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Abstract — This Paper introduces the concept of matrix operators and establishes two new theorems on
matrix summability of Fourier series and its derived series. the results obtained in the paper further extend
several known results on linear operators. Various types of criteria, under varying conditions, for the matrix
summability of the Fourier series, In this paper quite a different and general type of criterion for summability
of the Fourier Series has been obtained, in the theorem function f is integrable in the sense of Lebesgue to the
interval [—m, ] and period with period 2.
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1. Introduction

Let 3o, u, be a given infinite series with sequence of partial sum {S_}. Let A= [amk) be
an infinite triangular matrix of real constants, The sequence-to-sequence transformation
[4].

A —_
tn - EE=IIEI Aok SI.-: - EE:=I} Apn-k Sn—l:: (1)

Defines the sequence t# of matrix means of the sequence {S_}, generated by the sequence
of coefficients (a, ). The series T2, u,, is said to be summable to the sum S by We can
writet* = § (A),asn— o0,

The necessary and sufficient conditions for A-transform to be regular

(ie.lim 8, =8 = lim th =18)

are the well-known Silverman-Toeplitz conditions? [1][4] where the triangular matrix
A=(a,.) nk=0123..anda,, = 0fork > n isregular if
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lima ., =0 ;k=1,2

N oe nk
: n p—
lim Zk=o@nk = 1

ZE:D|Hn,l{| <M ; n=1,2,..(M independent of n)
and
tﬂlB = ZE=I} an,kzrl:'\::[ﬁbk,rsr'
Examples:

(1). Matrix Hankel [2] . Let {h,}>_, be a positive sequence of real constants let

H = (aux) = (o)
2). Matrix Toeplitz [4] T = (a,.) 5 (anx =0 ; k> n)(Thus from (1), We get [2]
(1). Eou, = A (T)=X ,au, =aA (T)
(2).  Zisou, = A)(T) &ZTL, v, = A (T) =Xio(u, +v,) = A +4,(T)
(3). Zizouwa=A; (AL, u, =4, (T) =4 =4

Proof (3): Now by (1) we have

(Rj = (rm.n) = (am.[!l'bm.n + Hm,l'hm,n—l + + Hm,n—l'bm.l + Hm.n'bm,l})
tm = EE:LI} Ik 'Sl{.

=ty = Uno-Sp Ty Sy F o Sy +F oy Sy TSy

=ty = a,0-bm0(So) + (2me Pt + 2ma-Pao)-(51) + (2 o-bms +an . by +
am:.bmu)(sgj — [Hmu-bma +ag,.bys tagby, + ﬂma-bmu)- (S;) +
(amo-Pme Fama-bms Famabps +ans by +an e byo)(8s) + (2o bomm +
am1-Prmme F amabpm o ForFag b Fag b ) (Sn) +
(amo-Pmme1 + 3ma-Prm—s + @ma-Bmm-s + =+ amm-1-Pm1 + 8mm-Pmo ) (Sm)

=ty = 3mo-(DPmo-So + bma-S1 +bma-So +ba Sy +b oSy +by 0 S, +

brm-Sm) + 28ma- (Pmo-Si+ by i-Ss+ by 83 +bys.Sy+ -+ by oS+

brme1-Sm)+ ama (Bro-Ss +by .S +b .Sy +b oS+ +b oS+

bmez-Sm) + =+ amm-1- (Pmo-Sm1 + Bm1-Sm) + 2o (Pro- Sim)

= tm = Amo- Lkt o Pk -Skro T 2m 1 Zicco Pk Skt + 3m 2 Ziso Dige -Sgesn +0 F
Amm-1- Zm (= l}b mk -Sktm-1 T 8mm- k=0 Pmk -Skim

— 5m -n
=}tm_ n=02 mnzl-r.l}b l-:SLHn

= lim t, =X ;a,..4, = A,

M —* o0 -
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oty = A;(R) 5 (R) = (rpna)
Similarly
Zisou, = A (R)= A, = A,

2 Preliminaries

Theorem 2.1. Let A= (a,,).B=(b,.) be an infinite triangular matrix with
a,i = 0,b,, = Othent2® € ‘B(nﬂl ) Where B(-A,.) Space call to bounded linear operator on
A, TicA, » A and A, = {(s, )i T g(n+ )" L Ju, I < o0;u, = As, =5, —s,_,}

Proof of Theorem 2.1. Let T2 mn-denote the mn-term of the AB-transform, in terms of
(n+ 1uy, thatis 28 = T ja, T, by, (4 Du, = (n+ 1)(t2% —t22,) to prove the
theorem, it will be sufficient to show that E;":Dnl: |t28|" < oo Using Hélder’s inequality,
we have
nmﬁn+l| ﬂB| n= Dn+l|2k o nl{E| ubL;,|(J+1)u|
-nmzk:u 8,1 Lico by (1 + 1)° |U-i| x {Zi=o ﬂn,kzi:ubmi}r_l

Since Xf=pa, i Zi=o by; = 1 We obtain

| JE!LB| T din= Dn+l|zk ] !‘.II.{.E| Dbk,|[:]+1)u||

ZL: 00k Zizo by (1 +1)° |11| = X0+ 1) |11| 2oL _HZL: 0 8k - Dig;

n= “n+1

Form,n = 1,

1

=] 1 n __
Zn:i n+1z|_{=|} Hﬂ;l‘i'hl{;i —_ i+1

e[ =0(1). Z2, (G + 17 [w| 55 = 0(1).ZZo( + D7y =0(1) <

L=
n= IDIn+1

This completes the proof of the theorem (1).

3 Particular Cases

Several authors such as ([4]-[6]), (see also [7]) studied the matrix summability method and
obtained many interesting results.

The important particular cases of the triangular matrix means are:

(i) Cesaro mean of order 1 or (C, 1) mean if, a_ , = ﬁ .

1

(ii) Harmonic means (H, 1)when, a_, . = s rr—
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rL—L:+|5+'_‘}I
(iii) (€, 8)where0 < § < 1 means when, a_, = =2~

§
(%3
(v) Norlund means (N, p,)when, a, ; = "2=EwhereP, = X, p — w0 asn — .

(vi) Riesz means (N, p,, Jwhen, a,, = SEwhereP, = Zi_,p, = @ asn - .

4 Results and Discussion

Let f(t) be a periodic function with period 2m, integrable in the sense of Lebesgue over
[, 7]. The Fourier series and derived Fourier series off(t) are given by [3][4][5]

f(t)~ ? + 22 (a,cosnx+b_ sinnx) =X A (%)

With partial sums s, and
= n(b, cosnx — a, sin nx) (2)

We shall use following notations
T = Integral part Df% = [ﬂ
We use the following notations

b(t) = f(x +t) + f(x — t) — 26(x)

g(t) = f(x + t) — f(x — t) — 2tf(x)

1 I slnlil-:—r+§}t
Kag(nt) = - 2o ani-Zrmo b — o
1 sinfn—l-ﬁ;z}t
Mn ('tj = ;ZE:I} Hn,n—k'T;:t-. [3]

T = Integral part Df% = [ﬂ

Theorem 4.1. Let {p_ }i=, be a real non-negative and non-increasing sequence of real
constants such that B, = Zf_,py — ©;(n— o) and A= (a, ).B = (by,) be an infinite
triangular matrix with a_ . = 0, If

d(t) =f;|q}[u]|du=o(;), as t—= 40 ,t= E]

()P
wherea(t) is a positive, monotonic and non-increasing function of t — +0

logn = O(a(n).B,); (n — o).
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and

lim ..r nt dt_D(lj B Ef: I}bnn kE— El{ n— rbnl{

n—+oa

Then the Fourier series (1) is summable AB to f (x).

Theorem 4.2. Let {amk}:zu be a real non-negative and non-decreasing sequence with
respect to k such that T = (a,,. ) be an infinite triangular matrix with a,, . = 0. If

{-_}), as t— 40
REY

INCEOIE (

Then the derived Fourier Series (2) is sumable (T) to the sum f(x), where f(x) is the
derivative of f(x),provided «(t) is a positive monotonic decreasing function of t — +0
ta(t)

1 L increases monotonically as t — +0.
PEy

such

For the proof of our theorems, following lemmas are required.

Lemma 4.1. [5] If {an L:} IS non-negative and non-decreasing with k then for
0<t<m,0<a<b<oco and for any n, we have |ZE_.a, . _..e"™* ¥ <0(a,.)
Where A, . = Xi-pa,, kA, =1 (vnz=0).

Lemma 4.2. [5] If {bnk} is non-negative and non- decreasing with k then for
0<t<m,0<a<b<co and for any n, we have |ZB_.b_ . _..e"* ¥ <0(B,.)
Where B, . = Xi-ob,, 1 .B,, =1 (¥n=0).

Lemma4.3.Foro<t < i K,gz(nt) = 0(n).

. -1
Proof. For 0 < t < i,sin(n-l— t<(n+1)t [sin[%]-| :i%

1 k sln[k—r+§\}t 1 k |sln|il-:—r+;f}t|
Kap(nt) = ;Eﬂzﬂﬂn,kzrzﬂbhk—r = ;Eg:u Ak Zr=0 Pk |ain =
In+l

k
2 EEFD EI|:'1,I.-: Er=l}bl-:,|=:—r

gin—t

Since X pa, . Trcg b, =1

Thus K,z (n,t) = 0(n)
1 EBpr
Lemmadd For-<t<8<mKgp(nt) = D{T) ; T=n

Ein [L:— r +i%

gin—t

1 k
Proof. K p(n,t) < - ‘EE:D a1 Zo=p Pry-r

E:ubk,g_r sin (k— r+ %)t‘ ; (by Jordan's lemma)
1[k—r+§}t|

—n A Jl{Inl EEI:,:: o bm{_re
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ilk—r) i
(lee t
HETEE e

1 o k
= EEL:=I} Anle ‘IIHEE.:D bn,n—k'e

1 k i(k—
_EE: o & nklzr 0 “nn-k- e E|:It| ;

Ek o HRD[BM) by lemma (1)
Bt }EI.-FD dpk

(
-0 (%)

T

Ir“x

I
D I.'||

Lemma 4.5. Fori <t=d<m M (t)= D(A%) ; T=n.
Proof. Now by (3)

gin {n l-:+—}t

=i !'.I—t

M, (t) =

i(n—lke+2 }t‘

= ‘Inlzkﬂl Apn-k©"

ZE=IIEI Ann-k-
" sm—t

iln—klt iln—klt | .

%|In1 DI NN - e :‘ (by Jordan's lemma) < %|Eﬂ=u T -

1
=%.D[Am.) by lemma (1)

'AELT
=o (=)
Lemmad.6.Foro <t = i M, (t) = O(n).

Proof of Theorem 4.1. Let s_(x) denote the n™ partial sum of the (1). Then we have

m{n+ k

sl—t

sm{k+ }1:

sa(fix) —f(x) = —f ®(1)

tf —f(x) = —f $(t) LE=p bnx

BL—'t

= ;_HZE:D Ak .r[,n d(t) {Z:L-::Dbk,k :-M} dt = .r d(K, g (n,t)dt

- (fuﬁ+ji5 [T ) oK (D4
=L, +L +IJ.3
1 < 11yl < SIS Kyp (a01de = 0 () { Flo(0)lat]

4% — f(x) = = ERoo 2., [ &) {E o by 2 }t} dt

By Lemma 4.3

= D(nj'{c'(g{jl.l}n )} -e (:{;}.pn)

=D( . )=D[1];(n—>coj

logn

L, <, < o(fflqa(tjllmntn,tjldt)
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= o (L1122 )
By Lemma 4.4

Integrating by parts

I, < D{(%@r(t) i) js = :f]¢[t)dt}

5)+f”“ e[

o Et" = ntgl}]}

a(s,.)}

I,,= D[o(agp[é_)—l- D(;%)-l- D(fgnﬁdu)—l- D(f_ vy d[Bnu))l
{’D{D[l)—l-c-(l)—l-cr{fl umu}p du)-l—r:r(mn}p }[_Ir d[Bnu))} o{o(1)+o(1) +
o(0(1)) + o(1)B, .} = 0fo(1) + 0(1) + 0(1) + 0(1)} = 0(1); (n— o)

Lastly, by the Riemann-Lebesgue theorem and the regularity condition of matrix
summability, we obtain

L= |11,3| = fanldJ(t)llKAB (nt)|dt=o0o(1) ; (n— o)

Next
tA8 —f(x) = o(1) (n— m]z‘,-gi_{lju{tﬁ];—f(x)}=ﬂ

This completes the proof of the theorem.

Proof of Theorem 4.2. Let §_(x) denote the n™ partial sum of the (2). Then

- smfn }1:
sin

$a(x) = - dg(t) + f(x)

We have

§ (%)= Xi_; k(b coskx —a, sinkx) = E[’Flif;n k(sinku.coskx —
cosku.sin kx). f(u)du = Eﬂ:l%f;n sin k(u — x).f(u)du=
:—n f:n f(u). 2o, 2ksink(u —x) du

= —— [ f(w).Zf, 2ksink(x — u) du

where

Zﬂzl k Sinky = — i (sln[.n -l-_i}y)

dy 2sin—y

gin|ln = (x—u) ginln L (x—u)
2hoy 2ksink(x—u) = _gi(#) _ 21(#)

dx 2 sin=(x—u) du Zsin=(x—ul

Next
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Thus
8,00 == " mﬁgﬂ}fmmu=—ig ﬂ){

L ( [0 fu) {di —“_}_}} du + [T f(w) {di—{ f?}"x_”}} du) =G, +6,

u  gin=(x—u) u  zin=(x—u)

|:] sm{n+ }t—u} d stn[(n+ }t—u}

sin={x—u)

Now

£ () = ——fﬁ&+ﬂ—ﬂ—ﬂ%d“””ﬂm

Ein—t

Integrating by parts

1 prEinnd-
§,(x)= _r :: ) dff(x+t) —f(x—t)}
where :
# = —+ cost+ cos2t+cos3t+ -+ cosnt=D_(t) == _r" Sm{n:}t dt = %
and

g(t) = flx+t) — f(x—t) — 2tf(x) = f(x + t) — f(x— t) = g(t) + 2tf(x)
= d{f(x+ t) — f(x —t)} = dg(t) + 2f(x)dt + 0

Next

1.[ smllrn+ }t

=i E'.I:t

§.(x) = = _rnmjlr:]—}tdg(t]-l-zf[ )—f dt

—§ (x)= j“s‘”f'” dg(t) + £(x)

— 5 (x) — F(x) = j“s‘”f” }tdg(t]
ae@) — G = 'Jﬁﬂ}§fdﬁj

= EL:=I}H|: n—k{sn—k(x] - f(}{]} .

_..r dg[t) EL: pd nn—k* Sm[:.l::-;}t

= (.rga + _r:S + _rﬂ“ )dg(‘t].mn (‘t) =1L+ 41

RIS
)
——

,_
=}
":'I'U:T" .
-L -

=1 ||
T

L = fédg(ﬂ-mn(t) = D(Iﬁﬁldg(tjl.lmn(tjl) = o(n. jjmg(m) =0| no

0 (no(22)) = o(£2) et » (2
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Lastly, by the Riemann-Lebesgue theorem and the regularity condition of matrix
sumability, we obtain

I; < || = f;an[tjl.ldg(tjl =o(1), as (n— o)

_ O(Jr;mg(m IMn(tjl) = n(f;%.mg(ﬂl)

1, <

Integrating by parts, where u =

(g [==(3) 5Anr raf 1) s1 (=3

(oo () o) o2 ()00
o3)

(Using condition)
J E)—I— D( III:E'.I:' f: tr:r d‘t) + ( ::l:r.l:' .f:S I:“:-'!!:nr:l)

ntlng— nlogn n.logn

ﬂ:ﬂ dv = dg(t). Therefore

Al

:‘-Izﬂn(ﬁ

where

= —L+ increases monotonically as t — +0.

=1, <o(1)+o(a, “':"}§+o(“'”} A, dU) (“} - -d[ﬁn,u))

nlogn nlogn

=t =o()+o (0(E2))+o (- (Al Y +o S £ walan)
o(S2. fFu.d(a,))

Integrating by parts, where u, = A

dv, =du

nu

nlogn
o(fm) +o(Em) +o(Fem n £ d(ann)
=1, < o(1)+o(22) + c.(“'”:'.Am] A, =1

oD logn

=o(1)+o(1)+o(1)=0(1) ; (n— )

=1, < D(l]—i—o(:;j)—i— c.( la) .n.Am) +o(1)+ D(ni?n'fgn u.d[AnJu)) =o(1)+

Then
o nk o (® —f®)}=0(1) ; (n= 0)=1,(x)—f(x) =0(1) ; (n— )

where
{n (X) = ZE=I} Hn,n—l-r. . én—k(xj
Next
lim t_(x) = f(x)

This completes the proof of the theorem.
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5. Conclusions

One of the most important outcomes of this study is that the product of any two matrix
methods of the methods of summability is a matrix method and that this method is a
bounded linear operator which transforms each sequence of a given space to a sequence of
the space itself. And

taB = A8
where

AE __ k —_ k AB _ vk
tn - EE:E Hn,l-:Er':I}bl{,.rSr - EE=II!I E|."=II!I an,l{bl{,rsr’tn - E|."=II!I EE:=D an,l{bl{.rsr

The third characteristic of the matrix method showed that, no matter how different the
method used to collect the studied series, we would obtain the same sum for that series. We
have demonstrated two theorems. The first speaks of the sum of Fourier series using
product matrix methods, and the second speaks of the sum of a Fourier series derivative
using a matrix method only.
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