

Example 4.12. Let X be a fuzzy H-group. Then X itself and the one point space $\{p_{\lambda}\}$ are fuzzy sub-H-groups of X.

Example 4.13. Let (G, e_{λ}, \cdot) be a fuzzy topological group and H be a fuzzy subgroup of G. Then H is a fuzzy sub-H-group of G.

Corollary 4.14. If Y is a fuzzy sub-H-group of X, then there exists a fuzzy continuous multiplication $\eta: Y \times Y \to Y$ such that $i \circ \eta \simeq \mu \circ (i \times i)$.

Theorem 4.15. Let (Y, p_{λ}) be a PFTS and (Y', p_{λ}) be a pointed fuzzy subspace of Y. Then the fuzzy loop space $\Omega(Y', p_{\lambda})$ is a fuzzy sub-H-group of the fuzzy loop space $\Omega(Y, p_{\lambda})$.

Proof. Let $i: \Omega(Y', p_A) \longrightarrow \Omega(Y, p_A)$ be the inclusion map. Then it is clear that $i \circ m \simeq m \circ (i \times i)$.

Theorem 4.16. Let Y be a fuzzy sub-H-group of X. Then for the fuzzy constant map $c': Y \to Y$, $i \circ c' = c \circ i$.

Proof. Let $q_{\eta} \in Y$, then,

$$(c \circ i)(q_{\eta}) = c(i(q_{\eta})) = c(q_{\eta}) = p_{\lambda}$$

$$(i \circ c')(q_{\eta}) = i(c'(q_{\eta})) = i(p_{\lambda}) = p_{\lambda}.$$

Therefore $i \circ c' = c \circ i$.

Theorem 4.17. Let Y be a fuzzy sub-H-group of X. Then there exists a fuzzy continuous function $\varphi: Y \longrightarrow Y$ such that $i \circ \varphi \simeq \phi \circ i$, where ϕ is fuzzy homotopy inverse of X.

Proof. Let Z be any pointed fuzzy topological space and $f: Z \longrightarrow Y$ be any function. Then $i_*(Z)$ is a homomorphism from the group $\Pi^Y(Z)$ to the group $\Pi^X(Z)$. Since [c'] is the unit element of $\Pi^Y(Z)$, then

$$[f] \circledast [\varphi \circ f] = [\eta \circ (f, \varphi \circ f)] = [\eta \circ (1_Y, \varphi) \circ f] = [c' \circ f] = [c']$$

Therefore $[f]^{-1} = [\varphi \circ f]$. Similarly $[i \circ f]^{-1} = [\phi \circ i \circ f]$. So

$$i_*\left(Z\right)\left(\left[f\right]^{-1}\right)=\left(i_*\left(Z\right)\left(\left[f\right]\right)\right)^{-1}=\left[i\circ f\right]^{-1}=\left[\phi\circ i\circ f\right]$$

and

$$i_*(Z)([f]^{-1}) = i_*(Z)([\varphi \circ f]) = [i \circ \varphi \circ f].$$

Therefore $[\phi \circ i \circ f] = [i \circ \varphi \circ f]$. If we take *Z* as *Y* and *f* as 1_Y , then $[i \circ \varphi] = [\phi \circ i]$.

On Fuzzy Sub-H-Groups 132

Theorem 4.18. Let Y be a pointed fuzzy subspace of X. If

- i) there exists a fuzzy continuous multiplication $\eta: Y \times Y \to Y$ such that $i \circ \eta \simeq \mu \circ (i \times i)$,
- *ii)* for the fuzzy constant map $c': Y \to Y$, $i \circ c' = c \circ i$,
- iii) there exists a fuzzy continuous map $\phi': Y \longrightarrow Y$ such that $i \circ \phi' \simeq \phi \circ i$,
- iv) the inclusion map $i: Y \longrightarrow X$ is a fuzzy monomorphism,

then Y is a fuzzy sub-H-group of X.

Proof. From i) and ii)

$$i \circ \eta \circ (1_Y, c') \simeq \mu \circ (i \times i) \circ (1_Y, c')$$

$$= \mu \circ (i \circ 1_Y, i \circ c')$$

$$= \mu \circ (1_X \circ i, c \circ i)$$

$$= \mu \circ (1_X, c) \circ i$$

$$\simeq 1_X \circ i = i \circ 1_Y.$$

Therefore $i \circ \eta \circ (1_Y, c') \simeq i \circ 1_Y$. Since i is a fuzzy monomorphism, $\eta \circ (1_Y, c') \simeq 1_Y$. By the same way, $\eta \circ (c', 1_Y) \simeq 1_Y$. Thus c' is a fuzzy homotopy identity for η . From i)

$$\begin{array}{lll} i \circ \eta \circ (\eta \times 1_Y) & \simeq & \mu \circ (i \times i) \circ (\eta \times 1_Y) \\ & = & \mu \circ \left[(i \circ \eta) \times (i \circ 1_Y) \right] \\ & \simeq & \mu \circ \left[(\mu \circ (i \times i)) \times (1_X \circ i) \right] \\ & = & \mu \circ (\mu \times 1_X) \circ (i \times i \times i) \\ & \simeq & \mu \circ (1_X \times \mu) \circ (i \times i \times i) \\ & = & \mu \circ \left[(1_X \circ i) \times (\mu \circ (i \times i)) \right] \\ & \simeq & \mu \circ \left[(i \circ 1_Y) \times (i \circ \eta) \right] \\ & = & \mu \circ (i \times i) \circ (1_Y \times \eta) \\ & \simeq & i \circ \eta \circ (1_Y \times \eta) \,. \end{array}$$

Therefore, since *i* is a fuzzy monomorphism, $\eta \circ (\eta \times 1_Y) \simeq \eta \circ (1_Y \times \eta)$. So η is fuzzy homotopy associative. From iii)

$$i \circ c' = c \circ i$$

$$\simeq \mu \circ (1_X, \phi) \circ i$$

$$= \mu \circ (1_X \circ i, \phi \circ i)$$

$$\simeq \mu \circ (i \circ 1_Y, i \circ \phi')$$

$$= \mu \circ (i \times i) \circ (1_Y, \phi')$$

$$\simeq i \circ \eta \circ (1_Y, \phi').$$

Since *i* is a fuzzy monomorphism $c' \simeq \eta \circ (1_Y, \phi')$. By the same way, $c' \simeq \eta \circ (\phi', 1_Y)$. Thus, ϕ' is a homotopy inverse for η . Therefore *Y* is a fuzzy H-group. Let q_{δ} be the base point of *Y*. From ii)

$$(i \circ c')(q_{\delta}) = i(c'(q_{\delta})) = i(q_{\delta}) = q_{\delta}$$
$$(c' \circ i)(q_{\delta}) = c(i(q_{\delta})) = c(q_{\delta}) = p_{\lambda}.$$

So $q_{\delta} = p_{\lambda}$. Also from i), i is a fuzzy H-homomorphism. Therefore Y is a fuzzy sub-H-group of X.

REFERENCES

- [1] Chang, C. L., Fuzzy topological spaces, Journal of mathematical Analysis and Applications, 24(1968), 182-190. 1, 2.4
- [2] Chang, Y. Z., Wang Jin, L., Fuzzy homotopy type invariance of fundamental group of fuzzy topological space, Fuzzy Math, 4(1984), 53-56. 1
- [3] Chong-you, Z., Fuzzy path and fuzzy connectedness, Fuzzy sets and Systems, 14.3(1984), 273-280. 1, 2.9, 2.13, 2.14
- [4] Demiralp, S., Güner, E., Some characterizations of Hopf group on fuzzy topological spaces, Iranian Journal of Fuzzy Systems, 11.(6)(2014), 111–121. 1, 2.5, 2.8, 3.1, 3.2, 3.3, 4.4, 4.6, 4.9

- [5] Dugundgi, J., Topology, Allyn ans Boston, Boston, 1996. 1, 2.12
- [6] Foster, D.H., Fuzzy Topological Groups, J.Math.Anal.Appl., 67(1979), 549–564. 2.1, 2.6
- [7] Freyd, P., Abelian Categories, Harper & Row, New York, 1964. 1
- [8] Gümüs, S., Yildiz, C., The Fuzzy Sheaf of the Groups Formed by Fuzzy Topological Space, Int.Jorn. of Pure and Appl. Math., 37(1)(2007), 101–112. 2.3
- [9] Güner, E., Fuzzy contractibility, Fac. Sci. Univ. Ank. Series A, 1(2007), 11-16. 2.2, 2.11
- [10] Güner, E., Balci, S., On the fuzzy sheaf of the fundamental groups, Taiwanese Journal of Mathematics, (2007), 1057-1062. 2.10
- [11] Rosenfeld, A., Fuzzy groups, J. Math. Anal. Appl., 35(1971), 512-517. 2.7
- [12] Spainer, E.H., Algebraic Topology, Springer, Verlag, 1994. 4.5, 4.7
- [13] Zadeh, L. A., Fuzzy Sets, Information and control, 8(1965), 3. 1