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Öz  

 

Bu çalışmada Weibull dağılımına sahip ilerleyen tür tip 2 sansürlü örneklemlerde parametre tahmini probleminde Newton 

yöntemine alternatif bir çözüm önerilmiştir. Newton yöntemi en çok olabilirlik tahmininde sıklıkla kullanılmaktadır. Newton  

yöntemi popüler olmasına rağmen en büyük dezavantajı en az iki kez türevlenebilir fonksiyonlar için kullanılabilmesidir. 

Olabilirlik fonksiyonu sansürlü örneklemlerde tam örneklemlere göre fonksiyonel olarak daha kompleks bir yapıda olduğundan, 

türev ve diğer hesaplamalar nispeten daha karışıktır. Bu çalışmada en çok olabilirlik yönteminde elde edilen denklem sisteminin 

çözümü için Newton metodunun kullanımındaki kısıtlamalara bir alternatif olarak Genetik Algoritma önerilmiştir. Detaylı bir 

simülasyon çalışması yardımıyla yan ve hata kareler ortalaması ile iki yöntemin performansları değerlendirilmiştir. Simülasyon 

sonuçlarına göre önerilen yöntemin karşılaştırılan tüm durumlar için ölçek parametresi için daha iyi sonuçlar verdiği, şekil 

parametresi için ise yanlar açısından sonuçların benzer olduğu ancak hata kareler ortalamasına göre bazı sansür şemaları için 

Newton yönteminin iyi sonuç verdiği bulunmuştur. 
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Abstract  

 

In this study we suggested an alternative solution to the parameter estimation problem of the Weibull distribution based on 

progressively Type-II censored samples with Newton method. Newton is one of the widely used methods for solving the system 

of equations especially in maximum likelihood estimation. Even though it is popular, the biggest disadvantage of the Newton 

method is that it is a valid method for only functions that derivativable at least two times. Since the likelihood functions are in 

more complex form for censored samples than in full samples, calculations of derivatives and related processes are more 

complicated. We proposed to use the Genetic Algorithm an alternative to the limitations of the Newton method in solution of 

system of equations in maximum likelihood estimation. Performance of these methods are evaluated by the simulated bias and 

mean square error criteria by an intensive simulation study.  Simulation results of the study showed that the suggested method 

give better results than Newton method for scale parameter for all conditions. Also shape parameter results for simulated biases 

are similar for GA and Newton method but Newton has better mean squared error values for some censoring schemes.   
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1. INTRODUCTION 

 

It is a common situation that not to obtain all the observations 

completely in many studies such as statistics, engineering, 

economics and medical researches. Data obtained such 

studies are called censored samples. Such for example, in a 

medical study, some observations may not be obtained 

completely from various reasons such as the death of some 

patients or dropped out from the treatment. In many life-

testing studies, exact failure times of units may not be 

obtained completely by the experimenter in terms of time or 

cost constraints, similar examples can be expanded anyway. 

 

Type-I and Type-II are widely used two popular censoring 

schemes in practice, especially life testing experiments. 

During the observation of n items in an experiment, Type-I 

and Type II censoring are defined as by measuring failure 

times and number of items, respectively. In Type-I and Type-

II censoring scheme, the experiment ends either at pre-

specified time T or number of failures m(m≤n) achieved.  

 

Progressive censoring gives more flexibility to researchers 

compared to conventional Type-I and Type-II censoring. 

Consider testing n units on a life-test with censoring scheme 

𝑟 = (𝑟1, 𝑟2, ⋯ , 𝑟𝑚  ). 𝑟𝑖 , (𝑖 = 1,2 ⋯ , 𝑚) indicates the number 

of items to be removed from the test after ith failure time. 

Progressive Type-II censored sample(T2CS) can be obtained 

according to pre-defined censoring scheme that describes the 

number of failure times (m) with n-m censored from n units. 

 

The books dedicated to progressive censoring by [1] and [2] 

are basic sources including inference under progressive 

Type-I and Type-II censoring. [3] introduced progressively 

Type-I interval censoring by combining interval censoring 

and progressive censoring on Type-I censored data.  [4]  

suggested conditional method for deriving exact confidence 

intervals  for  location, scale  and quantiles when data from 

Type II progressive censored samples. The application of 

suggested method given on one and two parameter 

exponential models. [5] suggested approximate solution of 

parameters of Gaussian distributed Type-II censored 

samples. Approximate  solution is used as a starting value of 

iterative solution of the likelihood equations. 

 

Lots of works especially focused on the Weibull (WE) 

distribution parameter estimations are attracts the attention. 

[6] have discussed the Bayes estimates of WE distribution 

parameters under three different loss functions for 

progressive censored data. [7] have compared performance 

of the least square regression estimator and maximum 

likelihood estimation (MLE) for modified WE distribution.  

[8] have discussed parameter estimation of progressively 

censored random removed samples from WE distribution. 

[9] have derived maximum likelihood (ML) estimators for 

parameters of WE distribution based on progressive 

T2CS(s). [10] have derived parameter estimates of WE and 

Lognormal distribution based on progressive T2CS(s) using 

EM algorithm. [11] Discussed the ML estimates and Bayes 

estimates of WE distribution based on adaptive Type-II  

progressive hybrid censoring. [12] have developed a non-

Bayesian two-sample prediction based on a progressive 

Type-II right censoring scheme and obtained ML prediction 

for WE distribution. [13] proposed the use progressive 

external censoring at each stress level where the Type-II 

censoring is a special case, also obtained the ML estimates 

for WE regression parameters. [14] have obtained the 

unknown parameters of two-parameter inverse WE 

distribution based on progressive T2CS(s). [15] have 

obtained the MLEs of two-parameter exponentiated WE 

distribution under adaptive progressive T2CS(s) . 

 

Most of the works on MLE of WE distribution parameters 

used newton method for solving the equation system 

obtained by partial derivatives of likelihood function 

according to distribution parameters. Even though it is 

popular, the biggest disadvantage of the Newton method is 

that it is a gradient based search algorithm which searches 

the optimum values of parameters depending on the inverse 

of the hessian matrix so  it is valid only for  functions that 

differentiable at least two times. Since the likelihood 

function is in more complex form for censored samples than 

in full samples, calculations of derivatives and related 

processes are more complicated. In this study we suggested 

the Genetic Algorithm (GA) which is derivative-free  

random search algorithm to MLE of T2CS for WE 

distribution. Although there are many applications of GA on 

different areas. There is no study such as the parameter 

estimation of WE distribution in T2CS with GA in the 

literature view. The importance of the work is in being the 

first work in literature which uses GA for parameter 

estimation in WE distributed T2CS(s).    

  

2. WEIBULL DISTRIBUTION 

 

WE distribution is one of the most widely used distribution 

bearing the name from Waloddi Weibull has a lot of 

applications in engineering and especially life time 

experiments, in terms of versatility and relative simplicity 

[16]. Probability density and distribution functions of the 

two-parameter WE are respectively has the form: 

 

𝑓(𝑥, 𝛼, 𝛽) = {
𝛽

𝛼
(

𝑥

𝛼
)

𝛽−1

𝑒−(
𝑥

𝛼
)

𝛽

0

, 𝑥 > 0
, elsewhere

 (1) 

 

 and  

𝐹(𝑥) = 1 − 𝑒−(
𝑥

𝛼
)

𝛽

 (2) 

 

where 𝛼 and  𝛽 are positive scale and shape parameters 

respectively. 

 

Let 𝑥1:𝑚:𝑛, 𝑥2:𝑚:𝑛, … , 𝑥𝑚−1:𝑚:𝑛, 𝑥𝑚:𝑚:𝑛  be progressive T2CS 

from a two-parameter Weibull distribution, with censoring 

scheme  

 

𝑟 = (𝑟1, 𝑟2 ⋯ 𝑟𝑚). 

 

The Likelihood function is given by 
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𝐿(𝛼, 𝛽) = 𝑐 (
𝛽

𝛼
)

𝑚
∏ (

𝑥𝑖:𝑚:𝑛

𝛼
)

𝛽−1

𝑒− ∑ (𝑟𝑖+1)(
𝑥𝑖:𝑚:𝑛

𝛼
)

𝛽
𝑚
𝑖=1𝑚

𝑖=1    (3) 

 

where 

 

𝑐 = 𝑛(𝑛 − 1 − 𝑟1)(𝑛 − 2 − 𝑟1 − 𝑟2) ⋯ 

× (𝑛 − (𝑚 − 1) − 𝑟1 − 𝑟2 − ⋯ − 𝑟𝑚−1) (4) 

 

The Log likelihood function can be written as 

 

log 𝐿(𝛼, 𝛽) = 𝑐 log(𝛽) − 𝑚𝛽 log(𝛼) + ⋯ 

+(𝛽 − 1) ∑ log(𝑥𝑖)
𝑚
𝑖=1 − ∑ (𝑟𝑖 + 1) (

𝑥𝑖

𝛼
)

𝛽
𝑚
𝑖=1  (5) 

 

and hence the likelihood equations for 𝛼 and 𝛽 are 

 

𝜕 log 𝐿(𝛼,𝛽)

𝜕𝛼
= −

𝑚𝛽

𝛼
+ 𝛽𝛼−(𝛽+1) ∑ (𝑟𝑖 + 1)(𝑥𝑖)𝛽𝑚

𝑖=1 = 0 (6) 

and 

𝜕 log 𝐿(𝛼, 𝛽)

𝜕𝛽
=

𝑚

𝛽
− 𝑚 log(𝛼) + ∑ log(𝑥𝑖)

𝑚

𝑖=1

⋯ 

− ∑ (𝑟𝑖 + 1) (
𝑥𝑖

𝛼
)

𝛽

log (
𝑥𝑖

𝛼
) = 0𝑚

𝑖=1  (7) 

The MLEs of  �̂� and �̂� can be obtained by solving the 

equations (6) and (7). Equation (6) yields the MLE of 𝛼 to 

be 

�̂� = {
1

𝑚
∑ (𝑟𝑖 + 1)𝑥𝑖

�̂�𝑚
𝑖=1 }

1
𝛽⁄

 (8) 

Equation (7), in conjunction with the MLE of 𝛼 in (8), 

reduces to  

1

�̂�
+

1

𝑚
∑ log(𝑥𝑖)

𝑚
𝑖=1 −

∑ (𝑟𝑖+1)𝑥𝑖
�̂� log(𝑥𝑖)𝑚

𝑖=1

∑ (𝑟𝑖+1)𝑥𝑖
�̂�𝑚

𝑖=1

=0 (9) 

Since (9) can’t be solved analytically for �̂�, numerical 

methods can be employed such as Newton or etc. 

 

3. QUASI-NEWTON ALGORITHM 

 

Quasi newton algorithm is one type of learning algorithm 

that searches the global minimum of the objective function 

using quadratic approximation for unconstrained nonlinear 

numerical optimization problems.  

 

Some features of the method may restrict the user. In order 

to be able to use the quasi-newton algorithm, the objective 

function must be differentiable at least twice. Quasi-newton 

uses gradient of objective function for estimating the hessian 

along the Newton Raphson direction −𝐻−1𝑔𝑟𝑎𝑑 (𝑓(𝑥)). 

There are numerous Quasi Newton methods differs for the 

way that which approximation used for calculation in inverse 

of Hessian matrix. Detailed information about the 

approximations can be found from the studies of [22-24]. 

 

Quasi Newton steps for search the minimum of twice 

differentiable objective function 𝑓(𝑥) can be given briefly as 

follows: 

 

Step 1: Define 𝑥0 starting point, set k=0 

Step 2: Estimate the 𝐻−1 and calculate the search direction  

Step 3: Calculate the new point by taking  𝑥𝑘+1 = 𝑥𝑘 −

[𝐻−1]𝑘 ∗ 𝑔𝑟𝑎𝑑 (𝑓(𝑥𝑘)) 

Step 4: Check the convergence by selected criteria 

(especially gradient). 

Step 5: let k=k+1 and repeat from step 2 till convergence 

satisfies. 

 

4. GENETIC ALGORITHM 

 

GA is an evolutionary random search algorithm. GA has 

wide applications on different branches and first introduced 

by Holland in early 1960s and later developed by his student 

Goldberg. GAs are randomized search algorithms and are 

separated from classical optimization algorithms in terms of 

some features. These can be summarized as follows [17]:  

 

GA uses the coding of the solutions instead of the solution 

values. GA searches for a set of points called population 

instead of points at each iteration to achieve the optimal 

solution.GA evaluates only the objective function to achieve 

the optimal solution and does not need another auxiliary 

knowledge such as derivatives of the objective function [18]. 

Thanks to this feature, it can be used to find the optimal 

solution of the non-derivative objective functions 

 

 GA uses probabilistic transition rules instead of 

deterministic rules. At each iteration every candidate 

solution in the population represented by chromosome. GA 

aims to achieve the optimal solution by applying genetic 

operators to chromosomes and evaluates them by the fitness 

(objective) function. 

 

Because GA is inspired by natural selection and genetic 

principles, it has genetic operators called crossover, mutation 

and selection. Crossover and Mutation operators can be 

applied in a GA as follows: 

 

Crossover operation to be applied a chromosome defined by 

the pre-defined crossover rate (Cr). Let be the randomly 

generated crossover point indicator randomly generated 

from Bernoulli(Cr) is [0 1 0 1] where 1 selects gene from 

parent 1, 0 select genes from parent 2. For example let the 

selected two parents P1:[2 3 4 5] and P2:[6 7 8 9] the next 

generation C1 of these parents can be obtained as C1:[6 3 8 

5] using  crossover operator. This is called scattered 

crossover.  

 

Mutation operator can be applied to a chromosome in two 

steps. At first step generate a random number according to 
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pre-defined mutation rate (Mr) from Bernoulli(Mr) for each 

gene in a chromosome. At the second step “1” values of 

generated number indicates the mutation of the gene by 

randomly regenerating it. Otherwise no change in gene. This 

type of mutation operator called uniform mutation. 

 

GA Steps for parameter estimation of progressively T2CS 

from WE is as follows: 

 

Let 𝑥1:𝑚:𝑛, 𝑥2:𝑚:𝑛, ⋯ , 𝑥𝑚−1:𝑚:𝑛, 𝑥𝑚:𝑚:𝑛 be Type-2 

progressively censored sample from a two-parameter WE 

distribution with censoring scheme 

𝑟 = (𝑟1, 𝑟2 ⋯ 𝑟𝑚) and c given by in eq.(4). 

 

Step 1: Define population size(N), select the coding type as 

real coding. Set roulette wheel selection which gives high 

fitness valued chromosomes more chance for selection to the 

next generation as selection method. Crossover method be 

the scattered crossover. Mutation method be uniform 

mutation. Use elitist strategy. 

 

Step 2: Let 𝜃𝑖 = (𝛼𝑖 𝛽𝑖) are positive valued chromosomes 

which denotes the ith individual in a population as WE 

distribution parameter estimates denoted by genes αi and βi  

(i=1,2 ⋯ N). Randomly generate chromosomes N times and 

obtain Nx2 size initial population. 

 

Step 3: Evaluate fitness of each chromosome by negative 

signed value of log likelihood function given in Eq.(5). 

Select the minimum fitness valued chromosome as elite 

chromosome and solution of problem as best fitness. 

 

Step 4: If the first run of program go to step 5 else check the 

termination criteria (The difference of less than 𝜀 = 0.001 

between consecutive iterations in best fitness). If the 

criterium meets, go to step 9 otherwise go to step 5. 

 

Step 5: Select parents for next generation using selection 

method. 

 

Step 6: Apply selected Crossover operator for diversity in 

population. 

 

Step 7: Use Mutation operator for avoid to local optimum 

problem. 

 

Step 8: Go to step 3 

Step 9: Set best chromosome as solution. 

 

 

5. SIMULATION  
 

A Monte Carlo simulation study is conducted to compare the 

performance of Newton and GA on MLEs of Weibull 

distribution parameters.  Matlab R2015a used for simulation 

study. Simulation algorithm for GA coded by user in Matlab 

according to section 4. Newton estimates were obtained by 

using fminunc function by  taking the  starting values [0.01 

0.01] and   the objective function given in eq (5).     

 

The progressive T2CS(s) are generated by using the 

algorithm suggested by [19]. We consider the scale and 

shape parameter setting respectively (𝛼 = 1 , 𝛼 = 2 ) and ( 

= 0.5, 𝛽 = 1, 𝛽 = 2) for different  values of sample size(n) 

and number of failures (m)  according to five different 

censoring schemes  which  adopted from the study of  [20].  

 

The proposed GA for parameter estimation of progressively 

T2CS from WE is defined as follows: 

 

Population size(N) for each iteration set to 300. Scattered 

Crossover method selected in order to ensure the diversity in 

search space with the cross over probability by taking 

Cr=0.90. Uniform mutation method selected for not to fall in 

to risk of local optimum by taking mutation probability 

Mr=0.01. Elitist strategy used for saving best solution at each 

iteration for the next generation. WE distribution parameters 

𝜃 = (𝛼 𝛽) are coded using real coding. It is also called 

chromosomes and contains randomly generated real valued 

two component which indicates the WE distribution 

parameter estimates for  each individual in population. 

Negative signed value of Eq(5) is used for evaluating the  

fitness of chromosomes. The chromosome with best fitness 

value at each iteration selected as elite chromosome and kept 

for next generation. Parent selection for next generation 

applied using Roulette Wheel Selection which gives high 

fitness valued chromosomes more chance for selection to the 

next generation. The difference of less than 𝜀 = 0.001 

between consecutive iterations in fitness function is 

determined as the termination criterion. The best fitness 

valued chromosome at last generation gives the parameter 

estimates of WE distribution. 

 

All process replicated 1000 times. To assess the performance 

of the GA and Newton, the simulated bias(Bias) and mean 

square error(MSE) values given by eq. (10) and eq. (11) are 

used. Significant differences between the methods are 

determined by the Wilcoxon signed rank test which results 

are given in Table 7.  

 

𝐵𝑖𝑎𝑠(�̂�) =
∑ (�̂�𝑖−𝜃)1000

𝑖=1

1000
 (10) 

and 

𝑀𝑆𝐸(�̂�) =
∑ (�̂�𝑖−𝜃)

21000
𝑖=1

1000
 (11) 
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Table 1. Bias and MSE values of scale and shape parameters (α=1, β =0.5) 

State N m Scheme 

Simulated 

Biases (�̂�) 

Simulated 

Biases (�̂�) 
MSE (�̂�) MSE (�̂�) 

GA Newton GA Newton GA Newton GA Newton 

1 20 6 1 0.146 -0.677 -0.348 -0.236 0.702 9.608 0.174 0.124 

2 20 6 2 0.326 -0.276 -0.070 0.008 0.494 0.494 0.083 0.085 

3 20 6 3 0.290 -0.092 -0.248 -1.309 0.349 0.660 1.667 1.826 

4 20 6 4 0.154 -0.825 -0.277 -0.127 0.467 1.066 0.146 0.094 

5 20 6 5 0.156 -0.902 -0.318 -0.189 0.556 0.885 0.163 0.106 

6 20 12 1 -0.035 -0.922 -0.211 -0.277 0.746 0.896 0.156 0.129 

7 20 12 2 0.153 -0.540 -0.076 -0.108 0.478 0.912 0.098 0.068 

8 20 12 3 0.111 -0.917 -0.247 -0.249 0.620 0.907 0.160 0.102 

9 20 12 4 0.132 -0.839 -0.217 -0.211 0.539 0.952 0.147 0.088 

10 20 12 5 0.103 -0.900 -0.251 -0.230 0.615 0.873 0.154 0.099 

11 60 18 1 -0.376 0.037 -0.137 -0.145 0.865 13.825 0.121 0.109 

12 60 18 2 -0.214 -0.840 -0.178 -0.127 0.310 0.875 0.107 0.043 

13 60 18 3 -0.172 -0.962 -0.274 -0.387 0.665 0.946 0.171 0.175 

14 60 18 4 -0.182 -0.974 -0.312 -0.320 0.438 0.950 0.175 0.125 

15 60 18 5 -0.178 -0.965 -0.277 -0.368 0.659 0.945 0.174 0.167 

16 60 36 1 -0.532 -0.048 0.003 0.083 0.907 6.405 0.105 0.088 

17 60 36 2 -0.218 -0.974 -0.210 -0.239 0.379 0.951 0.149 0.077 

18 60 36 3 -0.283 -0.914 -0.104 -0.396 0.805 0.883 0.147 0.183 

19 60 36 4 -0.234 -0.986 -0.181 -0.393 0.605 0.974 0.172 0.169 

20 60 36 5 -0.268 -0.981 -0.095 -0.384 0.722 0.966 0.157 0.168 

 

Table 2. Bias and MSE values of scale and shape parameters (α=1, β =1) 

State N m Scheme 

Simulated Biases 

(�̂�) 

Simulated Biases 

(�̂�) 
MSE (�̂�) MSE (�̂�) 

GA Newton GA Newton GA Newton GA Newton 

21 20 6 1 0.025 -0.748 -0.422 -0.616 0.397 0.661 0.579 0.417 

22 20 6 2 0.419 -0.297 0.048 -0.006 0.342 0.374 0.418 0.232 

23 20 6 3 0.109 -0.695 -0.331 -0.468 0.377 0.632 0.499 0.263 

24 20 6 4 0.244 -0.547 -0.076 -0.328 0.358 0.510 0.438 0.220 

25 20 6 5 0.146 -0.649 -0.178 -0.455 0.377 0.657 0.484 0.251 

26 20 12 1 -0.087 -0.883 -0.558 -0.567 0.486 0.801 0.642 0.358 

27 20 12 2 0.089 -0.616 -0.155 -0.176 0.311 0.512 0.399 0.220 

28 20 12 3 0.024 -0.867 -0.547 -0.580 0.443 0.771 0.590 0.350 

29 20 12 4 0.142 -0.772 -0.344 -0.480 0.370 0.636 0.517 0.272 

30 20 12 5 0.081 -0.835 -0.476 -0.554 0.414 0.743 0.567 0.327 

31 60 18 1 -0.415 -0.933 -0.830 -0.793 0.417 0.872 0.738 0.633 

32 60 18 2 -0.336 -0.716 -0.563 -0.222 0.284 0.564 0.373 0.216 

33 60 18 3 -0.397 -0.908 -0.783 -0.676 0.367 0.828 0.664 0.458 

34 60 18 4 -0.447 -0.775 -0.629 -0.607 0.316 0.628 0.465 0.396 

35 60 18 5 -0.416 -0.871 -0.764 -0.666 0.357 0.764 0.624 0.445 

36 60 36 1 -0.340 -0.988 -0.683 -0.923 0.649 0.977 0.604 0.863 

37 60 36 2 -0.260 -0.914 -0.767 -0.520 0.301 0.840 0.624 0.306 

38 60 36 3 -0.216 -0.983 -0.833 -0.783 0.448 0.966 0.760 0.645 

39 60 36 4 -0.312 -0.938 -0.825 -0.715 0.341 0.880 0.720 0.519 

40 60 36 5 -0.230 -0.982 -0.815 -0.784 0.460 0.964 0.738 0.621 
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Table 3. Bias and MSE values of scale and shape parameters (α=1, β =2) 

State N m Scheme 

Simulated Biases 

(�̂�) 

Simulated Biases 

(�̂�) 
MSE (�̂�) MSE (�̂�) 

GA Newton GA Newton GA Newton GA Newton 

41 20 6 1 0.232 -0.221 -0.195 -1.349 0.337 0.431 1.848 2.029 

42 20 6 2 0.444 0.169 -0.152 -0.759 0.347 1.719 0.521 0.980 

43 20 6 3 0.285 -0.041 -0.157 -1.279 0.332 0.792 1.710 1.781 

44 20 6 4 0.346 0.332 -0.093 -1.082 0.328 0.861 1.343 1.364 

45 20 6 5 0.298 0.111 -0.159 -1.212 0.338 0.967 1.558 1.668 

46 20 12 1 0.160 -0.775 -0.634 -1.556 0.431 0.648 2.510 2.425 

47 20 12 2 0.269 -0.604 -0.345 -1.252 0.343 0.423 1.881 1.706 

48 20 12 3 0.423 0.564 2.428 2.200 0.641 1.210 0.034 0.655 

49 20 12 4 0.272 -0.631 -0.437 -1.349 0.395 0.427 2.068 1.849 

50 20 12 5 0.265 -0.701 -0.629 -1.444 0.410 0.502 2.296 2.091 

51 60 18 1 -0.481 -0.652 -1.634 -1.708 0.316 0.441 2.727 2.919 

52 60 18 2 -0.274 -0.493 -1.362 -1.232 0.189 0.436 1.889 1.742 

53 60 18 3 -0.450 -0.637 -1.564 -1.550 0.292 0.543 2.506 2.479 

54 60 18 4 -0.310 -0.104 -1.392 -1.176 0.152 0.683 1.987 1.850 

55 60 18 5 -0.390 -0.441 -1.503 -1.451 0.225 0.560 2.318 2.311 

56 60 36 1 -0.334 -0.941 -1.828 -1.738 0.401 0.887 3.399 3.021 

57 60 36 2 -0.356 -0.820 -1.641 -1.542 0.302 0.676 2.726 2.380 

58 60 36 3 -0.380 -0.919 -1.795 -1.718 0.366 0.845 3.269 2.954 

59 60 36 4 -0.440 -0.790 -1.683 -1.587 0.326 0.628 2.877 2.523 

60 60 36 5 -0.311 -0.905 -1.810 -1.602 0.347 0.821 3.315 2.579 

 
Table 4. Bias and MSE values of scale and shape parameters (α=2, β =0.5) 

State N m Scheme 

Simulated Biases 

(�̂�) 

Simulated Biases 

(�̂�) 
MSE (�̂�) MSE (�̂�) 

GA Newton GA Newton GA Newton GA Newton 

61 20 6 1 -1.116 -1.795 -0.260 -0.229 2.388 3.702 0.140 0.097 

62 20 6 2 -0.064 -0.068 0.001 0.046 1.510 4.475 0.051 0.061 

63 20 6 3 -1.076 -1.977 -0.133 -0.297 2.567 3.912 0.157 0.109 

64 20 6 4 -1.055 -1.367 -0.121 -0.007 1.970 4.609 0.098 0.080 

65 20 6 5 -0.871 -0.581 -0.208 -0.256 1.317 2.163 0.182 0.190 

66 20 12 1 -0.976 -1.759 -0.187 -0.191 2.231 3.550 0.137 0.128 

67 20 12 2 -0.191 -0.313 -0.021 -0.004 1.523 2.855 0.048 0.038 

68 20 12 3 -0.936 -1.350 -0.150 -0.080 2.017 3.422 0.106 0.082 

69 20 12 4 -0.724 -1.067 -0.116 -0.046 1.815 3.220 0.086 0.048 

70 20 12 5 -0.957 -1.377 -0.141 -0.095 1.942 3.267 0.101 0.062 

71 60 18 1 -1.095 -1.550 -0.189 -0.325 2.912 7.204 0.147 0.170 

72 60 18 2 -0.690 -0.973 -0.077 -0.062 1.765 3.090 0.054 0.027 

73 60 18 3 -1.090 -1.955 -0.284 -0.262 2.193 3.840 0.165 0.090 

74 60 18 4 -1.293 -1.888 -0.237 -0.168 1.976 3.596 0.136 0.052 

75 60 18 5 -1.146 -1.943 -0.290 -0.228 2.213 3.789 0.164 0.072 

76 60 36 1 -1.212 -1.256 0.008 -0.311 3.394 7.679 0.116 0.160 

77 60 36 2 -1.087 -1.782 -0.170 -0.178 1.643 3.460 0.096 0.049 

78 60 36 3 -1.076 -1.977 -0.133 -0.297 2.567 3.912 0.157 0.109 

79 60 36 4 -1.177 -1.964 -0.210 -0.264 1.982 3.861 0.163 0.082 

80 60 36 5 -1.103 -1.973 -0.133 -0.265 2.281 3.896 0.155 0.085 
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Table 5. Bias and MSE values of scale and shape parameters (α=2, β =1) 

State N m Scheme 

Simulated Biases 

(�̂�) 

Simulated Biases 

(�̂�) 
MSE (�̂�) MSE (�̂�) 

GA Newton GA Newton GA Newton GA Newton 

81 20 6 1 -1.195 -1.236 -0.387 -0.438 1.645 2.016 0.273 0.328 

82 20 6 2 -0.019 -0.077 0.074 0.133 0.661 0.856 0.122 0.137 

83 20 6 3 -1.399 -1.835 -0.750 -0.598 2.157 3.391 0.632 0.415 

84 20 6 4 -0.486 -0.415 -0.116 -0.060 1.163 1.417 0.139 0.140 

85 20 6 5 -0.875 -0.558 -0.226 -0.268 1.313 2.173 0.191 0.184 

86 20 12 1 -1.241 -1.214 -0.574 -0.499 1.783 2.338 0.404 0.339 

87 20 12 2 -0.252 -0.217 -0.087 0.160 0.833 0.851 0.113 0.224 

88 20 12 3 -1.059 -1.061 -0.440 -0.168 1.506 1.954 0.271 0.426 

89 20 12 4 -0.680 -0.724 -0.264 0.010 1.218 1.461 0.162 0.211 

90 20 12 5 -0.927 -0.929 -0.384 -0.112 1.364 1.722 0.241 0.381 

91 60 18 1 -1.447 -1.590 -0.678 -0.740 2.209 2.812 0.525 0.551 

92 60 18 2 -0.831 -0.724 -0.254 0.038 1.201 1.454 0.141 0.187 

93 60 18 3 -1.427 -1.650 -0.596 -0.541 2.133 2.838 0.423 0.351 

94 60 18 4 -1.237 -1.194 -0.374 -0.238 1.638 1.913 0.212 0.343 

95 60 18 5 -1.375 -1.482 -0.528 -0.490 1.976 2.474 0.342 0.367 

96 60 36 1 -1.339 -1.930 -0.761 -0.790 2.170 3.731 0.673 0.660 

97 60 36 2 -1.321 -1.434 -0.524 -0.166 1.872 2.246 0.331 0.171 

98 60 36 3 -1.399 -1.835 -0.750 -0.598 2.157 3.391 0.632 0.415 

99 60 36 4 -1.401 -1.513 -0.624 -0.600 2.083 3.828 0.456 0.382 

100 60 36 5 -1.362 -1.618 -0.718 -0.295 2.068 2.721 0.571 0.283 

 
Table 6. Bias and MSE values of scale and shape parameters (α=2, β =2) 

State N m Scheme 

Simulated Biases 

(�̂�) 

Simulated Biases 

(�̂�) 
MSE (�̂�) MSE (�̂�) 

GA Newton GA Newton GA Newton GA Newton 

101 20 6 1 -0.419 -0.285 -0.991 -1.034 0.476 1.156 1.148 1.329 

102 20 6 2 -0.021 -0.001 -0.058 -0.121 0.179 0.185 0.233 0.236 

103 20 6 3 -1.381 -1.373 -1.600 -1.551 1.981 2.231 2.606 2.442 

104 20 6 4 0.114 0.511 -0.467 -0.623 0.412 0.838 0.436 0.618 

105 20 6 5 -0.002 1.480 -0.732 -1.000 0.548 4.095 0.743 1.097 

106 20 12 1 -0.972 -0.855 -1.326 -1.460 1.171 3.115 1.802 2.194 

107 20 12 2 -0.340 -0.420 -0.849 -0.122 0.464 0.830 0.844 0.830 

108 20 12 3 -0.780 -0.887 -1.209 -0.830 0.950 1.249 1.520 1.117 

109 20 12 4 -0.312 -0.583 -1.018 -0.585 0.474 0.939 1.121 0.804 

110 20 12 5 -0.598 -0.802 -1.154 -0.803 0.739 1.052 1.386 0.978 

111 60 18 1 -1.023 -0.787 -1.291 -1.614 1.145 0.983 1.741 2.628 

112 60 18 2 -0.491 -0.630 -1.016 -0.786 0.636 1.065 1.101 1.077 

113 60 18 3 -1.038 -1.019 -1.239 -1.291 1.169 1.518 1.599 1.840 

114 60 18 4 -0.490 -0.469 -1.042 -0.998 0.499 0.938 1.186 1.278 

115 60 18 5 -0.811 -0.710 -1.137 -1.206 0.842 1.299 1.384 1.692 

116 60 36 1 -1.455 -1.688 -1.671 -1.737 2.188 2.857 2.852 3.021 

117 60 36 2 -1.246 -1.265 -1.348 -1.012 1.618 2.080 1.860 1.619 

118 60 36 3 -1.381 -1.373 -1.600 -1.551 1.981 2.231 2.606 2.442 

119 60 36 4 0.532 -0.605 -0.616 -1.644 1.671 4.864 2.488 2.723 

120 60 36 5 0.373 -1.228 -0.717 -1.679 1.732 1.620 2.632 2.828 
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Table 7.  MSE and Bias statistics for GA and Newton algorithms 

 Simulated Biases (�̂�) Simulated Biases (�̂�) MSE (�̂�) MSE (�̂�) 

 GA Newton GA Newton GA Newton GA Newton 

Mean -.466 -.867 -.535 -.602 1.023 1.952 .827 .786 

Std. Error of Mean .051 .054 .051 .054 .069 .179 .082 .081 

Median -.366 -.877 -.361 -.474 .654 .975 .447 .346 

P value (Wilcoxon) .000 .738 .000 .001 

 

Table 8.  Censoring schemes used in the simulation study  

Scheme No. (R1, R2, ⋯Rm-1, Rm) 

1 (0, 0 ⋯ 0, n-m) 

2 (n-m, 0, 0⋯, 0) 

3 (
(𝑛−𝑚)

2
, 0, 0 ⋯ 0, 

(𝑛−𝑚)

2
) 

4 (0, 0 ⋯  
(𝑛−𝑚)

2
,  

(𝑛−𝑚)

2
 ⋯ 0, 0) 

5 (~
(𝑛−𝑚)

𝑚
, ~

(𝑛−𝑚)

𝑚
⋯ ~

(𝑛−𝑚)

𝑚
, ~

(𝑛−𝑚)

𝑚
) 

 

 
Figure 1. Bias values for scale parameter 

 

 
Figure 2. Bias values for shape parameter 

 

The Figure1-6 that represents the results of  Table 1-6 can be 

briefly summarized as follows. According to the bias 

comparisons of the scale parameter given in Figure 1, 

difference between GA and Newton is found statistically 

significant at 5% significant level by Wilcoxon test 

(p=.000<.05). The mean of simulated biases of GA is closer 

to zero than Newton, also has less variability as shown in 

Table 7. Shape parameter biases are quite similar for both 

methods as shown in Figure 2. Wilcoxon test results showed 

that shape parameter biases are found similar and there is no 

significance difference between two methods (p=.738>.05) 

at 5% significance level.  

Figure 3. MSE values for scale parameter 

According to the MSE comparisons of the scale parameter 

given in Figure 3, difference between GA and Newton is 

found statistically significant at 5% significant level by 

Wilcoxon test (p=.000<.05). The mean of MSEs of GA is 

smaller than Newton, also has less variability as shown in 

Table 7. Although shape parameter MSEs looks quite similar 

for both methods as in Figure 4, Wilcoxon test results 

showed that shape parameter MSEs are found statistically 

different for two methods (p=.001<.05) at 5% significance 

level. Newton has smaller mean and less variability than GA 

for shape parameter MSEs.  

 
Figure 4. MSE values for shape parameter  

Bias comparisons for different censoring schemes of scale 

and shape parameters according to Table 1-6 are also given 

in Figure 5-8. Wilcoxon test results for comparisons of 

methods for 5 different schemes are given in Table 9.  
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Table 9. P values of Wilcoxon test  for schemes 

Scheme 1 2 3 4 5 

Simulated 

Biases (�̂�) 

.002 .000 .000 .001 .002 

Simulated 

Biases (�̂�) 

.021 .052 .732 .830 .458 

MSE (�̂�) .000 .000 .000 .000 .000 

MSE (�̂�) .607 .011 .056 .040 .153 

 

 
Figure 5. Bias values of scale parameters for different 

schemes 

 

According to the bias comparisons of the scale parameter 

given in Figure 5, difference between GA and Newton is 

found statistically significant at 5% significant level by 

Wilcoxon test for 5 different censoring schemes. (all p values 

given at 2nd row of Table 9 are smaller than .05) Bias means 

of GA are closer to zero than those Newton’s for all schemes 

as seen in Figure 5.  

 

 
Figure 6. Bias values of shape parameters for different 

schemes 

 

According to the bias comparisons of the shape parameter 

given in Figure 6, There is no significance difference 

between two methods except scheme 1(p values given at 3rd 

row of Table 9) (p=.021<.05) at 5% significance level. Mean 

bias of GA is closer to zero than Newton’s for scheme 1 as 

seen in Figure 6.  

 

 

 
Figure 7. MSE values of scale parameters for different 

schemes 

 

According to the MSE comparisons of the scale parameter 

given in Figure 7, difference between GA and Newton is 

found statistically significant at 5% significant level by 

Wilcoxon test for 5 different censoring schemes. (p values 

given in Table 9 row 4 are smaller than .05) GA’s mean MSE 

values are smaller than those Newton’s for all schemes as 

seen in Figure 7.  

 

 
Figure 8. MSE values of shape parameters for different 

schemes 

 

According to the MSE comparisons of the shape parameter 

given in Figure 8, difference between GA and Newton is 

found statistically significant at 5% significant level by 

Wilcoxon test for schemes 2 and 4. (p values given in 5th row 

of Table 9) GA’s mean MSE values are higher than those 

Newton’s for all schemes in Figure 8.  

 

6. REAL DATA APPLICATION  
 

In this section, we consider the data set representing the time 

to deterioration of an insulating fluid between the electrodes 

at a voltage of 34k.v. [21] [1] The data set  consist of m=8 

observation from n=19 unit with censoring scheme are 

𝑥8:19 = (. 19 .78 .96 1.31 2.78 4.85 6.50 7.35) and  

𝑅 = (0 0 3 0 3 0 0 5). 
 

We use Newton and GA method to obtain the point 

estimations of the two-parameter WE distribution based on 

progressive type 2 censoring scheme.  
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Parameter estimates are found as (  �̂�𝐺𝐴 = 9.2253 , 

 �̂�Newton = 9.2254 , �̂�𝐺𝐴 = 0.9743,   �̂�Newton =0.9743). 

Scale and shape parameter estimates are similar and 

compliance with the results given in [21] for same data with 

(�̂� = 9.2254 ,  �̂� = 0.9743). 

 

7. RESULTS AND CONCLUSION 

 

MLE is one of the most frequently used parameter estimation 

methods especially for censored samples. Newton is one of 

the widely used methods for solving the system of equations 

especially in maximum likelihood estimation. Even though 

it is popular, the biggest disadvantage of the Newton method 

is that it is a valid method for only differentiable functions. 

GA is very popular and derivative-free learning algorithm.  

In this study we suggest GA for MLE of progressive T2CS 

from WE distribution which has more complex likelihood 

function than full case. 

 
According to simulation results we compared the bias and 

MSE performance of GA and Newton methods. As a result 

of study our findings are as follows: GA is better than 

Newton for scale parameter MLE in terms of Bias and MSE. 

There is no difference between GA and Newton for shape 

parameter biases of MLE. Newton is better than GA for 

shape parameter MSE of MLE. 

 

GA is better than Newton for scale parameter biases and 

MSEs for all schemes. GA is better than Newton for Shape 

parameter biases for scheme1. There is no difference 

between GA and Newton in terms of shape parameter biases 

for schemes except scheme1.    

 

In terms of shape parameter MSEs Newton is better than GA 

for scheme 2 and scheme 4 but there is no difference between 

methods for other schemes.   
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