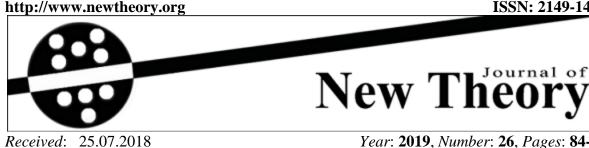
ISSN: 2149-1402



Published: 10.01.2019

Year: 2019, Number: 26, Pages: 84-89 **Original** Article

Fuzzy Soft Locally Closed Sets in Fuzzy Soft Topological Space

Sandhya Gandasi Venkatachalarao <sandhya.gv@gat.ac.in> Anil Prabhakar Narappanavar^{*} <anilpn@gat.ac.in>

Department of Mathematics, Global Academy of Technology, Bengaluru, PIN-560098, India.

Abstract - The purpose of this paper is to introduce fuzzy soft locally closed and fuzzy soft b-locally closed sets and study their properties in fuzzy soft topological space. Further we define and study fuzzy soft LC-continuous and fuzzy soft b-LC-continuous functions.

Keywords - Fuzzy soft locally closed sets, Fuzzy soft b-locally closed set, Fuzzy soft LC-continuous functions.

1. Introduction

The notion of fuzzy sets for dealing with uncertainties was introduced by Zadeh [15]. Fuzzy topology was introduced by Chang [4]. To overcome difficulties in fuzzy set theory soft sets were introduced in 1999 [11]. The hybridisation of fuzzy set and soft set known as fuzzy soft set was introduced by Maji et.al. [10]. The notion of topological structure of Fuzzy soft sets was introduced by Tanay and Kandemir [13] and studied further by many authors [5,6,12,14]. The concept of fuzzy soft semi open set was introduced by Kandil et al. [8] whereas fuzzy soft pre-open and regular open sets was introduced by Hussain [7] and fuzzy soft b-open sets was introduced by Anil [1]. In this paper we introduce fuzzy soft locally closed and fuzzy soft b-locally closed sets and study their properties. Further we define fuzzy soft LCcontinuous and fuzzy soft b-LC-continuous functions and study few of the properties.

2. Preliminaries

Definition2.1 [10] Let X be an initial universal set, I^X be set of all fuzzy sets on X and E be a set of parameters and let $A \subseteq E$. A pair (f, A) denoted by f_A is called fuzzy soft set over X, where f is a mapping given by $f: A \to I^X$ i.e. for each $a \in A$, $f(a) = f_a: X \to I$

^{*} Corresponding Author.

is a fuzzy set on X

Definition 2.2 [12] Let τ be a collection of all fuzzy soft sets over a universe X with a fixed parameter set E then (X, τ, E) is called fuzzy soft topological space if i. $\tilde{0}_E$, $\tilde{1}_E \in \tau$ ii. Union of any members of τ is a member of τ , iii. Intersection of any two members of τ is a member of τ . Each member of τ is called fuzzy soft open set i.e. A fuzzy soft set f_A over X is fuzzy soft open if and only if $f_A \in \tau$. A fuzzy soft set f_A over X is called fuzzy soft open set.

Definition2.3 [14] The fuzzy soft closure of f_A , denoted by $Fscl(f_A)$ is defined as $Fscl(f_A) = \bigcap \{h_D : h_D \text{ is fuzzy soft closed set and } f_A \subseteq h_D\}$

Definition2.4 [14] The fuzzy soft interior of g_B denoted by $Fs int(g_B)$ is defined as $Fs int(g_B) = \bigcup \{h_D : h_D \text{ is fuzzy soft open set and } h_D \subseteq g_B\}$

Definition2.5 [7] Fuzzy soft set f_A of a fuzzy soft topological space (X, τ, E) is called fuzzy soft pre-open set if $f_A \leq Fsint Fscl(f_A)$ and fuzzy soft pre-closed if $FsclFsint(f_A) \leq f_A$

Definition2.6 [7] Fuzzy soft set f_A of a fuzzy soft topological space (X, τ, E) is called fuzzy soft α -open set if $f_A \leq Fsint(Fscl(Fsint(f_A)))$

Definition 2.6 [1] A fuzzy soft set f_A in a fuzzy soft topological space (X, τ, E) is called fuzzy soft b-open set if $f_A \leq Fsint Fscl(f_A) \vee FsclFsint(f_A)$ and fuzzy soft b-closed set if $f_A \geq Fsint Fscl(f_A) \vee FsclFsint(f_A)$

Definition 2.7 [1] Let f_A be a fuzzy soft set in a fuzzy soft topological space (X, τ, E) then fuzzy soft b-closure of f_A and fuzzy soft b-interior of f_A are defined as

(i) $fsb-cl(f_A) = \bigcap \{g_B : g_B \text{ is a } fsb-closed \text{ set } \& g_B \ge f_A \}$

(ii) $fsb-int(f_A) = \bigcup \{h_c: h_c \text{ is a } fsb-openset \& h_c \le f_A \}$

3. Soft Locally Closed Sets

Definition 3.1. A fuzzy soft set (F, E) is called fuzzy soft locally closed set in a fuzzy soft topological space (X, τ, E) if (F, E) = (G, E) \cap (H,E) where (G, E) is fuzzy soft open and (H, E) is fuzzy soft closed in X.

The family of all fuzzy soft locally closed sets of a fuzzy soft topological space (X, τ, E) is denoted by FSLCS (X, τ, E) .

Theorem 3.2. In a fuzzy soft topological space (X, τ, E) , every fuzzy soft open set is fuzzy soft locally closed.

Proof. Let (F, E) be fuzzy soft open in X, then (F, E) is fuzzy soft locally closed in X, since $(F, E)=(F, E) \cap \tilde{1}$.

Theorem 3.3. Let (X, τ, E) be a fuzzy soft topological space. If (F_1, E) and (F_2, E) are two fuzzy soft locally closed sets in X then $(F_1, E) \cap (F_2, E)$ is a fuzzy soft locally closed set in X.

Proof. Let $(F_1, E) = (G_1, E) \cap (H_1, E)$ and $(F_2, E) = (G_2, E) \cap (H_2, E)$ where (G_1, E) and (G_2, E) are fuzzy soft open and (H_1, E) and (H_2, E) are fuzzy soft closed in X. Then $(F_1, E) \cap (F_2, E) = ((G_1, E) \cap (H_1, E)) \cap ((G_2, E) \cap (H_2, E)) = ((G_1, E) \cap (G_2, E)) \cap ((H_1, E) \cap (H_2, E))$, where $(G_1, E) \cap (G_2, E)$ is fuzzy soft open and $(H_1, E) \cap (H_2, E)$ is fuzzy soft closed and hence $(F_1, E) \cap (F_2, E)$ is a fuzzy soft locally closed set in X.

Theorem 3.4. Let (X, τ, E) be a fuzzy soft topological space. Then (F, E) is fuzzy soft locally closed if and only if (F, E) = (G, E) \cap Fs-cl(F, E) for some fuzzy soft open set (G, E).

Proof. Let (F, E) be fuzzy soft locally closed set in X. Hence (F, E) = (G, E) \cap (H, E) where (G, E) is fuzzy soft open and (H, E) is fuzzy soft closed in X. Then Fs-cl(F,E) = Fs-cl((G, E) \cap (H, E)) \subset Fs-cl(G, E) \cap Fs-cl(H, E) = Fs-cl(G, E) \cap (H, E). We have Fs-cl(F,E) \subset (H, E) and hence (F, E) \subset (G, E) \cap Fs-cl(F, E) \subset (G, E) \cap (H, E) = (F, E). Therefore (F, E) = (G, E) \cap Fs-cl(F, E).

Conversely, if $(F, E) = (G, E) \cap Fs\text{-cl}(F, E)$ for some fuzzy soft open set (G, E) then (F, E) is fuzzy soft locally closed since Fs-cl(F, E) is fuzzy soft closed in X.

Definition 3.5. Let (F, E) and (G, E) be any two fuzzy soft sets. Then (F, E) and (G, E) are said to be separated if (F, E) \cap Fs-cl(G, E) = (G, E) \cap Fs-cl(F, E) = $\tilde{0}$.

Theorem 3.6. Let (X, τ, E) be a fuzzy soft topological space and (F_1, E) and (F_2, E) are two fuzzy soft locally closed in X. If (F_1, E) and (F_2, E) are separated in X then $(F_1, E) \cup (F_2, E)$ is a fuzzy soft locally closed in X.

Proof. Since (F_1, E) and (F_2, E) are two fuzzy soft locally closed in X, we have $(F_1, E) = (G_1, E) \cap Fs\text{-cl}(F_1, E)$ and $(F_2, E) = (G_2, E) \cap Fs\text{-cl}(F_2, E)$, where (G_1, E) and (G_2, E) are fuzzy soft open in X. Since (F_1, E) and (F_2, E) are separated, we have $(F_1, E) \cap Fs\text{-cl}(F_2, E) = (F_2, E) \cap Fs\text{-cl}(F_1, E) = \tilde{0}$ and which implies $(F_1, E) \cup (F_2, E) = (G_1, E) \cup (G_2, E) \cap Fs\text{-cl}(F_1, E) \cup (F_2, E))$. Hence $(F_1, E) \cup (F_2, E)$ is fuzzy soft locally closed set in X.

Theorem 3.7. Let (X, τ, E) be a fuzzy soft topological space. For a fuzzy soft set (F, E) following are equivalent

- (i) (F, E) is fuzzy soft open in X
- (ii) (F, E) is fuzzy soft α -open and fuzzy soft locally closed
- (iii) (F, E) is fuzzy soft pre-open and fuzzy soft locally closed
- (iv) (F, E) is fuzzy soft b-open and fuzzy soft locally closed

Proof. (i) implies(ii), (ii) implies (iii) and (iii) implies (iv) are obvious

(iv) Implies (i): Let (F, E) be fuzzy soft b-open and fuzzy soft locally closed set in X. We have (F, E) \subset Fs-int(Fs-cl(F, E)) \cup Fs-cl(Fs-int(F, E)) and (F, E) = (G, E) \cap Fs-cl(F, E) where (G, E) is fuzzy soft open. Then (F, E) \subset (G, E) \cap (Fs-int(Fs-cl(F, E)) \cup Fs-cl(Fs-int(F, E)))= ((G, E) \cap Fs-int(Fs-cl(F, E))) \cup ((G, E) \cap Fs-cl(Fs-int(F, E))) = Fs-int((G, E) \cap Fs-cl(F, E)) \cup Fs-int(F, E) = Fs-int(F, E) \cup Fs-int(F, E) = Fs-int(F, E). Hence (F, E) is fuzzy soft open in X.

Definition 3.8. A fuzzy soft set (F, E) is called fuzzy soft b-locally closed set in a fuzzy soft topological space (X, τ, E) if (F, E) = (G, E) \cap (H, E) where (G, E) is fuzzy soft b-open and (H, E) is fuzzy soft b-closed in X.

The family of all fuzzy soft b-locally closed sets of a fuzzy soft topological space (X, τ, E) is denoted by FSBLCS (X, τ, E) .

Remark 3.9. It is obvious that every fuzzy soft b-closed set is fuzzy soft b-locally closed set.

Remark 3.10. Every fuzzy soft locally closed set is fuzzy soft b-locally closed set but converse need not be true.

Example 3.11. Let X = {a, b, c}, E = {e₁},
$$\tau = \{\tilde{1}, \tilde{0}, (F_1, E), (F_2, E)\}$$
 where
 $(F_1, E) = \{\{\frac{1}{a}, \frac{0}{b}, \frac{0}{c}\}\}$ and $(F_2, E) = \{\{\frac{1}{a}, \frac{0}{b}, \frac{1}{c}\}\}$. Clearly the set $(F, E) = \{\{\frac{1}{a}, \frac{1}{b}, \frac{0}{c}\}\}$ is

fuzzy soft b-locally closed set but not fuzzy soft locally closed.

Theorem 3.12. Let (X, τ, E) be a fuzzy soft topological space. Then (F, E) is fuzzy soft blocally closed if and only if (F, E) = (G, E) \cap Fsb-cl(F, E) for some fuzzy soft open set (G, E).

Proof. Let (F, E) be fuzzy soft b-locally closed set in X. Hence (F, E) = (G, E) \cap (H, E) where (G, E) is fuzzy soft b-open and (H, E) is fuzzy soft b-closed in X. Then Fsb-cl(F,E) \subset (H, E) and hence (F, E) = (F, E) \cap Fsb-cl(F, E) = (G, E) \cap (H, E) \cap Fsb-cl(F, E) = (G, E) \cap Fsb-cl(F, E).

Conversely, if $(F, E) = (G, E) \cap Fsb-cl(F, E)$ for some fuzzy soft b- open set (G, E) and since Fsb-cl(F, E) is fuzzy soft closed, hence (F, E) is fuzzy soft b-locally closed in X.

Definition 3.13. Let (X, τ, E) and (Y, σ, K) be fuzzy soft topological spaces and $f: X \to Y$ be a function. Then f is called a

- (i) fuzzy soft locally continuous (LC-continuous) if for each open set (G, K) in Y, $f^{-1}(G, K)$ is a fuzzy soft locally closed set in X.
- (ii) fuzzy soft b-locally continuous (b-LC-continuous) if for each open set (G, K) in Y, $f^{-1}(G, K)$ is a fuzzy soft b-locally closed set in X.
- (iii) fuzzy soft locally irresolute (LC-irresolute) if for each fuzzy soft locally closed set (G, K) in Y, $f^{-1}(G, K)$ is a fuzzy soft locally closed set in X.
- (iv) fuzzy soft b-locally irresolute (b-LC-irresolute) if for each fuzzy soft b-locally closed set (G, K) in Y, $f^{-1}(G, K)$ is a fuzzy soft b-locally closed set in X.
- Theorem 3.14. Every fuzzy soft LC- continuous function is fuzzy soft b-LC- continuous.

Proof. Let $f: (X, \tau, E) \to (Y, \sigma, K)$ be fuzzy soft LC- continuous function. Then for any fuzzy soft open set (G, K) in Y, $f^{-1}(G, K)$ is fuzzy soft locally closed in X. We have $f^{-1}(G, K) = (G_1, E) \cap (H_1, E)$ where (G_1, E) is fuzzy soft open and (H_1, E) is fuzzy soft closed in X. Since every fuzzy soft open (closed) set is fuzzy soft b-open (b-closed) set. Therefore $f: (X, \tau, E) \to (Y, \sigma, K)$ is b-LC- continuous. Converse of this theorem need not be true as seen from the following example.

Example 3.15. Let X = Y={a, b, c}, E = K = {e₁},
$$\tau = \{\tilde{1}, \tilde{0}, (F_1, E), (F_2, E)\}$$
 and
 $\sigma = \{\tilde{1}, \tilde{0}, (G, E)\}$ where $(F_1, E) = \{\{\frac{1}{a}, \frac{0}{b}, \frac{0}{c}\}\}$, $(F_2, E) = \{\{\frac{1}{a}, \frac{0}{b}, \frac{1}{c}\}\}$ and
 $(G, E) = \{\{\frac{1}{a}, \frac{1}{b}, \frac{0}{c}\}\}$.

Consider an identity function $f: X \to Y$, Clearly $f^{-1}(G, E) = \left\{ \left\{ \frac{1}{a}, \frac{1}{b}, \frac{0}{c} \right\} \right\}$ is fuzzy soft b-

locally closed set but not fuzzy soft locally closed.

4. Conclusions

In this paper the concept of fuzzy soft locally closed set and fuzzy soft b-locally closed set is introduced in fuzzy soft topological space. Also fuzzy soft LC-continuous and fuzzy soft b-LC-continuous functions were defined in fuzzy soft topological space.

References

- [1] Anil P. N., (2016). Fuzzy Soft B-Open Sets in Fuzzy Soft Topological Space. International Journal of Science, Technology & Engineering, 3(2).
- [2] Benchalli S. S., Jenifer K.,(2010). On Fuzzy B-Open Sets in Fuzzy Soft Topological Space. Journal of Computer and Mathematical Science, 1(2):127-134.
- [3] Benchalli S. S., Jenifer J.Karnel, (2011). Fuzzy gb-Continuous Maps in Fuzzy Topological Spaces. International Journal of Computer Applications, 19(1)
- [4] Chang C. L., (1968). Fuzzy Topological Spaces. Journal of Mathematical Analysis and Applications, 24: 182-190.
- [5] Gain P. K., Mukherjee P., Chakraborty R.P., Pal M., (2013). On Some Structural Properties of Fuzzy Soft Topological Spaces. International Journal of Fuzzy Mathematical Archive, 1: 1 – 15.
- [6] Gunduz C., Bayramov S., (2013). Some Results on Fuzzy Soft Topological Spaces. Mathematical Problems in Engineering, 2013:1-10.
- [7] Hussain S., (2016). On Weak and Strong Forms of Fuzzy Soft Open Sets. Fuzzy Information and Engineering, 8(4): 451-463.
- [8] Kandil A., Tantawy O. A. E., El-Sheikh S.A., Abd El-latif A.M., (2014). Fuzzy Semi Open Soft Sets Related Properties in Fuzzy Soft Topological Spaces. Journal of Mathematics and Computer Science, 13:94-114.
- [9] Kharal A., Ahmad B., (2009). Mappings on Fuzzy Soft Classes. Advances in Fuzzy Systems, 2009.
- [10] Maji P. K., Biswas R., Roy A. R., (2001). Fuzzy Soft Sets. Journal of Fuzzy

Mathematics, 9(3): 589–602.

- [11] Molodtsov D., (1999). Soft Set Theory-First Results. Computers & Mathematics with Applications, 37(4):19–31.
- [12] Roy S., Samanta T.K., (2012). A Note on Fuzzy Soft Topological Spaces. Annals of Fuzzy Mathematics and Informatics, 3(2): 305-311.
- [13] Tanay B., Kandemir M.B., (2011). Topological Structure of Fuzzy Soft Sets. Computers & Mathematics with Applications, 61(10): 2952–2957.
- [14] Varol B. P., Aygün H.,(2012). Fuzzy Soft Topology. Hacettepe Journal of Mathematics and Statistics, 41(3): 407–419.
- [15] Zadeh L. A., (1965). Fuzzy Sets. Information and Control, 8(3): 338–353.