Preparation of chitosan and glycol chitosan coated magnetic nanoparticles loaded with carboplatin as anticancer drug

Antikanser ilaç olarak karboplatin yüklenmiş kitosan ve glikol kitosan kaplı manyetik nanotaneciklerin hazırlanması

Yazar(lar) (Author(s)): Ceren ATİLA DINÇER¹, Ali Mert ERDEK², Ayşe KARAKEÇİLİ³, Nuray YILDIZ⁴

ORCID¹: 0000-0003-0749-953X
ORCID²: 0000-0002-3142-3666
ORCID³: 0000-0002-8857-4927
ORCID⁴: 0000-0003-2428-3474

Bu makaleye şu şekilde atıfta bulunabilirsiniz (To cite to this article): Atila Dinçer C., Erdek A. M., Karakeçili A. and Yildiz N., “Preparation of chitosan and glycol chitosan coated magnetic nanoparticles loaded with carboplatin as anticancer drug”, Politeknik Dergisi, *(®)*: *, (*).

Erişim linki (To link to this article): http://dergipark.gov.tr/politeknik/archive

DOI: 10.2339/politeknik.501694
Preparation of Chitosan and Glycol Chitosan Coated Magnetic Nanoparticles Loaded with Carboplatin as Anticancer Drug

Araştırma Makalesi / Research Article

Ceren ATILA DİNÇER*, Ali Mert ERDEK, Ayşe KARAKEÇİLİ, Nuray YILDIZ
Department of Chemical Engineering, Ankara University, 06100 Tandoğan, Ankara, Turkey

(Geliş/Received : 24.12.2018 ; Kabul/Accepted : 31.01.2019)

ABSTRACT

Surface modified Fe₃O₄ nanoparticles (Fe₃O₄-OA) with an average diameter of 10 nm were synthesized, coated by chitosan (CS) and glycol chitosan (GCS), thus magnetic polymer nanocomposites were obtained. The magnetic nanostructures were analyzed by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). All magnetic structures synthesized in this study exhibited superparamagnetic properties. Loading carboplatin (CPt) as anticancer drug to Fe₃O₄-OA-GCS nanocomposites were carried out with 13.17 % drug content and 38 % encapsulation efficiency. The cytotoxicity studies were occured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay on L929 mouse fibroblasts and MCF-7 human breast cancer cells. Fe₃O₄-OA-GCS-CPt nanocomposites showed higher cytotoxicity than free CPt on the MCF-7 cells at 50 µg/ml drug concentrations during 72 h.

Keywords: Fe₃O₄-OA nanoparticles, chitosan / glycol chitosan coating, carboplatin, anticancer drug loading, drug release.

Antikanser İlaç Olarak Karboplatin Yüklenmiş Chitosan ve Glikol Kitosan Kaplı Manyetik Nanotaneciklerin Hazırlandığı

Yüzeyi modifiye Fe₃O₄ nanotanecikleri (Fe₃O₄-OA) ortalama 10 nm çapta sentezlenmiş, kitosan (CS) ve glikol kitosan (GCS) ile kaplanmışlardır, böylece manyetik polmer nanokompozitleri elde edilmiştir. Manyetik nanoyapılar geçirilmiş elektron mikroskobu (TEM), Fourier dönüşümüli红外 spectroscopy (FTIR), X-ışınları kırımı (XRD) ve titreşimli örnek magnetometresi (VSM) ile analiz edilmiştir. Bu çalışmada sentezlenmiş tüm manyetik yapılar superparamanyetik özellik göstermiştir. Fe₃O₄-OA-GCS nanokompozitleri üzerine antikanser ilaç karboplatinin (CPt) yüklenmesi % 13.17 ilaç içeriği ve % 38 enkapsülasyon etkinliği ile gerçekleştirilmiştir. Sirottoksitikerin çalışmalarda MTT (3-(4,5-dimetiltiazol-2-ol)-2,5-difenil tetrazolium bromit) analizyle L929 fare fibroblast ve MCF-7 insan meme kanseri hücreleri üzerinde gerçekleştirilmiştir. Fe₃O₄-OA-GCS-CPt nanokompozitleri MCF-7 hücreleri üzerinde 72 saat boyunca 50 µg/ml derişimde serbest CPt’den daha yüksek sitottoksitikeri göstermiştir.

Anahtar kelimeler: Fe₃O₄-OA nanotanecikler, kitosan / glikol kitosan kaplama, karboplatin, antikanser ilaç yüklemesi, ilaç salınım.

1. INTRODUCTION

Magnetic nanoparticles with small dimensions and superparamagnetic properties (after eliminating magnetic field there is no permanent magnetization, no coercivity) are important functional structures for hyperthermia, magnetic resonance imaging (MRI), biochemistry, drug and gene delivery [1-4]. They have high surface energy due to high surface to volume ratio and tend to agglomeration to reduce this energy. Fe₃O₄ nanoparticles, which are widely used in bioapplications, are formed composites with different substances such as organic and inorganic materials in order to increase their biocompatibility and stability [5,6]. Chitosan used to coat iron oxides is a natural polymer provided by deacetylation of chitin detected in the skeleton of crustaceans such as shrimp and crab. Deacetylation degree (DD) affects properties of chitosan such as solubility. Chitosan, a cationic polysaccharide can be used in biomedical applications due to its biocompatibility and nontoxicity [7-10]. Glycol chitosan decorated with ethylene glycol groups is a water soluble derivative of chitosan [11]. As an anticancer drug “carboplatin (CPt)” (cis-diamine (1,1-cyclobutanedicarboxyloxy)-platinum (II)) is similar to cisplatin with lower side effects. It plays an effective role during treatments of testicular, breast, ovarian, bladder, head, neck and lung cancers [12,13]. In the literature, studies were found about drug loaded chitosan or its derivatives with or without magnetic nanoparticles. Yang et al. (2018) [14] loaded paclitaxel (PTX) to estrone-modified glycol chitosan nanoparticles (PTX/GCNP-ES) and realized cell culture studies on
MCF-7 cells. They found the highest tumor inhibition ratio as 81.4% with PTX/GCNP-ES structures. Zamora-Mora et al. (2017) [15] synthesized 5-fluorouracil loaded magnetic chitosan nanoparticles for drug delivery and magnetic hyperthermia (MH) therapy. Encapsulation and loading efficiency of nanoparticles were 80-82% and 33-35%, respectively. Folic acid functionalized magnetic (Fe₃O₄) chitosan nanocapsules were prepared by Zhong et al. (2017) [16] for the purpose of targeted delivery and release of coumarin 6. In the size range of 200-350 nm and superparamagnetic nanoparticles were synthesized and used for drug loading studies.

In the present work, synthesis of superparamagnetic Fe₃O₄ nanoparticles and surface modification with oleic acid (OA) were performed to increase coating efficiency and obtain stable nanostructures. Surface modified magnetic and glycol nanoparticles were coated with chitosan (CS) and glycol chitosan (GCS) which are natural polymers. Carboplatin used as anticancer drug was loaded to Fe₃O₄-OA-GCS nanocomposites and drug release studies were carried out. To our knowledge, there is no study in the literature loading and release studies of carboplatin to Fe₃O₄-OA-GCS nanocomposites. Cell culture studies were realized to determine cytotoxic properties of Fe₃O₄-OA-GCS-CPt compared to CPt and Fe₃O₄-OA-GCS structures.

2. MATERIALS and METHOD

2.1 Materials

Iron (II) chloride tetrahydrate (FeCl₂. 4H₂O, 99 %, Sigma Aldrich), iron (III) chloride hexahydrate (FeCl₃. 6H₂O, % 97, Sigma Aldrich), sodium hydroxide (NaOH, ≥ 98 %, Sigma Aldrich), hydrochloric acid (HCl, 37 %, Sigma), oleic acid (OA, Alfa Aesar, 90 %), chitosan (Aldrich, medium molecular weight, 75 kDa, Sigma), oleic acid (OA, Alfa Aesar, 90 %), chitosan (Aldrich, medium molecular weight, 75 kDa, Sigma), tripropylphosphate (TPP, Sigma-Aldrich 90-99 %), Tween 90 (Merck), carboplatin (Sigma) and phosphate buffered saline (PBS, Sigma) were used for synthesis of magnetic nanostructures and drug loading studies. The materials of cytotoxicity studies purchased from Sigma-Aldrich were Dulbecco’s modified Eagle’s medium (DMEM), trypsin-EDTA, fetal bovine serum (FBS), and penicillin-streptomycin (10,000 units).-(4,5-dimethyloxazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), respectively.

2.2 Preparation and Surface Modification of Magnetic Nanoparticles (Fe₃O₄ / Fe₃O₄-OA)

Magnetic Fe₃O₄ nanoparticles were synthesized similar to our previous work by co-precipitation of FeCl₂.4H₂O and FeCl₃.6H₂O salts [17]. The experiments carried out under nitrogen were realized at constant ratio of iron salts (Fe²⁺/Fe³⁺=0.5) and 80 °C. In the modification process by OA, oleic acid (30 ml) was added to Fe₃O₄ (0.5 g) nanoparticles and the mixture was stirred at 150 rpm for 90 minutes. The Fe₃O₄-OA nanoparticles were separated by a magnet and washed with acetone (x3) and dried by nitrogen [18].

2.3 Preparation of Chitosan / Glycol Chitosan Coated Magnetic Nanoparticles (Fe₃O₄-OA-CS / Fe₃O₄-OA-GCS)

The polymer coating of the magnetic nanoparticles was carried out by mixing and modifying of the methods in the literature [19-21]. 0.5 % (v/v) Tween 80 was added to the CS (or GCS) solution (2 mg/ml) in 1 % acetic acid and formed solution was mixed. Fe₃O₄-OA nanocomposites were placed in the polymer solution adjusted to pH 4.6 with 10 M NaOH (polymer / Fe₃O₄-OA w:w 4:1). The TPP solution (crosslinker, 1.5 mg/ml) was dropped (10-15 min) to the magnetic polymer solution, stirring was continued at 300 rpm (15-20 min) as the dropping was completed (polymer / TPP w: w 4:1). The nanoparticles were separated by centrifugation (wash with x 3 DI) and the lyophilized samples were stored at + 4 °C.

2.4 Characterization

The characterization of magnetic nanostructures were realized by transmission electron microscopy (TEM, FEI Tecnai G2), Fourier-transformed infrared spectroscopy (FTIR, 8400 S Shimadzu) with spectra in the range of 4000-500 cm⁻¹, and X-ray diffraction (XRD, Rigaku Ultima-IV) using a scanning rate 2°/min. The magnetic properties of nanoparticles were determined by vibrating sample magnetometer (VSM, Cryogenic Limited PPMS).

2.5 Anticancer Drug Loading and Release Studies

The drug loaded magnetic polymer nanoparticles were synthesized according to the polymer coating method given in section 2.3. The anticancer drug carboplatin (10 mg) was completely dissolved in the polymer solution. The other stages of the synthesis method were the same. The drug loading and encapsulation efficiency were calculated from following equations given in our previous study [22]. Fe₃O₄-OA-GCS-CPt drug-loaded nanocomposites were weighed after lyophilization and the value was used for drug loading calculations.

\[
\text{Drug loading (\%) = \frac{\text{weight of drug in nanocomposite}}{\text{weight of Fe₃O₄-OA-GCS-drug nanocomposite}} \times 100}
\]

(1)

\[
\text{Encapsulation efficiency (\%) = \frac{\text{weight of drug in nanocomposite}}{\text{weight of initial amount of drug}} \times 100}
\]

(2)

The drug release studies were realized from Fe₃O₄-OA-GCS magnetic nanoparticles. 10 mg lyophilized drug loaded magnetic nanoparticles were dispersed in PBS solutions (1.5 ml) at different pH values (7.4 and 5.5) containing 1 % (w/v) Tween 80. The suspensions were shaken in an orbital shaker at 150 rpm and 37 °C. All of
the mixtures were centrifuged at specified time intervals and the supernatants were replaced with fresh PBS (1.5 ml). HPLC analyses were used to evaluate drug loading and release efficiency of the Fe₃O₄-OA-GCS magnetic nanoparticles. Analysis using Inertsil ODS-3 column with particle size 5 µm (250 x 4.6 mm) were realized at 233 nm. The flow rate of mobile phase consisted of acetonitrile / water (10:90 v/v) was 1 ml/min. Column temperature and injection volume were adjusted as 25 °C and 20 µL, respectively [13].

2.6 Cytotoxicity Studies

In vitro cytotoxicity assays with MTT (3-(4,5-dimethylthiazol-2-ol)-2,5-diphenyl tetrazolium bromide) were performed using L929 mouse fibroblasts and MCF-7 human breast cancer cells. The culturing of the cells was carried out in a CO₂ (5 %) incubator at 37 °C in DMEM medium containing 10 % fetal bovine serum (FBS) and 1 % penicillin streptomycin. In the cell culture studies, 4 different groups were used: TCPS (tissue culture polystyrene, control), CPT, Fe₃O₄-OA-GCS and Fe₃O₄-OA-GCS-CPT nanocomposites. TCPS contained only cells and culture medium to determine the effect of the drug and nanoparticles on the cells comparatively. L929 and MCF-7 cells were allowed to reach confluency in 24-well cell culture plates. The culture mediums were replaced with the groups at 50 µg / ml concentration to observe 24, 48 and 72 h cell viability. MTT added cells were incubated for 3 hours and after removing the solution, isopropanol: HCl (0.1 N) solution was placed to dissolve the formed formazan crystals for 1 hour at 37 °C [23]. At the end of this period, the absorbance value of the solutions measured via the ELISA microplate reader (Rayto, RT2100C) at 570 nm.

2.7 Statistical Analysis

Statistical analysis was realized by using the software GraphPad InStat, Version 3.10 according to one-way analysis of variance (ANOVA). P values less than 0.05 indicated statistical significance.

3. RESULTS AND DISCUSSION

3.1 Characterization of The Magnetic Nanoparticles

TEM images of magnetic and magnetic polymeric nanoparticles are given in Figure 1. The average particle size of Fe₃O₄ (Figure 1a) and Fe₃O₄-OA (Figure 1b) nanoparticles were found approximately 8 nm and 10 nm, respectively [24]. In the images, surface modification with OA reduced the agglomeration of Fe₃O₄ nanoparticles. It was proven clearly that the modified magnetic nanoparticles were coated with chitosan and glycol chitosan polymers (Figure 1c and 1d).

Figure 2 indicates XRD pattern of Fe₃O₄, Fe₃O₄-OA, Fe₃O₄-OA-CS and Fe₃O₄-OA-GCS nanoparticles. XRD characteristic peaks which belong to (220), (311), (400), (422), (511), (440), (622) crystal planes of synthesized Fe₃O₄ nanoparticles are shown in Figure 2a.

When the FTIR spectrum of Fe₃O₄ nanoparticles was examined, it was found that the characteristic peaks at 578 cm⁻¹ and 3441 cm⁻¹ which belong to Fe-O and –OH (Figure 3a) [1,6]. The characteristic bands of oleic acid modified Fe₃O₄ nanoparticles were shown at 2924 and 2854 cm⁻¹ (CH₃ and CH₂ symmetrical and asymmetric stretching), 1635 and 1458 cm⁻¹ (COO- symmetric and
asymmetric stretching), 1118 cm\(^{-1}\) (O-C-O vibration), respectively (Figure 3b) [27]. In the spectrum shown in Figures 3c and 3d, the peaks seen in 3464 cm\(^{-1}\) (3441 cm\(^{-1}\), O-H and N-H stretching vibration), 1658 cm\(^{-1}\) (C=O stretching), 1535 cm\(^{-1}\) (1527 cm\(^{-1}\), N-H bending vibration), 1087 cm\(^{-1}\) (C-N vibration) proved that the oleic acid modified magnetic nanostructures were successfully coated with chitosan and glycol chitosan [27,28].

VSM results with no coercivity showed that all magnetic structures synthesized in this study had superparamagnetic properties which desired in bioapplications. The saturation magnetization value of the Fe\(_3\)O\(_4\) nanoparticles was determined as 54.4 emu/g. Due to surface modification and polymer coating, the saturation magnetizations of Fe\(_3\)O\(_4\)-OA, Fe\(_3\)O\(_4\)-OA-CS and Fe\(_3\)O\(_4\)-OA-GCS decreased to 53, 46 and 48 emu/g, respectively.

3.2 Anticancer Drug Loading and Release Studies

It was concluded that the loading capacity of carboplatin on the Fe\(_3\)O\(_4\)-OA-GCS nanocomposites was more effective by analyzing the synthesis fluids in drug loading studies. The drug release studies were carried out by using glycol chitosan coated magnetic nanoparticles. The results of TEM, XRD and VSM analyses of Fe\(_3\)O\(_4\)-OA-GCS-CPt nanocomposites were given in Figure 4. The characteristic crystal structure of nanocomposites was preserved after anticancer drug loading (Figure 4b). The nanocomposites continued to show superparamagnetic properties, but saturation magnetizations (32.6 emu/g) reduced as expected (Figure 4c).

The drug content and encapsulation efficiency of Fe\(_3\)O\(_4\)-OA-GCS-CPt nanocomposites were found 13.7 % and 38 %, respectively. Similar results were found in the literature [23]. The release of Cpt from magnetic structure was examined at pH 7.4 and 5.5 which given in Figure 5.

3.3 Cytotoxicity Studies

The results of the cell culture studies performed with L929 mouse fibroblasts and MCF-7 human breast cancer cells at the end of 24, 48 and 72 h are given in Figure 6.
Compared to the TCPS, it was determined that the different groups (Cpt, Fe₃O₄-OA-GCS and Fe₃O₄-OA-GCS-Cpt) had no remarkable toxic effect on L929 cells (Figure 6a).

Figure 6b indicates that the drug-loaded magnetic nanoparticles (Fe₃O₄-OA-GCS-Cpt, P < 0.05) showed more toxic effects than free drug on the MCF-7 cancer cells. While the free drug is easily diffused from the cell membrane, the drug loaded nanostructures led to controlled release and high intracellular concentration. Mean values of cytotoxic effects of free Cpt and Fe₃O₄-OA-GCS-Cpt nanostructures with the same drug amount (50µg / ml) on MCF-7 cells were 6.73 % and 21.18 %. Fe₃O₄-OA-GCS nanostructures had no valid cytotoxic effect on the cancer cells according to the TCPS. When the viability of the cells were examined, it was found that the low concentration (50µg / ml) was not very effective on cell viability [23].

![Figure 6](image)

Figure 6. Cytotoxic effect of different groups on (a) L929 and (b) MCF-7 cells (* P < 0.05)

4. CONCLUSION

Superparamagnetic Fe₃O₄ nanoparticles modified and coated by oleic acid (OA), chitosan (CS) and glycol chitosan (GCS), Fe₃O₄-OA-GCS nanostructures were selected for carboplatin loading and the loading study was performed successfully with 13.17 % drug content and 38 % encapsulation efficiency. It was determined that the polymer coating and drug loading did not cause any negative properties on the crystal structure and superparamagnetic property. Fe₃O₄-OA-GCS-Cpt nanocomposites exhibited higher cytotoxic effect than Cpt on the MCF-7 human breast cancer cells, which confirmed controlled release.

ACKNOWLEDGEMENTS

Ankara University Research Fund provided financial support to this study via BAP project with number 15B0443007. The authors are grateful to Doç. Dr. Demet Cansaran Duman from Ankara University Biotechnology Institute, Ankara, since politely granting of MCF-7 human breast cancer cells.

REFERENCES

