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Numerical solution of linear integro-di�erential
equation by using modi�ed Haar wavelets

Fernane Khaireddine∗† and Ellaggoune Fateh ‡

Abstract

In this paper, we introduce a numerical method for solving linear Fred-
holm integro-di�erential equations of the �rst order. To solve these
equations, we consider the equation solution approximately from ratio-
nalized Haar (RH) functions.
The numerical solution of a linear integro-di�erential equation reduces
to solving a linear system of algebraic equations. Also, Some numerical
examples are presented to illustrate the e�ciency of the method.
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1. Introduction

Some important problems in science and engineering can usually be reduced to a
system of integral and integro-di�erential equations. Integro-di�erential equations have
attracted much attention and solving such equations has been one of the interesting
tasks for mathematicians. Several methods have been proposed for numerical solution
of these equations (see, e.g., [12]). One technique is the collocation method; of numer-
ous research papers about this approach we cite here ([6], [18]). Since 1991 the wavelet
method has been applied to solving integral equations. Various wavelet bases have been
employed. In addition to the conventional Daubechies wavelets [12], the Hermite-type
trigonometric wavelets [8], linear B-splines [2], Walsh functions [9], Cohen [8] and Fari-
borzi [10] wavelets have been used. These solutions are often quite complicated, therefore
simpli�cations are welcome. One possibility is to make use of Haar wavelets, which are
mathematically the simplest wavelets. For linear integral equations this approach has

∗Department of Mathematics, University of 8 May 1945 Guelma, Algeria,
Email: kfernane@yahoo.fr
†Fernane Khaireddine.
‡Department of Mathematics, University of 8 May 1945 Guelma, Algeria,

Email: fellaggoune@gmail.com



1394

been realized in ([5], [13]). In this paper we examine the rate of convergence of the mod-
i�ed rationalized method using Haar functions for solving Fredholm integro-Di�erential
equations combined with �nite di�erence methods.

Solving the algebraic system obtained by the (RH) functions method allows one to
obtain �rst derivative approximations using a central di�erence scheme. We apply the
proposed method on some test problems to show its accuracy and e�ciency. Also, the
error evaluation of this method is presented. Before starting, let us recall some de�nitions.

1.1. De�nition. ([5]) The Haar wavelet is the function de�ned on the real line R as:

(1.1) H(t) =


1, 0 ≤ t < 1

2
,

−1, 1
2
≤ t < 1,

0, otherwise.

The Haar waveletH(t) can be used to de�ne a sequence of one-dimensional (RH)functions
on [0, 1) as follows:

1.2. De�nition. ([5]) The (RH)functions hn(t), for n = 2i + j with i ∈ Z and j =
0, 1, . . . , 2i−1, are the functions de�ned on the interval [0, 1) as:

(1.2) hn(t) = H(2nt− j)|[0,1)

Also, we de�ne h0(t) = 1 for all t ∈ [0, 1).

In Eq.(1.2), are the orthogonal set of rationalized Haar functions and can be de�ned
on the interval [0, 1) as [17]:

(1.3) RH(r, t) = hr(t) =


1, if J1 ≤ t < J( 1

2
),

−1, if J( 1
2
) ≤ t < J0,

0, otherwise.

where, Ju =
j − u

2i
, u = 0,

1

2
, 1.

The value of r is de�ned by two parameters i and j as:

r = 2i + j − 1, i = 0, 1, 2 . . . ., j = 1, 2, . . . ., 2i

h0(t) is de�ned for i = j = 0 and given by:

(1.4) h0(t) = 1, 0 ≤ t < 1

h0(t) is also included to make this set complete. The orthogonality property is given
by:

(1.5)

∫ 1

0

RH(r, t)RH(v, t)dt =

{
2−i, r = v
0 r 6= v

where

v = 2n +m− 1, n = 0, 1, 2, 3, . . . , m = 1, 2, 3, . . . , 2n
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2. Function Approximation

Any function f(t) de�ned over the interval [0, 1), which is L2([0, 1)), can be expanded
in (RH) functions as([23]);

(2.1) f(t) =

+∞∑
r=0

αrRH(r, t), r = 0, 1, 2, . . . ..

where the (RH) function coe�cients αr are given by:

(2.2) αr =
〈f(t), RH(r, t)〉
〈RH(r, t), RH(r, t)〉 = 2i

∫ 1

0

f(t)RH(r, t)dt, r = 0, 1, 2, . . .

with r = 2j + i− 1, i = 0, 1, 2, 3, . . . , j = 1, 2, 3, . . . , 2n and r = 0 for i = j = 0.
Usually, the series expansion of Eq. (2.1) contains in�nite terms. If f(t) is piecewise

constant by itself, or may be approximated as piecewise constant during each subinterval,
then Eq. (2.1) will be terminated at �nite terms. Otherwise, it is truncated up to its
�rst m terms as:

(2.3) f(t) ≈
k−1∑
r=0

arRH(r, t) = ATφ(t)

where k = 2α+1, and α = 0, 1, 2, 3, . . ..
The (RH) function coe�cients vector φ(t) and (RH) functions vector h(t) are de�ned

as;

(2.4) A = [a0, a1, a2, . . . , ak−1]T

and

(2.5) φ(t) = [h0, h1, h3, ....., hk−1]T

where

(2.6) hr(t) = RH(r, t), r = 0, 1, 2, . . . , k − 1

Babolian et al. proved in [21] that:

‖f(t) −
k−1∑
r=0

arRH(r, t) ‖2L2 == ‖
+∞∑
r=k

arhr(t) ‖2L2

≤
+∞∑
r=k

|ar|2‖hr(t) ‖2L2

=

+∞∑
r=k

|ar|2

(2.7) ∼
+∞∑
r=k

2−r ∼ 2−k = O(2−k) ≤ C2−k
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where C is a constant of integration.
Now, let k(t, s) be a function of two independent variables de�ned for t ∈ [0, 1) and

s ∈ [0, 1). Then k(t, s) can be expanded in (RH) functions as:

(2.8) k(t, s) =

m−1∑
u=0

m−1∑
v=0

huvhv(t)hu(s)

In Eq. (2.8) huv, for u = 0, 1, 2, ..,m− 1 and v = 0, 1, 2, ...,m− 1, is given as:

(2.9) huv = 2i+q
∫ 1

0

∫ 1

0

k(s, t)hv(t)hu(s)dtds

where
u = 2i + j, i ≥ 0 and 0 ≤ j < 2iv = 2q + r, q ≥ 0 and 0 ≤ r < 2q hence we have

(2.10) k(t, s) = φT (t)Hφ(s)

where

(2.11) H = (Φ̂−1
k×k)T ĤΦ̂−1

k×k

with

(2.12) Ĥ = (huv)Tk×k

Where Ĥ is an k × k matrix such that:

(2.13) hij =
〈RH(i, t), 〈k(t, s), RH(j, s)〉〉

〈RH(i, t), RH(i, t)〉〈RH(j, t), RH(j, t)〉
Take the Newton-Côtes nodes as:

(2.14) ti =
2i− 1

2k
, i = 1, 2, .., k

(2.15) ĥlp = k(
2l − 1

2k
,

2p− 1

2k
), p, l = 1, 2, ...., k.

2.1. Operational matrix of integration. Discrete Haar functions of order k repre-
sented by 2k × 2k matrix Φ̂k×k, in the sequency ordering are given by the following
recurrence relation ([23]):

(2.16) Φ̂k×k =

{
Φ̂ k

2
× k

2
⊗[1 1]

I k
2
× k

2
⊗[1 −1]

}
(2.17) Φ1×1 = [1]

where I k
2
× k

2
is the identity matrix of dimension k and ⊗ is the Kronecker product.

The integration of (RH) functions can be expanded into Haar series with Haar coef-
�cient matrix P as follows:
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(2.18)

∫ 1

0

tφ(x)dx = Pφ(t)

The k× k square matrix P = Pk is called the operational matrix of integration and is
given in [7] as:

(2.19) Pk =
1

2k

(
2kP k

2
−Φ̂ k

2

−Φ̂ k
2

0

)

where Φ̂−1
1 = [1], P1 = [

1

2
], Φ̂k is given by Eq. (2.16) and

(2.20) Φ̂−1
k =

1

k
Φ̂Tk diag

1, 1, 2, 2, 22, .., 22︸ ︷︷ ︸
22

, ...., 2α−1, .., 2α−1︸ ︷︷ ︸
2α−1


Also, the integration of the cross-product of two (RH) function vector is:

(2.21)

∫ 1

0

φ(t)φT (t)dt = D

where D is a diagonal matrix given by:

(2.22) D = diag

1, 1, 2, 2, 22, .., 22︸ ︷︷ ︸
22

, ...., 2α−1, .., 2α−1︸ ︷︷ ︸
2α−1


2.2. The product operational matrix. ([23])

Let the product of φ(t) and φT (t) be called the (RH) product matrix ψk×k(t). That
is:

(2.23) φ(t)φT (t) = ψk×k(t)

The basic multiplication properties of (RH) functions are as:

(2.24) h0(t)hi(t) = hi(t ), i = 0, 1, . . . , m− 1

and for i < j, we have

(2.25) hi(t)hj(t) =


hj(t), if hj occurs during the positive half-wave of hi
−hj(t), if hj occurs during the negative half-wave of hi

0 otherwise.

Also, the square of any (RH) functions is a block-pulse, with magnitude unity during
both the positive and negative half-waves of (RH) functions.

For notation simpli�cation, let us de�ne:

(2.26) φ̂a(t) = [h0(t), . . . , hk/2−1(t)]T

(2.27) φ̂b(t) = [hk/2(t), . . . , hk−1(t)]T
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The matrix ψk×k(t) in Eq. (2.23) can be derived easily as follows from ([7]):

(2.28) ψk×k(t) =

[
ψk/2(t) Dk/2diag[φ̂b(t)]

diag[φ̂b(t)]D
T
k/2 diαg[D−1

k/2φ̂a(t)]

]
where

(2.29) ψ1(t) = [h0(t)]

With the above recursive formulas, we can evaluate ψk(t) for any k = 2α, where α is
a positive integer. Furthermore, by multiplying the matrix ψk(t) in Eq. (2.23) by the
vector A in Eq. (2.3) we obtain:

(2.30) ψk(t)A = Ãkφ(t)

Where Ãk is a k × k given by [7]:

(2.31) Ãk =

[
Ãk/2(t) Dk/2diag[c̃b]
diag[c̃b]D

−1
k/2(t) diag[c̃Tb Dk/2]

]
where C1 = c0, and

(2.32) c̃a = [c0, . . . , ck/2−1]T

(2.33) c̃b = [ck/2, . . . , ck−1]T

3. Application of HAAR wavelet method

3.1. Solution of the Linear Fredholm Integro-Di�erential Equation. Consider
the linear Fredholm integro-di�erential equation given by:

(3.1)

{
q(t)y′(t) =

∫ 1

0
k(t, s)y(s)ds + r(t)y(t) + x(t)

y(0) = y0

where the functions x, q, r ∈ L2([0, 1)), the kernel k ∈ L2([0, 1) × [0, 1)) are known
and y(t) is the unknown function to be determined.

We approximate x, q, r, y′ and k using Haar wavelet space as follows:

(3.2)



y(t) = Y Tφ(t) = φT (t)Y
y′(t) = Y ′Tφ(t) = φT (t)Y ′

y(0) = Y T0 φ(t) = φT (t)Y0

x(t) = XTφ(t) = φT (t)X
k(t, s) = ψT (t)Kψ(s) = ψT (s)KTψ(t)
r(t) = RTφ(t) = φT (t)R
q(t) = QTφ(t) = φT (t)Q

where φ(t) is given by Eq. (2.5) and Y is an unknown m× 1 vector.
k is a known m×m dimensional matrix given by Eq. (2.8) and X is a known m× 1

vector given by Eq. (2.3).
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Substituting Eq. (3.2) into (3.1) we have:

QTφ(t)φT (t)Y ′ =

∫ t

0

φT (t)Hφ(s)φT (s)(PTY ′ + Y0)ds

+RTφ(t)φT (t)(PTY ′ + Y0) +XTφ(t)(3.3)

we have φ(t)φT (t) = ψk×k(t)

QTψk×k(t)Y ′ =

∫ t

0

φT (t)Hψk×k(s)(PTY ′ + Y0)ds(3.4)

+RTψk×k(t)(PTY ′ + Y0) +XTφ(t)(3.5)

QTψk×k(t)Y ′ = φT (t)H

∫ t

0

ψk×k(s)(PTY ′ + Y0)ds(3.6)

+RTψk×k(t)(PTY ′ + Y0) +XTφ(t)(3.7)

by Eq. (2.21) and by Eq. (2.23), we have QTψk×k(t) = ψk×k(t)Q = Q̃φ(t)

(3.8) φT Q̃Y ′ = φT (t)HD(PTY ′ + Y0) + φT (t)R̃(PTY ′ + Y0) + φT (t)X

or

(3.9) (Q̃ −HDPT −RPT )Y ′ = HDPY0 + R̃Y0 +X

By solving this linear system we can obtain the vector Y ′. Thus,

(3.10) y
′
(t) = Y ′Tφ(t) = φT (t)Y ′

Eq. (3.9) can be solved for the unknown vector Y ′.
The numerical solution yk is obtained by using �nite di�erences formulas to approxi-

mate the �rst time derivative. In general, the �rst order derivative of second order error
central di�erence formula can be derived from the Taylor series expansion as follows:

The Algorithm

Step 1:

Put h =
1

k
, k ∈ N, , y(0) = y0 (initial condition is given)

Step 2:

Set ti = ih, with t0 = 0 and tk = 1, i = 0, 1, . . . , k.
Step 3:

for i = 1, 2, . . . ., k − 1

(3.11) Y ′(ti) ≈
Y (ti+1)− Y (ti−1)

2h

for i = k

(3.12) Y ′(ti) ≈
3Y (ti)− 4Y (ti−1) + Y (ti−2)

2h

Use step 1 and step 2, 3 to �nd the approximate value of yk. Where h ≈ 1

k
is interval

length between nodes.
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4. Numerical Examples

In this section, we consider three integro-di�erential equations. We apply the system
of equations in (3.8) and (3.9-3.10). The programs have been provided by MATLAB

7.8.
The L2, L∞ error and rate of convergence are de�ned to be, respectively:

(4.1) e2 = ‖yk(t)− yex(t)‖2 = (

∫ 1

0

(yk(t)− yex(t))2dx)
1
2

(4.2) e∞ = max
1≤i≤2M

|yk(ti)− yex(ti)|

(4.3) ρ2,∞ =
log[e2,∞( k

2
)/e2,∞(k)]

log(2)

where yex(t) is the exact solution and yk(t) is the approximate solution obtained by
Eq. (3.11-3.12).

4.1. Example. Consider the following linear Fredholm integro-di�erential equation:

y′(t) =

∫ 1

0

etsy(s)ds+ y(t) +
1− et+1

1 + t
,(4.4)

with initial condition y(0) = 1.
The exact solution is as follows: y(t) = et.

The numerical results are shown in table (1) and in �gures (1, 2). Table (1) shows the
behaviour of the error for the norm L2 and norm L∞ in function of the parameter of
discretization h for di�erent values of k. Note that as h approaches zero, the numerical
solution converges to the analytical solution y(t).

k L2 L∞

8 8.6353e− 002 5.4116e− 002

16 2.9590e− 002 1.4152e− 002

32 1.0405e− 002 3.8126e− 003

64 3.6778e− 003 9.9140e− 004

128 1.3009e− 003 2.5290e− 004

256 4.6012e− 004 6.3875e− 005

512 1.6271e− 004 1.6051e− 005

1024 5.7535e− 005 4.0231e− 006

2048 2.0343e− 005 1.0071e− 006

4096 7.1925e− 006 2.5193e− 007

Convergence rate 2.8284 3.9975

Table 1. The errors estimates L2, L∞ and convergence rates ρ2,∞
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Figure 1. Comparison between approximate solution yk and exact
solution yex
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Figure 2. The errors L2 and L∞ with di�erent values of k.

We have also calculated the experimental rate of convergence ρ2,∞. We notice from
Table (1) that the convergence rates are 2.8284 in L2 norm and 3.9975 in norm L∞,
which is approximately 2

√
2 and 4 respectively.

4.2. Example. Consider the following linear Fredholm integro-di�erential equation:

y′(t) = 1− 1

3
t +

∫ 1

0

tsy(s)ds(4.5)

with initial condition y(0) = 0.
The exact solution is as follows: y(t) = t.
The numerical results are shown in table (2) and in �gures (3, 4). Table (2) shows

the behaviour of the error for the norm L2 and norm L∞ in function of the parameter of
discretization h for di�erent values of k. Note that as h approaches zero, the numerical
solution converges to the analytical solution y(t).

k L2 L∞

8 9.2671e− 004 6.4523e− 004

16 4.7431e− 004 2.1068e− 004

32 1.1754e− 004 4.5027e− 005

64 4.1585e− 005 1.1443e− 005

128 1.4705e− 005 2.8836e− 006

256 5.1991e− 006 7.2377e− 007

512 1.8382e− 006 1.8130e− 007

1024 6.4990e− 007 4.5369e− 008

2048 2.2977e− 007 1.1348e− 008

4096 8.1237e− 008 2.8376e− 009

Convergence rate 2.8284 3.9992

Table 2. The errors estimates L2, L∞ and convergence rates ρ2,∞
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Figure 4. The errors L2 and L∞ with di�erent values of k.

We have also calculated the experimental rate of convergence ρ2,∞. We notice from
Table (2) that the convergence rates are 2.8284 in L2 norm and 3.9975 in norm L∞,
which is approximately 2

√
2 and 4 respectively.

4.3. Example. Consider the following linear Fredholm integro-di�erential equation:

y′(t) =

∫ 1

0

sin(4πt+ 2πs)y(s)ds+ y(t)− cos(2πt)− 2π sin(2πt)− 1

2
sin(4πx),(4.6)

with initial condition y(0) = 1.
The exact solution is: y(t) = cos(2πt). The numerical results are shown in Table (3)

and in �gures (5, 6). Table (3) shows the behaviour of the error for the norm L2 and
norm L∞ in function of the parameter of discretization h for di�erent values of k. Note
that as h approaches zero, the numerical solution converges to the analytical solution
y(t).

k L2 L∞

8 4.9567e-001 3.0091e-001

16 1.7633e-001 7.5816e-002

32 6.2562e-002 1.8990e-002

64 2.2160e-002 4.7500e-003

128 7.8420e-003 1.1877e-003

256 2.7739e-003 2.9696e-004

512 9.8094e-004 7.4244e-005

1024 3.4686e-004 1.8561e-005

2048 1.2264e-004 4.6402e-006

4096 4.3361e-005 1.1601e-006

Convergence rate 2.8284 3.9992

Table 3. The errors estimates L2, L∞ and convergence rates ρ2,∞
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Figure 6. The errors L2 and L∞ with di�erent values of k.

We have also calculated the experimental rate of convergence ρ2,∞. We notice from
Table (3) that the convergence rates are 2.8284 in L2 norm and 3.9975 in norm L∞,
which is approximately 2

√
2 and 4 respectively.

4.4. Example. Consider the Fredholm integral equation of the second kind:

y′(t) =
1

(log2)2

∫ 1

0

(
t

1 + s
)y(s)ds+ y(t) − 1

2
t +

1

1 + t
− log(1 + t)(4.7)

with initial condition: y(0) = 0. The exact solution is: y(t) = log(1+t). The numerical
results are shown in Table (4) and in �gures (7, 8). Table (4) shows the behaviour of the
error for the norm L2 and norm L∞ in function of the parameter of discretization h for
di�erent values of k. Note that as h approaches zero, the numerical solution converges
to the analytical solution y(t).

k L2 L∞

8 1.0262e-002 6.3139e-003

16 4.0064e-003 1.8118e-003

32 1.4848e-003 4.8413e-004

64 5.3714e-004 1.2506e-004

128 1.9207e-004 3.1777e-005

256 6.8289e-005 8.0088e-006

512 2.4211e-005 2.0103e-006

1024 8.5720e-006 5.0359e-007

2048 3.0328e-006 1.2602e-007

4096 1.0726e-006 3.1522e-008

Convergence rate 2.8284 3.9992

Table 4. The errors estimates L2, L∞ and convergence rates ρ2,∞
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Figure 7. Comparison between approximate solution yk and exact
solution yex
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Figure 8. The errors L2 and L∞ with di�erent values of k.

We have also calculated the experimental rate of convergence ρ2,∞. We notice from
Table (4) that the convergence rates are 2.8284 in L2 norm and 3.9975 in norm L∞,
which is approximately 2

√
2 and 4 respectively.

5. CONCLUSION

The proposed method is a powerful procedure for solving linear Fredholm integro-
di�erential. The examples analyzed illustrate the e�ciency and reliability of the method
presented and show that the method is very simple and e�ective. The obtained numer-
ical solutions are very accurate, in comparison with the exact solutions. Results also
indicate that the convergence rate is fast, and lower order approximations can achieve
high accuracy.
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