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ON THE INVERSE PROBLEM FOR FINITE DISSIPATIVE
JACOBI MATRICES WITH A RANK-ONE IMAGINARY PART

EBRU ERGUN

Abstract. This paper deals with the inverse spectral problem consisting in
the reconstruction of a finite dissipative Jacobi matrix with a rank-one imagi-
nary part from its eigenvalues. Necessary and suffi cient conditions are formu-
lated for a prescribed collection of complex numbers to be the spectrum of a
finite dissipative Jacobi matrix with a rank-one imaginary part. Uniqueness
of the matrix having prescribed eigenvalues is shown and an algorithm for
reconstruction of the matrix from prescribed eigenvalues is given.

1. Introduction

An N ×N (real) Jacobi matrix is a tri-diagonal symmetric matrix of the form

J =



b0 a0 0 · · · 0 0 0
a0 b1 a1 · · · 0 0 0
0 a1 b2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . bN−3 aN−3 0
0 0 0 · · · aN−3 bN−2 aN−2
0 0 0 · · · 0 aN−2 bN−1


, (1)

where for each n, an and bn are arbitrary real numbers such that an is positive:

an > 0, bn ∈ R. (2)

Quantities connected with the eigenvalues and eigenvectors of the matrix are called
the spectral characteristics of the matrix. The general inverse spectral problem is
to reconstruct the matrix given some of its spectral characteristics (spectral data).
Many versions of the inverse spectral problem for finite and infinite Jacobi matrices
have been investigated in the literature and many procedures and algorithms for
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their solution have been proposed (for some of them see [12, 13, 11, 7, 3, 2, 6, 15,
8, 9, 10, 14, 16]).
Note that, in general, one spectrum consisting of the eigenvalues of the Jacobi

matrix does not determine this matrix. It turns out that the eigenvalues together
with the normalizing numbers (a spectral measure) or the so-called two-spectra are
enough to determine the Jacobi matrix uniquely.
Now let us along with the matrix J given by (1), (2) consider also the matrix

J̃ =



b̃0 a0 0 · · · 0 0 0
a0 b1 a1 · · · 0 0 0
0 a1 b2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . bN−3 aN−3 0
0 0 0 · · · aN−3 bN−2 aN−2
0 0 0 · · · 0 aN−2 bN−1


(3)

in which all an and bn are the same as in J, except b0 which is replaced by b̃0 and
we will assume that

b̃0 = b0 + iω, ω > 0. (4)

Therefore J̃ is a dissipative matrix with a rank-one imaginary part. It turns out that
the matrix J̃ has N, counting algebraic multiplicity, nonreal eigenvalues λ̃1, . . . , λ̃N
with positive imaginary parts. These eigenvalues are determined by their N free,
in general, real parts and N free positive imaginary parts. The matrix J̃ also
contains N free real parameters b0, b1, . . . , bN−1 and N free positive parameters
a0, a1, . . . , aN−2 and ω. Therefore one may expect that the inverse problem from
the eigenvalues λ̃1, . . . , λ̃N to the matrix J̃ is uniquely solvable. Such an inverse
problem was recently investigated and solved in the paper [1] by using the Livsic
characteristic function of the matrix J̃ and expansion into continuous fractions of
the Weyl-Titchmarsh function of J̃ , expressed in terms of the Livsic characteristic
function.
In the present paper, we revisit the reconstruction problem of a dissipative Jacobi

matrix with a rank-one imaginary part from its eigenvalues. Our approach to this
problem in this paper differs from that in the paper [1] and is based on a known fact
on polynomials with roots in the open upper half-plane (Theorem 2 below in Section
2) and on the reduction of the inverse problem for the dissipative Jacobi matrix
J̃ of the form (3), (4) to the inverse problem from two-spectra for the associated
real Jacobi matrix J defined by (1), (2). Besides, the latter problem we solve by
the discrete Gelfand-Levitan method instead of the continuous fraction expansion.
We hope that the approach suggested in the present paper may contribute some
additional insights to the theory of inverse problems for dissipative Jacobi matrices
and may be useful in related problems.
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The paper consists, besides this introductory section, of four sections. In Section
2, we formulate a solution procedure of the inverse problem for real Jacobi matrices
from the eigenvalues and normalizing numbers and also from the two-spectra, and
present a known theorem on the polynomials with roots in the open upper half-
plane. In Section 3, we deal with the inverse problem for dissipative Jacobi matrices
with a rank-one imaginary part from its eigenvalues and establish necessary and
suffi cient conditions for solvability of the inverse problem. In Section 4, we describe
the reconstruction procedure and give an example. Finally, in Section 5, we make
some concluding remarks on the reconstruction procedure.

2. Auxiliary facts

In this section, we present briefly known solutions of the inverse problems with
respect to eigenvalues and normalizing numbers and with respect to two-spectra,
for real finite Jacobi matrices. Also, we present a known theorem on complex
polynomials with zeros in the open upper half-plane. This knowledge is given here
for easy reference and they will be used in the subsequent sections.
1. It is well known that any real Jacobi matrix of the form (1), (2) has precisely

N real and distinct eigenvalues λ1, . . . , λN , so

det(λI − J) = (λ− λ1) · · · (λ− λN ). (5)

The normalizing numbers of the matrix J can be introduced as follows. Let R(λ) =
(J − λI)−1 be the resolvent of the matrix J (by I we denote the identity matrix of
needed dimension) and e0 be theN -dimensional column vector with the components
1, 0, . . . , 0. The rational function

w(λ) = −〈R(λ)e0, e0〉 =
〈
(λI − J)−1e0, e0

〉
, (6)

introduced earlier in [13], is called the resolvent function of the matrix J, where
〈·, ·〉 denotes the standard inner product in CN . This function is known also as the
Weyl or Weyl-Titchmarsh function of J. The resolvent function w(λ) admits, by
(6) and (5), the decomposition into partial fractions,

w(λ) =

N∑
k=1

βk
λ− λk

, (7)

where βk’s are some positive real numbers uniquely determined by the matrix J
and such that

N∑
k=1

βk = 1. (8)

The number βk is called the normalizing number of the matrix J, associated with
the eigenvalue λk (it is related to the norm of the eigenvector of J, corresponding
to the eigenvalue λk).
The collection of the eigenvalues and normalizing numbers

{λk, βk (k = 1, . . . , N)} (9)
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of the matrix J of the form (1), (2) is called the spectral data of this matrix.
The matrix J given in (1) contains N free real parameters b0, b1, . . . , bN−1 and

N − 1 free real positive parameters a0, a1, . . . , aN−2. The spectral data in (9) of
the matrix J contain N real parameters λ1, . . . , λN and N real positive parameters
β1, . . . , βN but (8) eliminates one parameter. Therefore it is reasonable to consider
the inverse problem from the spectral data to the matrix J.
The inverse spectral problem is stated as follows:

(i) To see if it is possible to reconstruct the matrix J, given its spectral data
(9). If it is possible, to describe the reconstruction procedure.

(ii) To find the necessary and suffi cient conditions for a given collection (9) to
be spectral data for some matrix J of the form ( 1) with entries belonging
to the class (2).

The solution of this problem is well known and can be formulated as follows.
Given a collection (9), where λ1, . . . , λN and β1, . . . , βN are arbitrary numbers,

define the numbers

sl =

N∑
k=1

βkλ
l
k, l = 0, 1, 2, . . . , (10)

and using these numbers introduce the Hankel determinants

Dn =

∣∣∣∣∣∣∣∣∣
s0 s1 · · · sn
s1 s2 · · · sn+1
...

...
. . .

...
sn sn+1 · · · s2n

∣∣∣∣∣∣∣∣∣ , n = 0, 1, 2, . . . . (11)

Theorem 1. Let an arbitrary collection (9) of numbers be given. In order for
this collection to be the spectral data for a Jacobi matrix J of the form (1) with
entries belonging to the class (2), it is necessary and suffi cient that the following
two conditions are satisfied:

(i) The numbers λ1, . . . , λN are real and distinct.
(ii) The numbers β1, . . . , βN are positive and such that β1 + . . .+ βN = 1.

Under the conditions (i) and (ii) we have Dn > 0 for n ∈ {0, 1, . . . , N − 1} and
the entries an and bn of the unique Jacobi matrix J for which the collection (9) is
spectral data, are recovered by the formulas

an =

√
Dn−1Dn+1

Dn
, n ∈ {0, 1, . . . , N − 2}, D−1 = 1, (12)

bn =
∆n

Dn
− ∆n−1
Dn−1

, n ∈ {0, 1, . . . , N − 1}, ∆−1 = 0, ∆0 = s1, (13)

where Dn is defined by (11) and (10), and ∆n is the determinant obtained from
the determinant Dn by replacing in Dn the last column by the column with the
components sn+1, sn+2, . . . , s2n+1.
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For a detailed proof of Theorem 1 see, for example, [9, Section 2], where a discrete
version of the Gelfand-Levitan [5] procedure for the reconstruction of a differential
equation from its spectral function is carried out. Note that the Gelfand-Levitan
procedure of solution of the inverse problem is based on a Fredholm type linear
integral equation (the so-called Gelfand-Levitan equation). In the discrete case of
Jacobi matrices the Gelfand-Levitan equation becomes an inhomogeneous linear
system of algebraic equations and solution of this system by Cramer’s rule in terms
of determinants yields formulas (12) and (13).
2. There are different versions of the inverse two-spectra problem for Jacobi

matrices. One of them was introduced by Hochstadt in [12, 13] as follows. Let J1
be the (N − 1) × (N − 1) matrix obtained from J defined by (1), (2) by deleting
its first row and first column:

J1 =



b1 a1 · · · 0 0 0
a1 b2 · · · 0 0 0
...

...
. . .

...
...

...
0 0 . . . bN−3 aN−3 0
0 0 · · · aN−3 bN−2 aN−2
0 0 · · · 0 aN−2 bN−1


. (14)

The matrix J1 is called the first truncated matrix (with respect to the matrix J).
The eigenvalues {λk}Nk=1 and {µk}

N−1
k=1 of J and J1, respectively, interlace:

λ1 < µ1 < λ2 < µ2 < λ3 < . . . < µN−1 < λN . (15)

The author showed in [13] that if {λk} are the eigenvalues of some Jacobi matrix
of the form (1) with the entries (2) and if {µk} are the eigenvalues of the corre-
sponding J1, then there is precisely one such matrix with these {λk, µk}, and gave
a constructive method for calculating the entries of J in terms of the given eigen-
values. The collections {λk}Nk=1 and {µk}

N−1
k=1 are called the two-spectra of the

matrix J. It turns out that condition (15) is not only necessary but also suffi cient
for two collections of real numbers {λk}Nk=1 and {µk}

N−1
k=1 to be two-spectra for a

Jacobi matrix J of the form (1) with entries belonging to the class (2).
Let us show that the inverse problem about two-spectra can be solved by re-

ducing it to the inverse problem about spectral data consisting of eigenvalues and
normalizing numbers of the matrix and solved in Theorem 1.
For the resolvent function w(λ) of the matrix J, given by (6), the formula

w(λ) =
det(λI − J1)
det(λI − J)

holds. Substituting here (7) and

det(λI − J) =

N∏
j=1

(λ− λj), det(λI − J1) =

N−1∏
j=1

(λ− µj),
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we can write

N∑
j=1

βj
λ− λj

=

N−1∏
j=1

(λ− µj)

N∏
j=1

(λ− λj)
.

Multiplying both sides of the last equation by λ− λk and passing then to the limit
as λ→ λk, we find that

βk =

N−1∏
j=1

(λk − µj)

N∏
j=1,j 6=k

(λk − λj)
, k = 1, . . . , N. (16)

The formula (16) expresses the normalizing numbers βk of the matrix J in terms
of its two-spectra {λj}Nj=1 and {µj}N−1j=1 . Since the normalizing numbers {βk}Nk=1
together with the eigenvalues {λk}Nk=1 determine the matrix J uniquely, we get that
the two-spectra determine the matrix J uniquely.
The formula (16) allows also to prove the suffi ciency of the condition (15) for

two given collections of real numbers {λk}Nk=1 and {µk}
N−1
k=1 to be two-spectra for

a Jacobi matrix J of the form (1) with entries belonging to the class (2).
Indeed, suppose that two collections of real numbers {λk}Nk=1 and {µk}

N−1
k=1 are

given which satisfy the condition (15). Using these collections we construct the
numbers βk (k = 1, . . . , N) by Eq. (16). The condition (15) guarantees that such
defined numbers βk are positive. Let us show that

N∑
k=1

βk = 1. (17)

For suffi ciently large positive number R such that λ1, . . . , λN are inside the circle
{λ ∈ C : |λ| = R}, we have

N∑
k=1

βk =

N∑
k=1

N−1∏
j=1

(λk − µj)

N∏
j=1,j 6=k

(λk − λj)

=

N∑
k=1

Resλ=λk
(λ− µ1) · · · (λ− µN−1)
(λ− λ1) · · · (λ− λN )

=
1

2πi

∮
|λ|=R

(λ− µ1) · · · (λ− µN−1)
(λ− λ1) · · · (λ− λN )

dλ =
1

2πi

∮
|λ|=R

λN−1 + . . .

λN + . . .
dλ
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=
1

2πi

∮
|λ|=R

[
1

λ
+O

(
1

|λ|2

)]
dλ = 1 +

1

2πi

∮
|λ|=R

O

(
1

|λ|2

)
dλ.

Passing here to the limit as R→∞ and noting that

lim
R→∞

∮
|λ|=R

O

(
1

|λ|2

)
dλ = 0,

we arrive at (17).
Thus, the collection {λk, βk (k = 1, . . . , N)} satisfies all the conditions of Theo-

rem 1 and hence there exist a unique Jacobi matrix J of the form (1) with entries
from the class (2) such that λk are the eigenvalues and βk are the corresponding
normalizing numbers for J. The entries an, bn of the matrix J are found by for-
mulas (12), (13) in which the numbers βk are calculated by (16). It remains to
show that µj are the eigenvalues of J1, where J1 is the first truncated matrix (with
respect to the constructed matrix J). To do this we denote the eigenvalues of J1
by µ′1, . . . , µ

′
N−1. We have to show that µj = µ′j (j = 1, . . . , N − 1) with a possible

reorder of µ′j’s. Let us set

f(λ) =

N−1∏
j=1

(λ− µj), g(λ) =

N−1∏
j=1

(λ− µ′j). (18)

By the direct problem for the constructed matrix J we have (formula (16) in which
µj should be replaced by µ

′
j)

βk =

N−1∏
j=1

(λk − µ′j)

N∏
j=1,j 6=k

(λk − λj)
, k = 1, . . . , N.

On the other hand, by our construction of βk we have (16). Hence

N−1∏
j=1

(λk − µ′j) =

N−1∏
j=1

(λk − µj), k = 1, . . . , N.

This means that the polynomials f(λ) and g(λ) of degree N − 1, defined in (18),
coincide at N different points λ1, . . . , λN . Then f(λ) ≡ g(λ) and consequently
µj = µ′j (j = 1, . . . , N − 1) with a possible reorder of µ′j’s.
3. Given a complex polynomial P (λ), we define

P ∗(λ) = P (λ) (19)

so that the polynomial P ∗(λ) is obtained from the polynomial P (λ) by replacing
the coeffi cients of P (λ) by their complex conjugates. Define the real and imaginary
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parts of P (λ) by

P re(λ) =
P (λ) + P ∗(λ)

2
, P im(λ) =

P (λ)− P ∗(λ)

2i
. (20)

Therefore P re(λ) and P im(λ) are polynomials with real coeffi cients and

P (λ) = P re(λ) + iP im(λ).

Theorem 2. ([4, Theorem 9.9]) Let P (λ) be a complex polynomial and let P re(λ)
and P im(λ) be its real and imaginary parts, defined by (20), (19). Then all the zeros
of P (λ) = P re(λ) + iP im(λ) are in the open upper half-plane if and only if all the
zeros of P re(λ) and P im(λ) are real, simple, and separate each other (interlace).

3. The inverse problem for dissipative Jacobi matrices

Let E0 be the N × N matrix whose elements are all zero except the first main
diagonal element which is equal to 1. Then the matrix J̃ defined by (3) with (2)
and (4) can be written in the form

J̃ = J + iωE0,

where J is defined by (1). Because the matrices J and E0 are selfadjoint, it follows
that the adjoint J̃∗ of J̃ is

J̃∗ = J − iωE0.
Therefore, the Hermitian components of J̃ are

ReJ̃ =
J̃ + J̃∗

2
= J, ImJ̃ =

J̃ − J̃∗

2İ
= ωE0.

Next, let the linear space CN of columns be equipped by the usual inner product

〈x, y〉 =

N−1∑
n=0

xnyn.

Then for any x ∈ CN we have〈
J̃x, x

〉
= 〈(J + iωE0)x, x〉

= 〈Jx, x〉+ iω 〈E0x, x〉 = 〈Jx, x〉+ iω |x0|2

so that
Im
〈
J̃x, x

〉
= ω |x0|2 , (21)

and (
J̃ − J̃∗

)
x = 2iωE0x = 2iωx0e0,

where x0 is the first component of the vector x and e0 is the column vector with
the components 1, 0, . . . , 0.
Consequently,

Im
〈
J̃x, x

〉
≥ 0 for all x ∈ CN ,
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ran
(
J̃ − J̃∗

)
= {αe0 : α ∈ C},

so that, J̃ is a dissipative Jacobi matrix with a rank-one imaginary part.

Lemma 3. The eigenvalues of the matrix J̃ belong to the open upper half-plane.

Proof. Let λ ∈ C be an eigenvalue of the matrix J̃ and y ∈ CN , y 6= 0 be a
corresponding eigenvector:

J̃y = λy. (22)

Hence 〈
J̃y, y

〉
= 〈λy, y〉 = λ 〈y, y〉 = λ ‖y‖2

and
Im
〈
J̃y, y

〉
= (Imλ) ‖y‖2 .

On the other hand, by (21) applied to the vector y, we have

Im
〈
J̃y, y

〉
= ω |y0|2 ,

where y0 is the first component of the vector y. Therefore

Imλ = ω
|y0|2

‖y‖2
. (23)

Further, it is not diffi cult to see that for the eigenvector y its first component y0 is
different from zero. Indeed, Eq. (22) in coordinates has the form

b̃0y0 + a0y1 = λy0, (24)

an−1yn−1 + bnyn + anyn+1 = λyn, n = 1, . . . , N − 2, (25)

aN−2yN−2 + bN−1yN−1 = λyN−1. (26)

Therefore, if y0 = 0, then we find recurrently from equations (24 ), (25) (using the
condition an 6= 0) that y1 = . . . = yN−1 = 0 which contradict to the fact that y 6= 0
as an eigenvector. Thus, y0 6= 0 and (23) together with the condition ω > 0 implies
that Imλ > 0. �

Note that to each eigenvalue of J̃ there corresponds only one linearly indepen-
dent eigenvector (this can easily be seen from equations (24)—(26)) so that the
geometric multiplicity of each eigenvalue of J̃ is 1. However, there may exist the
so-called associated vectors attached to the eigenvectors. The algebraic multiplicity
of an eigenvalue of the matrix J̃ is its multiplicity as the root of the characteristic

polynomial det
(
λI − J̃

)
.

Denote all the (not necessarily distinct) eigenvalues of the matrix J̃ by λ̃1, . . . , λ̃N
counting their algebraic multiplicities. By Lemma 3 the numbers λ̃1, . . . , λ̃N are
nonreal and lie in the open upper half-plane.
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Lemma 4. The equality
N∑
j=1

Imλ̃j = ω (27)

holds, where ω > 0 is taken from (4).

Proof. For any matrix A = [ajk]Nj,k=1 the spectral trace of A equals its matrix trace:
If z1, . . . , zN are all the eigenvalues (counting their algebraic multiplicities) of A,
then

N∑
j=1

zj =

N∑
j=1

ajj .

Therefore we can write, for the matrix J̃ ,
N∑
j=1

λ̃j = b̃0 + b1 + . . .+ bN−1,

where b̃0 has the form (4). Taking here the imaginary part we get (27). �

The following simple lemma is crucial in our solving the inverse spectral problem
for the matrix J̃ .

Lemma 5. The identity

det
(
λI − J̃

)
= det (λI − J)− iω det (λI − J1) (28)

holds, where J, J̃ , and ω are defined by (1), ( 3), and (4), J1 is the matrix in
(14) obtained from J by deleting its first row and first column, and by I we denote
identity matrices of needed dimension.

Proof. We have

λI − J̃ =



λ− b̃0 −a0 0 · · · 0 0 0
−a0 λ− b1 −a1 · · · 0 0 0

0 −a1 λ− b2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . λ− bN−3 −aN−3 0
0 0 0 · · · −aN−3 λ− bN−2 −aN−2
0 0 0 · · · 0 −aN−2 λ− bN−1


.

Therefore expanding the determinant det
(
λI − J̃

)
by elements of its first row, we

can write
det
(
λI − J̃

)
=
(
λ− b̃0

)
det (λI − J1) + a0 detD(λ), (29)

where D(λ) is the matrix of order N − 1 obtained from λI − J̃ by eliminating its
1st row and 2nd column.
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Similarly, expanding the determinant det (λI − J) by elements of its first row,
we have

det (λI − J) = (λ− b0) det (λI − J1) + a0 detD(λ), (30)

where D(λ) is the same matrix as in (29). Now subtracting ( 29) and (30) side-by-
side we arrive at (28). �

Because the polynomials det (λI − J) and det (λI − J1) have real coeffi cients, it
follows from (28) that [

det
(
λI − J̃

)]re
= det (λI − J) , (31)[

det
(
λI − J̃

)]im
= −ω det (λI − J1) . (32)

The characteristic polynomial det
(
λI − J̃

)
of J̃ is uniquely determined by the

eigenvalues λ̃1, . . . , λ̃N of J̃ . Next, equations (31) and (32) show that the polynomial

det
(
λI − J̃

)
uniquely determine the polynomials det (λI − J) and−ω det (λI − J1) .

Since the roots of the last two polynomials give the two-spectra of the matrix J and
the matrix J is determined uniquely from its two-spectra (see Section 2 above), we
conclude that the matrix J (the real part of J̃) is determined from the eigenvalues
λ̃1, . . . , λ̃N of J̃ uniquely. Besides, the number ω in (4) is also determined uniquely
from λ̃1, . . . , λ̃N by (27). Thus, we have established the following uniqueness result.

Theorem 6. The eigenvalues λ̃1, . . . , λ̃N of the matrix J̃ of the form (3) determine
this matrix uniquely in the class of entries (2), (4).

The following theorem states the existence result for solution of the inverse spec-
tral problem for J̃ . Its proof given below contains also an algorithm for the con-
struction of the finite dissipative Jacobi matrix with a rank-one imaginary part
from the prescribed eigenvalues.

Theorem 7. In order for given not necessarily distinct complex numbers λ̃1, . . . , λ̃N
to be the eigenvalues counting algebraic multiplicity for a Jacobi matrix J̃ of the
form (3) with the entries in the class (2), (4), it is necessary and suffi cient that the
numbers λ̃1, . . . , λ̃N belong to the open upper half-plane, i.e. that these numbers
have positive imaginary parts:

Imλ̃j > 0 (j = 1, . . . , N). (33)

Proof. The necessity of the condition (33) has been proved above in Lemma 3. To
prove the suffi ciency suppose that we are given the numbers λ̃1, . . . , λ̃N satisfying
the condition (33). Using these numbers we form the positive number

ω =

N∑
j=1

Imλ̃j (34)
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and the polynomial

P (λ) = (λ− λ̃1) · · · (λ− λ̃N ) = λN + c1λ
N−1 + . . .+ cN−1λ+ cN . (35)

Let us set

A(λ) = P re(λ) = λN + (Rec1)λ
N−1 + . . .+ (RecN−1)λ+ RecN ,

B(λ) = − 1

ω
P im(λ) = λN−1 +

(
− Imc2

ω

)
λN−2 + . . .+

(
− ImcN

ω

)
,

where in writing the second equation we have used the fact that c1 = −(λ̃1+. . .+λ̃N )
and therefore Imc1 = −ω by (34). Then

P (λ) = A(λ)− iωB(λ) (36)

and by Theorem 2 all the zeros of A(λ) and B(λ) are real, simple, and separate each
other (interlace). Therefore if we denote the zeros of A(λ) by λ1 < λ2 < . . . < λN
and the zeros of B(λ) by µ1 < µ2 < . . . < µN−1, then

λ1 < µ1 < λ2 < µ2 < λ3 < . . . < µN−1 < λN .

Thus, the two sequences {λj}Nj=1 and {µj}N−1j=1 satisfy the necessary and suffi cient
condition of solvability of the inverse problem from two-spectra (see previous Sec-
tion 2). Therefore there exists a unique Jacobi matrix J of the form ( 1) with
entries in the class (2) such that λj (j = 1, . . . , N) are the eigenvalues of J and
µj (j = 1, . . . , N − 1) are the eigenvalues of J1 of the form (14) obtained from J by
deleting its first row and first column, so that

A(λ) = det (λI − J) , B(λ) = det (λI − J1) . (37)

Next, using the constructed matrix J and the number ω defined by ( 34) we con-
struct the matrix J̃ of the form (3) with (4). It remains to show that λ̃1, . . . , λ̃N
are eigenvalues of the constructed matrix J̃ counting algebraic multiplicity.
By the direct spectral problem for the constructed matrix J̃ , we have (Lemma

5), taking into account (37),

det
(
λI − J̃

)
= A(λ)− iωB(λ).

Comparing this with (36), we get that

det
(
λI − J̃

)
= P (λ) = (λ− λ̃1) · · · (λ− λ̃N )

which shows that λ̃1, . . . , λ̃N are the eigenvalues of J̃ counting algebraic multiplicity.
�
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4. Reconstruction procedure

The proof of Theorem 7 gives the following algorithm for reconstruction of the
dissipative Jacobi matrix J̃ from its eigenvalues λ̃1, . . . , λ̃N .
If we are given the N not necessarily distinct complex numbers λ̃1, . . . , λ̃N in

the open upper half-plane, then using these numbers we form the number ω > 0
by (34) and the polynomial P (λ) by (35). Next, we find the roots λ1, . . . , λN
of the polynomial P re(λ) and the roots µ1, . . . , µN−1 of the polynomial P

im(λ)

and solve the inverse problem from the two-spectra {λj}Nj=1, {µj}N−1j=1 to get a
unique real Jacobi matrix J of the form (1) with entries in the class (2). To do so,
using {λj}Nj=1 and {µj}N−1j=1 we construct the numbers βk (k = 1, . . . , N) by (16)
and then the numbers sl (l = 0, 1, . . .) and the determinants Dn (n = 0, 1, . . .) by
(10) and (11), respectively. Then we define the numbers an (n = 0, 1, . . . , N−2) and
bn (n = 0, 1, . . . , N − 1) by (12) and (13), respectively. Using these an’s, bn’s, and
the number ω, the required dissipative Jacobi matrix J̃ for which given λ̃1, . . . , λ̃N
are the eigenvalues is obtained by formula (3) with (4).
Let us demonstrate this procedure of reconstruction of J̃ by the following exam-

ple (this example has been considered before in [1]).

Example 8. Find the matrix J̃ of the form (3) with N = 3 and entries in the class
(2), (4) if the eigenvalues of J̃ are λ̃1 = λ̃2 = i, λ̃3 = 2i.

First we find by (34) that ω = 4. Next we construct the polynomial

P (λ) = (λ− i)2(λ− 2i) = λ3 − 4iλ2 − 5λ+ 2i

and find its real and imaginary parts:

P re(λ) = λ3 − 5λ, P im(λ) = −4λ2 + 2.

The roots of P re(λ) are λ1 = −
√

5, λ2 = 0, λ3 =
√

5 and the roots of P im(λ) are
µ1 = −(

√
2)−1, µ2 = (

√
2)−1. Therefore

β1 =
(λ1 − µ1)(λ1 − µ2)
(λ1 − λ2)(λ1 − λ3)

=
9

20
,

β2 =
(λ2 − µ1)(λ2 − µ2)
(λ2 − λ1)(λ2 − λ3)

=
1

10
, β3 =

(λ3 − µ1)(λ3 − µ2)
(λ3 − λ1)(λ3 − λ2)

=
9

20
.

Next, from
s0 = β1 + β2 + β3 = 1,

sl = β1λ
l
1 + β2λ

l
2 + β3λ

l
3 =

9

20

[(
−
√

5
)l

+
(√

5
)l]

, l = 1, 2, . . . ,

we find that

s0 = 1, s1 = 0, s2 =
9

2
, s3 = 0, s4 =

45

2
, s5 = 0.
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Hence

D−1 = 1, D0 = s0 = 1, D1 =

∣∣∣∣ s0 s1
s1 s2

∣∣∣∣ =

∣∣∣∣ s0 0
0 s2

∣∣∣∣ =
9

2
,

D2 =

∣∣∣∣∣∣
s0 s1 s2
s1 s2 s3
s2 s3 s4

∣∣∣∣∣∣ =

∣∣∣∣∣∣
s0 0 s2
0 s2 0
s2 0 s4

∣∣∣∣∣∣ = s0s2s4 − s32 =
81

8
,

∆−1 = 0, ∆0 = s1 = 0, ∆1 =

∣∣∣∣ s0 s2
s1 s3

∣∣∣∣ =

∣∣∣∣ s0 s2
0 0

∣∣∣∣ = 0,

∆2 =

∣∣∣∣∣∣
s0 s1 s3
s1 s2 s4
s2 s3 s5

∣∣∣∣∣∣ =

∣∣∣∣∣∣
s0 0 0
0 s2 s4
s2 0 0

∣∣∣∣∣∣ = 0

and, therefore,

a0 =

√
D−1D1

D0
=
√
D1 =

3√
2
, a1 =

√
D0D2

D1
=

√
D2

D1
=

1√
2
,

b0 =
∆0

D0
− ∆−1
D−1

= 0, b1 =
∆1

D1
− ∆0

D0
= 0, b2 =

∆2

D2
− ∆1

D1
= 0.

Thus, we have found

J̃ =

 b0 + iω a0 0
a0 b1 a1
0 a1 b2

 =

 4i 3√
2

0
3√
2

0 1√
2

0 1√
2

0

 .
5. Effectivization of the reconstruction procedure

In the reconstruction procedure given in Section 4, we need to find the zeros of
the polynomials P re(λ) and P im(λ) for

P (λ) = (λ− λ̃1) · · · (λ− λ̃N ) = (λ− λ̃1)m1 · · · (λ− λ̃p)mp , (38)

where in the end expression in (38) λ̃1, . . . , λ̃p denote all the distinct zeros of the
polynomial P (λ) and m1, . . . ,mp denote their multiplicities, respectively, so m1 +
. . . + mp = N. Since, in general, it is impossible to find explicitly the zeros of a
polynomial of large degree, in this section, we offer another reconstruction procedure
which is free of this diffi culty. For this aim we can use the reconstruction procedure
in the inverse problem from eigenvalues and normalizing numbers for finite complex
Jacobi matrices, given in [8, Section 2], as follows.
Because for the matrix J̃ we have (32), the Weyl-Titchmarsh function w(λ) of

the matrix J̃ is expressed in the form

w(λ) =

[
det
(
λI − J̃

)]im
−ω det

(
λI − J̃

) .
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Consequently, we get the following algorithm for reconstruction of the dissipative
Jacobi matrix J̃ from its eigenvalues λ̃1, . . . , λ̃N .
If we are given the N not necessarily distinct complex numbers λ̃1, . . . , λ̃N in the

open upper half-plane, then using these numbers we form the number ω > 0 by

ω =

N∑
j=1

Imλ̃j

and the polynomial P (λ) by (38). Then we form the function

w(λ) =
P im(λ)

−ωP (λ)
.

Decomposing this function into partial fractions of the form

w(λ) =

p∑
k=1

mk∑
j=1

βkj
(λ− λk)j

,

we find the numbers βkj . Then we define the numbers an and bn by (12) and (13),
respectively, where, however, now the numbers sl are defined by the formula

sl =

p∑
k=1

mk∑
j=1

(
l

j − 1

)
βkjλ

l−j+1
k , l = 0, 1, 2, . . . ,

instead of (10), where
(
l

j−1
)
is a binomial coeffi cient and we put

(
l

j−1
)

= 0 if j−1 > l.

Using the obtained an’s, bn’s, and the number ω, the required dissipative Jacobi
matrix J̃ for which given λ̃1, . . . , λ̃N are the eigenvalues is obtained by formula (3)
with (4).
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