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Abstract 
 
In the present paper, new analytical solutions for the space-time fractional coupled Konopelchenko-

Dubrovsky (KD) equations are obtained by using the simplified 
( )

tan( )
2

 
- expansion method 

(SITEM). Here, fractional derivatives are described in conformable sense. The obtained traveling 
wave solutions are expressed by the trigonometric, hyperbolic, exponential and rational functions. 
Simulation of the obtained solutions are given at the end of the paper. 
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1. Introduction 

 
In recent years, to model and describe phenomena in various fields of science such as plasma 
physics, nonlinear optics, nonlinear transmission lines, solid state physics, chemical 
kinematics, and biology, nonlinear partial differential equations have been used. The 
popularity of these equations is because of their capacity to model many real systems. 
Therefore, nonlinear equations have gained a very significant place in the current research. To 
solve the nonlinear partial differential equations, various methods have been developed (see, 
for example, [1, 2, 3, 4, 5, 6]). 
 
KD equations were introduced by Konopelchenko and Dubrovsky [7]. These equations 
constitute applications in the ocean dynamics, fluid mechanics and plasma physics. To solve 
the coupled KD equations, various methods have been proposed such as the standard 
truncated Painlevé analysis, homotopy perturbation method, generalized F-expansion method, 
(G / G,1 / G) -expansion method, first integral method, extended Riccati equation rational 
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method, Xu’s stable-range method, tanh–sech method, cosh–sinh method and exponential 
functions method [8, 9, 10, 11, 12,13, 14, 15]. There is not much work on the fractional 
coupled KD equation. Fractional coupled KD equations have been solved by using sub 
equation method, Jacobi elliptic equation method and extended G / G  -expansion method in 
[16, 17, 18]. Here fractional derivatives are described in modified Riemann-Liouville sense 
and Caputo sense. 
 

Recently, 
( )

tan( )
2

 
 -expansion method has been applied by many authors [19, 20, 21, 22, 

23]. In [19], ITEM has been simplified and called simplified ITEM (SITEM). SITEM has 
been applied to Kundu-Eckhaus equation. To our knowledge, there is no other application of 
the SITEM in the literature. In this paper, we consider space-time fractional coupled KD 
equation. Here fractional derivatives are described in conformable sense. We obtain some 
traveling wave solutions such as trigonometric, hyperbolic, exponential and rational functions. 
 

2. Description of the conformable fractional derivative and its properties 
 
For a function f : (0, ) R  , the conformable fractional derivative of f of order 0 1    is 
defined as (see, for example, [24]) 

1

t 0

f (t t ) f (t)
T f (t) lim .






  


                                                                                                                                 (1) 
Some important properties of the the conformable fractional derivative are as follows: 
 

t t tT (af bg)(t) aT f (t) bT g(t)       ,  for all  a, b R  , 

t  T  (t ) t ,                                                                                                                           

(2) 
1

tT (f (g(t)) t g (t)f (g(t)' ' ).     

 

3. Description of the simplified ( )
tan( )

2

   -expansion method (SITEM) for 

solving conformable partial differential equations 
 
Let us consider general nonlinear fractional partial differential equation of the type 
 

t x t t t x x xP(u,T u,T u,T T u,T T u,T T u,...) 0         , 0 1    , 0 1    ,                                         (3) 

where u  is an unknown function and P  is a polynomial of u  and its partial fractional 
derivatives. Using the following transformation 

t x
u(x, t) U( ), k m ,

 

    
 

                                                                                               (4) 

where k  and m  are non zero arbitrary constants, Eq. (3) can be written as the following 
nonlinear ordinary differential equations 
 

(U, U , U , U ,...) 0    .                                                                                                            (5) 
 
Suppose that traveling wave solution of Eq. (5) can be expressed as follows 
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m m
k k

k k
k 0 k 1

( ) ( )
U( ) A p tan B p tan ,

2 2
[ ( )] [ ( )]

 

   
                                                             (6) 

( )   satisfies the following ordinary differential equation 
( ) a sin( ( )) b cos( ( )) c,                                                                                                    

(7) 
where a, b, c  , kA (0 k m)   and kB (1 k m)    are constants to be determined. The 

solution of Eq. (7) is given as: 
For b c, a 0   ,   

1tan( ) b c p.
2


                                                                                                          (8) 

For b c, a 0   , 

1

b
tan( ) c exp(a ) .

2 a


                                                                                                  (9) 

For 2 2 2b c, a b c 0       , 
 

1 1 1 2 2 2

1 1 2 2

c r exp(r ) c r exp(r )2
tan( ) p.

2 b c c exp(r ) c exp(r )

  
 

   
                                                             (10) 

 For 2 2 2b c, a b c 0       , 

2

1 2

ca 2
tan( ) .

2 b c b c c c


 

   
                                                                                   (11) 

For 2 2 2b c, a b c 0       , 

1 2

1 2

c sin( ) c cos( )a 2 2tan( ) ,
2 b c b c

c cos( ) c sin( )
2 2

 
    

 
   

  
                                           (12) 

 

where 1c   and 2c  are arbitrary constants, 1r (a p(b c) ) / 2      and

2r (a p(b c) ) / 2      . Substituting Eq. (6) into Eq. (5) and by balancing the highest 

order derivatives and nonlinear terms appearing in Eq. (5), the value of m   can be computed. 

Collecting the coefficients of k(p tan( ))
2


  , k(p tan( )) (k 0,1, 2,...)

2


  , we have system of 

algebraic equations. Solving the system with the aid of the Mathematica, the values of 0A  , 

kA  , kB (k 1,2,...,m)  , a  , b  , c  and p  are computed. 

 
4. Application 

 
Conformable space-time fractional Konopelchenko-Dubrovsky equation is given in the 
following from [18] 

2 2
t x x x 2 x 1 x y 1 x

3
T u T T T u 6 uT u u T u 3T v 3 vT u 0

2
                ,                                              (13) 

y xT u T v, 0 1, 0 1        .                                                                                              (14) 

Let us consider the following transformation 
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t x y
u(x, y, t) U( ), v(x, y, t) V( ), k m n ,

  

       
  

                                                   (15) 

where k , m , n are constants. Substituting (15) into Eqs.(13)-(14), we obtain the following 
differential equations 

3 2 2
2 1 1

3
kU m U 6 mUU mU U 3nV 3 mU V 0,

2
                                                             (16) 

n U'= m V'.                                                                                                                              (17) 
 
Integrating of Eqs.(16)-(17) with zero constant of integration and eliminating V , we have 
 

22 2
3 31

1 2

m3n U
(k )U (3 n 6 m) U m U 0.

m 2 2

                                                                   (18) 

 
Let us suppose that the solution of Eq.(18) can be expressed in the form Eq.(6) for p 0  . 
Substituting Eq.(6) into Eq.(18) and then by balancing the highest order derivative term and 
nonlinear term in result equation, the value of m  can be determined as1. Therefore, (6) 
reduces to 

1
0 1 1

( ) ( )
U( ) A A tan B tan .

2 2
[ ( )] [ ( )]   

                                                                         (19) 

Substituting Eq.(19) into (18), collecting all the terms with the same power of tan( )
2


, 

we can obtain a set of algebraic equations for the unknowns 0A , 1A , 1B , k , m , n : 

  3 2 2 2 4 4 2 4
1 1 1 1 1A m A b m 2A bcm A c m 0     , 

2 2 2 2 2 4 4 2
0 1 1 1 2 1 1 1 13A A m 6A m 3aA bm 3aA cm 3A mn 0        , 

2 4 2 2 2 2 2 2 2
1 0 1 1 0 1 1 2 0 1 1 1 12a A m 3A A m 6A A mn 12 A A m 3B A m        

2 4 2 4 2
1 1 1 1A b m A c m 2kA m 6A n 0     , 

2 2 2 3 2 2 4 4 4
0 0 2 0 0 1 1 1 12A km 6A m 6A n A m aA bm aA cm abB m       

4 2 2 2 2
1 1 1 2 0 1 0 1 1 1 1 1 1aB cm 12A B m 3A mn 6A A B m 6A B mn 0          ,  

2 4 2 2 2 2 2 4
1 0 1 1 0 1 1 2 0 1 12a B m 3A B m 6A B mn 12 A B m b B m         

2 2 2 2 4 2
1 1 1 1 1 13A B m B c m 2kB m 6B n 0      , 

2 2 2 2 2 4 4 2
0 1 1 1 2 1 1 1 13A B m 6B m 3abB m 3aB cm 3B mn 0        , 
2 4 4 3 2 2 2 4

1 1 1 1 1b B m 2bB cm B m B c m 0      . 

Solving the algebraic equations in the Mathematica, we obtain the following set of solutions: 
 

Case 1: 0
2

an
A

2
 


 ,     1

2

(b c)n
A

2





  ,      1B 0  ,     1

2

n
m

2





 ,  

4 2 2 2 4 3
2 1

3
1 2

96 n (a b c ) n
k

16

    


 
  

For b c   and a 0 , 

1,2
2

an
U ( ) .

2
  


                                                                                                                     (20) 

For 0   and b c  , 
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1 2

3,4
2 2

1 2

a a a a
c exp( ) c exp( )an n 2 2 2 2U ( ) .

2 a a
c exp( ) c exp( )

2 2

[ ]
       

  
  

     
  

                         (21) 

For 0    and b c  , 

2
5,6

2 2 1 2

2can n
U ( ) a .

2 2 c c
[ ]   

   
                                                                                      (22) 

For 0    and b c  , 

1 2

7,8
2 2

1 2

c sin( ) c cos( )an n 2 2U ( ) a .
2 2

c cos( ) c sin( )
2 2

[ )]
 

   
    

   
  

                                     (23) 

Case 2: 0
2

an
A

2
 


 ,     0

2

an
A

2
 


 A_1=0,      1

2

(b c)n
B

2


 


 ,     1

2

n
m

2





 ,  

4 2 2 2 4 3
2 1

3
1 2

96 n (a b c ) n
k

16

    


 
  

 
For b c   and a 0 , 

1
9,10 1

2

bn
U ( ) b c .[ ]    


                                                                                                     (24) 

For b c   and a 0  , 
1

11,12 1
2 2

an bn b
U ( ) c exp(a ) .

2 a
[ ]     

 
                                                                               (25) 

For 0    and b c,   

1 2

13,14
2 2

1 2

a a a a
c exp( ) c exp( )an (b c)n 1 2 2 2 2U ( ) .

2 4 b c a a
c exp( ) c exp( )

2 2

[ ]
       

  
   

      
  

     (26) 

For 0   and b c  , 
 

12
15,16

2 2 1 2

can (b c)n a 2
U ( ) .

2 2 b c b c c c
[ ]

    
     

                                                             (27) 

For 0    and b c , 

1 2
1

17,18
2 2

1 2

c sin( ) c cos( )an (b c)n a 2 2U ( ) .
2 2 b c b c

c cos( ) c sin( )
2 2

[ ]
 

    
    

     
  

                     (28) 

Here  
4 2 2 2 4 3
2 1 1

3
1 2 2

96 n (a b c ) n nt x x
( n )

16 2

       
   

     
 . 

Figs.1 and 2 show 3D and 2D plots of the king wave solution 4u (x,0.25, t)  and 

4u (x,0.25,1)   in (21) for 0.75, 1, 0.5       , 1 20.25, 0.2     , n 1  , 

1 2a 3, b 2, c 1, c 2, c 1      , respectively. 
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Figs.3 and 4 show 3D and 2D plots of the periodic wave solution 8u (x,1, t)  and 

8u (x,1,1)  in Eq.(23) for 0.5, 1, 0.5       , 1 20.25, 0.2     , n 1   , 

1 2a 0.1, b 0.2, c 0.5, c 2, c 1      , respectively. 

  Figs.5 and 6 show 3D and 2D plots of the solitary wave solution 

1 2a 0.1, b 0.2, c 0.5, c 2, c 1      12u (x,1, t)   and 12u (x,1,1)  in Eq. (25) for

0.5, 1, 0.5      , 1 20.25, 0.2     , n 2   , 1 2a 3, b 1, c 1, c 1, c 2      , 

respectively. 
Figs.7 and 8 show 3D and 2D plots of the periodic wave solution 18u (x,1, t)   and 

18u (x,1,1)  in Eq.(28) for 0.5, 1, 0.5       , 1 20.25, 0.2     , n 2   ,  

1 2a 0.1, b 0.2, c 0.5, c 2, c 1      , respectively. 

 
5. Conclusion 

 
In this paper, the conformable space-time fractional coupled KD equations have been solved 

by using the simplified 
( )

tan( )
2

 
 -expansion method (SITEM) and new exact traveling wave 

solutions containing hyperbolic, trigonometric, exponential and rational functions have been 
obtained. Note that SITEM has been applied to the Kundu-Eckhaus equation only for the 
parameter p 0   in [19]. In the literature, fractional coupled KD equations with modified 
Riemann-Liouville and Caputo fractional derivatives have been investigated. In our work, 
SITEM has been applied to space-time fractional coupled KD equations with conformable 
fractional derivative. 
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