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Öz: Bu çalışmanın amacı; Katugampola kesirli integraller yardımıyla birinci mertebeden türevlerinin mutlak 

değeri s-konveks olan fonksiyonlar için Hermite-Hadamard tipli integral eşitsizlikler elde etmektir.  
 

Anahtar Kelimeler —  s-konveks fonksiyon, Hermite-Hadamard tipli eşitsizlikler, Katugampola kesirli 

integraller. 
 

Abstract: The aim of this paper is to the Hermite-Hadamard type inequalities for functions whose first 

derivatives in absolute value is s-convex through the instrument of generalized Katugampola fractional 

integrals. 
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 1. INTRODUCTION 
  

The most well-known inequalities related to the integral mean of a convex function are the 

Hermite-Hadamard inequalities. Let 𝑓: 𝐼 ⊂ ℝ → ℝ be convex function defined on the interval I  

of real number and Iba , , with ba < . Then the following double inequality is known in the 

literature as the Hermite-Hadamard’s inequality for convex functions [7]: 
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  (1.1) 

The beginning fractional integral calculus accompanies the beginning of the integral calculus, 

developed by Riemann. It originates in the research of Liouville from 1832 related to practical 

technical problems. Now we point few stages in evolution of the fractional calculus, as needed in 

developing the new results. More details on the fractional differentiation and integration are in 

(see, [6, 11, 13]), for example. The Riemann-Liouville fractional integral is, from historic point 

of view, at the origin of the fractional calculus. It comes from the following Cauchy 𝑛 −times 

iterative integration process, 
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for 𝑛 ∈ ℕ. 

By formally replacing n  by a number 0> , one gets the classical Riemann-Liouville 

fractional integral, defined by: 

Definition 1.1. Let 𝑓 ∈ 𝐿[𝑎, 𝑏]. The Riemann-Liouville integrals fJ
a


  and fJ

b


  of order 0>  

with 0a  are defined by 
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and 
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where   dxxe x 1

0
= 



   is the Gamma function.  

Hadamard developed in the second method of fractional integration based on the generalization 

of another iterative integral. Katugampola ([9] and [10]) considered the following iterative 

process in 2011: 
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for 𝑛 ∈ ℕ. This generates Katugampola’s concept of fractional integral, defined in [9] and also in 

[10]. 

Definition 1.2. ([9]) Let 𝑓 ∈ 𝐿[𝑎, 𝑏], the left-sided Katugampola fractional integral fI
a


  of 

order 𝛼 ∈ ℂ, Re   0>  is defined by 
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 (1.4) 

the right-sided Katugampola fractional integral fI
b


  of order 𝛼 ∈ ℂ, Re   0>  is defined by 
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 (1.5) 

Katugampola’s operators are generalizations of A. Erdélyi and H. Kober operators introduced in 

1940 (see [5] and [12]), as well. Other similar approaches on moving iterative integrals and 

derivatives into fractional framework in connection with theoretic and practical applications are 

in the mathematical literature of the last decade. For example, the results of Cristescu [4] in 2016. 
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Remark 1.1.  If 1=  then the Katugampola fractional integrals become Riemann-Liouville 

fractional integrals.  

Now we reviewed some definitions and theorems which will be used in the proof of our 

main cumulative results. 

Definition 1.3. ([1]) Let  0,1s . A function     0,0,:f  is said to be convexs  (in the 

second sense), or that f  belongs to the class 2

sK , if 

         yfxfyxxf
ss   11  

for all   0,, yx  and  .0,1   

An s convex function was introduced in Breckner’s paper [1] and a number of properties and 

connections with s convexity in the first sense were discussed in paper [8]. 

The main purpose of this paper is to introduce new type Hermite Hadamard and midpoint integral 

inequalities with the aid of generalized Katugampola fractional integral for s convex functions 

and establish some results connected with the them (see for example, [2], [3] and [14]). 

2. MAIN RESULTS 

In this section, we will give Hermite-Hadamard type inequalities for the Katugampola 

fractional integrals by using s convex functions. 

Theorem 2.1.  Let 𝑓: [𝑎𝜌, 𝑏𝜌] → ℝ be a function on with ba <0  and   baXf p

c , . If f  is 

also a s convex on ],,[ ba  then the following inequalities hold:  
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the fractional integrals are considered for the function  xf  and evaluated at a  and b , 

respectively.  

Proof. Since f  is s convex function on  ba, , we have for  bayx ,,   
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Multiplying both sides of (2.2) by 
1t , 0>  and then integrating with respect to t  over  0,1 , 

we get 
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and the first inequality is proved. For the proof of the second inequality (2.3), we first note that if 

f   is a s convex function, it yields 
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By adding these inequalities together, one has the following inequality: 
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Then multiplying both sides of and (2.4) by 
1t and integrating the resulting inequality with 

respect to t  over  0,1  we obtain 
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In this way the proof is completed.  

Corollary 2.1. If we write 1=  in inequality (2.1), we obtain; 
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with   0>Re .  

Remark 2.1. Choosing 1=s  in Corollary 2.1, we obtain following inequality 
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which was given by Sarıkaya and Yıldırım in [15].  
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Now, we need to give a lemma for differentiable functions which help us to prove our main 

theorems. 

Lemma 2.1. Let 𝑓: [𝑎𝜌 , 𝑏𝜌] → ℝ be a differentiable mapping on   ba ,  with ba <0 , then the 

following equality holds: 
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by subtracting equation (2.7) from (2.6), we have 
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By re-arranging the last equality above, we get the desired result.  
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Theorem 2.2. Let 𝑓: [𝑎𝜌, 𝑏𝜌] → ℝ be a differentiable mapping on   ba ,  with .<0 ba  If 'f  

is s convex on   ba , , then the following inequality holds: 
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1B  is defined as in Theorem 2.1.  

Proof. Taking modulus of (2.5) and using s convexity of 'f , we have 
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where 
2

1B is defined above. Thus, the proof is completed.  
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Corollary 2.2. If we write 1=  in inequality (2.8), we obtain; 
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 Remark 2.2. Choosing 1=s  in Corollary 2.2, we obtain following inequality 
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which was given by Sarıkaya and Yıldırım in [15].  

Theorem 2.3. Let 𝑓: [𝑎𝜌, 𝑏𝜌] → ℝ be a differentiable mapping on   ba ,  with .<0 ba  If 
q

'f

, 1>q , is s convex on   ba , , then the following inequality holds: 
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where 1=
11

qp
  and 

2

1B  is defined as in Theorem 2.1. 
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Proof. Taking modulus of (2.5) and using well-known Hölder inequality, we obtain 
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'f , 1>q , is s convex, we have 
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By substituting inequalities (2.11) and (2.12) into (2.10), we get the desired result (2.9).  
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Corollary 2.3. If we write 1=  in inequality (2.9), we obtain; 
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 Remark 2.3. Choosing 1=s  in Corollary 2.3, we obtain following inequality 
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which is the same result given by Sarıkaya and Yıldırım in [15].  
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