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Abstract— In this paper, a fuzzy variable order extremum-

seeking control (FVO-ESC) system for a mobile robot are 

designed. Fractional order controllers have advantages in the 

control of nonlinear systems such as a wider area of stability and 

performance enhancement in the presence of noise. The main 

proposal of the paper is to increase the performance of the 

fractional order controller. So, a variable order controller was 

designed for a mobile robot, and a fuzzy logic controller was 

designed according to user experiences to tune the controller 

order. The proposed FVO-ESC approach has been validated the 

effects on nonlinear systems such as the mobile robot system. It 

has been put forward in the preliminary investigation that the 

order of the fractional order ESC controller affects the overshoot 

and time to reach the target. The results suggested that a 

variable-level controller would have better performance. The 

results show that the proposed FVO-ESC control approach 

provides optimum performance for mobile robot systems.  

 
 

Index Terms— Mobile robots, Variable Order Systems, 

Extremum-Seeking Control.  

 

I. INTRODUCTION 

HE EXTREMUM SEEKING control (ESC) method aims to 

meet nonlinear performance criteria of a system using the 

adaptive control method. The ESC method has been used in a 

lot of engineering systems such as nuclear reactors [1, 2], 

tracking the maximum power point of renewable energy 

systems [3–5], control of chemical systems [6–8], control of 

bioreactors [9–13], and mobile robots [14–18]. Because the 

ESC method has a lot of applications in the control of physical 

systems, researchers are interested in this control method. 

Especially due to increasing interest in autonomous vehicles 

and renewable energy systems, researchers have focused on 

the ESC control method. The following studies were focused 

recently: Atta realized a semi-global practical asymptotic 

stability analysis for phasor ESC with a nonlinear dynamic 

system [19]. The global extremum seeking point was designed 

and modelled using an asymptotic perturbed ESC and was 

applied to a photovoltaic system and fuel cell by Thounthong 

[20]. Wang improved an ESC algorithm without oscillation in 
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steady state for an antilock braking system, and the algorithm 

was compared with a sliding-mode-based ESC scheme for an 

antilock braking system [21]. Guay and Dochain considered 

real-time optimization of the ESC method and applied several 

example systems to show the effectiveness of their proposed 

system [22]. Nešić worked on dynamic feature and 

convergence analysis of ESC [23]. Hong and Li optimized 

ESC parameters using the particle swarm optimization (PSO) 

method, which guaranteed convergence [24]. These 

optimization methods and others aimed to decrease the 

convergence error and increase the speed of ESC for 

engineering applications [7, 12, 14, 15, 25–30]. 

Malek and Chen, who introduced a different approach to the 

ESC method, used a fractional order integrator instead of the 

classical integrator in the ESC, and their work was found to 

outperform the classical ESC in simulation and application 

results [31, 32]. Because the fractional order control systems, 

which have non-integer order, have a wider region of stability 

than integer order control, fractional order control systems are 

shown to have better performance than classical integer 

control systems in the literature [33–36]. However, a 

significant problem in the fractional order control method is 

the determination of the parameters of the controller, and there 

are papers on determining the parameters based on intelligent 

systems in the literature [37–41]. The following intelligent 

methods for optimization of the fractional order control 

systems have been reported: Biswas et al. designed a 

fractional-order PIλDμ controller using an improved 

differential evolution [37], Atan et al. used a fuzzy adaptive 

PSO algorithm for a fractional order PID controller and 

applied it to chaotic synchronization control [38]. Fractional 

order control parameters were optimized using PSO with 

improved dynamic parameter selection for a combined cycle 

power plant by Haji and Monje [39], and other researchers 

have used chaotic PSO for the optimization of the fuzzy 

fractional order control of a hybrid power system with 

renewable generation [40]. Another optimization method is 

based on the ABC algorithm for a fractional order controller 

[41]. These papers are focused on optimization of fractional 

order parameters, and constant values of the parameters are 

selected for each system. But when the parameters can be 

changed according to the system error, performance of the 

controller can be increased. It is known that the use of 

variable-order control systems improves the performance of 

the controller [42] as well as leading to successful results in 

variable order modelling of the systems [43]. 

In this paper, a variable order and fuzzy logic-based ESC 

method for a mobile robot model is proposed. Firstly, the 
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analysis and numeric solution method for the modeling and 

simulation of variable order systems are presented, because 

variable order systems have different solution methods from 

fractional order systems. Because numerical solution 

techniques of variable order systems differ from the analysis 

of classic fractional order systems, Adams-Bashforth-Moulton 

analysis method, which is based on the Volterra integration 

method, have been used. With the stability analysis method, 

the order range of the system is defined in the stability area in 

this paper, and the other parameters are defined by the PSO 

method. In addition, the fractional controller parameters used 

for comparison are also optimized by the PSO method. To 

make a comparison with the proposed control system, the 

mobile robot system model is used as a test bench. The mobile 

robot can move on two axes to reach the target when 

controlled by the variable order ESC method and fractional 

order control. When the order of the ESC system is changed 

according to the error between the target and robot position, it 

is expected that the controller performance will increase. 

This paper is organized as follows. The variable order 

system is formulated in Section II. The novel variable order 

extremum-seeking controller is presented in Section III. The 

stability of the mobile robot plant and variable order ESC are 

introduced in Section IV. The results are demonstrated in 

Section V, and finally, our conclusion is presented in Section 

VI. 

II. VARIABLE ORDER SYSTEMS 

A. Fractional Order Calculus  

Despite the fact that fractional order systems have been 

introduced in the 17th century, which will lead to a useful 

paradox, the engineering applications on this topic are based 

on the 20th century [44]. These techniques are the Grunwald–

Letnikov (GL) method (Eq. 1) and the Riemann–Liouville 

(RL) method (Eq. 2) [44, 45]. The GL equation is defined as 

the limit approximation as follows: 
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where Γ is the gamma function. Another popular method is the 

RL method based on the continuous time function. The 

method is defined as: 
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where m is defined as 1m m   . In recent years, many 

papers on fractional order systems analysis, which uses the 

Laplace transform method, have also appeared. GL 

approximation has been used for all the analysis in this paper.  

 

B. Analysis of Variable Order System.  

Several analysis methods have been proposed for variable 

order differential equations. Because the variable order 

differential equation is much more complex than the fractional 

order differential equations, a comprehensive study must be 

realized [46]. Although they have some negative features, 

researchers have focused on variable order systems because 

their success has been shown in several papers in the literature 

[47–50], and the researchers used generally Volterra 

integration model in the works. For variable order system 

analysis, Volterra integration can be used as follows: 
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Voltera integration model is used continuous time model. For 

numerical solution methods, Adams-Bashforth-Moulton 

method is used. In this section, the Adams-Bashforth-Moulton 

predictor-corrector method is applied to implement the 

numerical solution of a function as: 
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where Γ, h, and k parameters are given respectively gamma 

function, step range, and step. The numerical analysis method, 

which is used in this paper, is the most widely used in variable 

order calculus. 

III. VARIABLE ORDER EXTREMUM-SEEKING 

CONTROLLER 

A. Classical Extremum-Seeking control 

Definition: ESC was firstly defined by Draper and Li in 

1951. Although different algorithms for classical ESC have 

been presented, the sinusoidal perturbed ESC structure has 

drawn the most interest in the literature [31, 51]. There are 

high- and low-pass filters in classical ESC, but the low-pass 

filter is eliminated to simplify the ESC. The form of a 

simplified ESC for a MIMO system is shown in Figure 1. As 

shown in Figure 1, periodic perturbation ( sin( t)  and 

cos( t) ) is used to estimate x̂  and ŷ  There are high-pass 

filters in the scheme, and it is used to eliminate the DC signal 

in x and y. In here, even if the filters do not directly affect the 

time taken to reach the target, they reduce the oscillation 

amplitude [31, 51]. The difference between the system points 

and extremum points in the classical ESC algorithm generates 

the amplitude of the sinus signal. In the system, in order to x̂  

and ŷ  estimate approximately estimate the extremum *x  and 
*y , J is defined as: 
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* 2 * 2

a x y
ˆ ˆJ k k (x x ) k ( y y )           (7) 

where ka, kx, and ky, which are adjusted approximation speed, 

and they are constant parameters. 
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Fig. 1. Classical simplified extremum-seeking control (ESC) 
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The parameters (ka, kx, ky, a1, a2, ωh) in the control system 

are important for the performance of the system. So, for 

determination of the parameters, which must be tuned and 

calibrated adequately, ESC design rules are given in the 

literature [31, 52]. 

B. Stability of Simplified ESC: 

For the stability of the ESC, the method given by Krstic in 

[53] is used in this paper. The model in Figure 1 is described 

by the equations: 
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When Lemmas 3.1–3.3 in [53] are applied to the system, it can 

be seen that the system has achieved stability conditions. 
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where the stability conditions of the system are: 

0

a


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C. Design of Variable Order Extremum-Seeking Controller 

Fractional order ESC: A fractional order ESC, which is a 

combination of the ESC and fractional order systems, has been 

put forward by Malek and Chen [31]. The novelty in [31] is 

that the fractional order of the control system is defined with a 

fractional model, and the method has been used to increase the 

performance of the system. The block diagram of the 

fractional order ESC system is shown in Figure 2, and the 

effect of the fractional order on the control system is seen in 

Figure 3. 

In Figure 3, it can be seen that the order of the fractional 

ESC affects the control performance. It is observed that the 

overshoot is increased but the setting time is decreased when 

the order (φ) of the fractional ESC is decreased. Similarly, it is 

seen in Figure 3 that the optimum result is in the range of; 
0.9 1.2             

If the order can change according to the error of the mobile 

robot position, the increase of the system performance can be 

observed. Therefore, in order to improve the performance of 

the mobile robot, the variable order ESC method is used in 

this paper. 

D. Control Order Changed by Fuzzy Logic 

Classical ESC, which is given in Figure 1, uses two low-pass 

filters and two integrators. In [31, 32], a fractional order 

integrator is used instead of a conventional integrator to 

increase the performance of the controller. The novelty in our 

work is that variable integrators are used instead of the 

classical integrators and fractional integrators, and the orders 

of the integrators are adjusted by fuzzy logic. 
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A fuzzy variable order controller has been put forward by 

Pan and Xue [17], which changes the order of a variable order 

PI by the fuzzy logic method. The advantages of fuzzy 

adaptive control have been given in some papers [54, 55]. 
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Fig. 2. Block diagram of the variable order ESC system 

 
Fig. 3. Effect of the different order on performance of the system 

These papers show effects of the adaptive control system 

such as overshoot, setting time, and the chattering 

phenomenon. In this paper, the orders of the variable-order 

ESC according to the rule bases in the fuzzy logic are changed 

in order to decrease the setting time. The fuzzy rules have two 

inputs and two outputs involved in the ESC. The system inputs 

are the x position error, the y position error, and their 

derivatives: 
*

1

*

2

e x x

e y y

 

 
         (15) 

where e1,2 and e1,2 are errors and the other system input is the 

derivative of the error. The variable order ESC 1  and 2  are 

the outputs of the fuzzy system.  

1,21,2 fuzzy0.9         (16) 

where 
1,2fuzzy is calculated by fuzzy rules. The fuzzy system is 

designed using fuzzification, rule bases, and defuzzification. 

The rules and membership functions are created according 

to the results from Figure 3. Rule bases are given in Table 1, 

and membership functions, which have mainly triangular 

shapes and five linguistic variables, are given in Figure 4. The 

linguistic variables are negative big (NB), negative (N), zero 

(Z), positive (P), and positive big (PB). 
 

TABLE 1 

FUZZY RULE BASE FOR 
1,2fuzzy  

            e  

e 

NB N Z P PB 

NB NB NB NB N N 

N N N NB N N 

Z PB P Z N NB 

P PB PB PB P P 

PB PB PB PB PB PB 

 

 
Fig. 4. Membership functions of 

1,2 1,2e and e  

IV. FUZZY VARIABLE ORDER EXTREMUM-SEEKING 

CONTROLLER FOR MOBILE ROBOT 

In this paper, in order to see the performance of the fuzzy 

variable order ESC and compare it with the other ESC 

methods, a mobile robot which is a 2D point mass vehicle, is 

employed (Figure 5). The system has two axes (x, y) and 

velocities (vx and vy) on the axes. The system dynamics are: 
j

x yx ve v jv

 

  


        (17) 

where vx and vy are the velocity on the x and y axes, and ω is 

the angular velocity.  

In order to compare the performance of the fuzzy variable 

order ESC and classical ESC, both control methods use the 

same parameters in the control system. 

A. Fractional order ESC 

In this section, the performances of the mobile robot have 

been compared with the fractional order ESC. It is worth 

mentioning that the orders of the fractional order ESC were 

also defined by the performance index and the performance 

index has been chosen as x and y position errors.  
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Fig. 5. A mobile robot on 2D points 

The fractional order ESC and mobile robot parameters are 

given in Table 2, and to compare the performances of the 

mobile robot, the results of classical ESC and fractional order 

ESC for the same parameters are presented in Fig. 6. 
 

TABLE 2 
PARAMETERS OF THE CONTROLLER 

Control Parameters 

k1 k2 a1 a2 ω1 ω2 Ω 

1 1 0.5 0.5 1 1 20 

 

 
Fig. 6. Performance comparisons of mobile robot a) classical ESC b) 

fractional order ESC 

It can be seen in Fig. 6 that the mobile robot employed to 

test the fractional-order ESC reached the destination by a 

shorter path and in a shorter time and clearly showed better 

performance than the classical ESC. From Figure 7, it can be 

clearly seen that the controller order affects the values of the 

overshoot and setting time. As the controller order increases, 

the overshoot increases, but this reduces the time it takes to 

reach a steady state.  Based on this result, if the error has a 

small value, a small order is selected, and the order of the 

proposed controller increases in proportion with depending on 

the increase of the error. So, the performance indexes (setting 

time and overshoot) may have better values. 

 
Fig. 7. Position errors of mobile robot for different fractional orders 

B. Fuzzy Variable ESC  

During the simulation, the mobile robot target vehicle 

follows the trajectory for x = 15 and y = 10 with the 

parameters set to the values given in Table 2. The value of J is 

initially high and then decreases during the simulation when 

using the proposed control method. Fractional order ESC has a 

more impressive result (overshoot and setting time) compared 

with classical ESC. The performance of the proposed control 

method shown in Figure 8, and the results have been 

compared with the results shown in Figure 6. 

From Figure 8, it can be seen that fuzzy variable order ESC 

maintains satisfactory performance, namely a short rise time 

and less overshoot, when compared with classical ESC and 

fractional order ESC. For very complex systems such as 

mobile robot, the robot has better performance than classical 

ESC and fractional order ESC, as shown in Figure 9. 

Changing of the fuzzy fractional order ESC, as shown in 

Figure 10, the system order is changed by the error.  To 

compare with fractional order ESC and proposed controller, 

performance criteria such as overshoot and setting time are 

given in Table 3. It can be seen that the proposed controller 

has better performance than fractional order ESC. The 

overshoot decreased significantly (5.8%) in the x-axis, and 

relatively less in the y-axis. It is seen in Table 3 that there is a 

sitting time close to the average of both values in the fractional 

order controller. 

 

 
Fig. 8. Performance results of the proposed control method 
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Fig. 9. Motion of the mobile robot on 2D points 

 
Fig. 10. The change of the system order 

TABLE 3 
OBTAINED RESULTS FROM PROPOSED CONTROLLER METHOD 

AND FRACTIONAL ORDER ESC 

 

 

Control Method 

Fractional Order ESC Proposed Control 

Parameters φ=0.01 φ=0.3  

x 
Overshoot 3.11 2.08 1.5 

Setting time 720s 2400s 1540s 

y 
Overshoot 0.45 0.5 0.3 

Setting time 934s 2110s 1452s 

V. CONCLUSION 

This paper proposes variable order ESC using fuzzy logic 

for a mobile robot. The order of the ESC controller is based on 

fractional calculus, adaptively adjusted with fuzzy logic. The 

performance analyses based on the overshoot and rise time 

show that the proposed variable order of the controller can 

provide improvements in performance improvement compared 

to the fractional order ESC algorithm. The fractional order 

ESC model was first designed by Malek and Chen [31], [32], 

who proved that ESC provides good performance against 

noise and uncertainties. The controller order affects the 

overshoot and the setting time for the mobile robot have 

shown, and the approach provides a remarkable performance 

enhancement, because a decrease in the value of the order 

causes an increase in the amount of overtaking but gives a 

better result in terms of setting time. So, if the controller order 

according to the tracking error can be changed, it will show 

better performance than classical fractional order control. The 

simulation results for a mobile robot in this paper justify the 

performance enhancement. 
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