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Dividend moments for two classes of risk processes
with phase-type interclaim times
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Abstract

In this paper, we consider the distribution of discounted dividend pay-
ments until ruin under a risk model with two independent classes
of claims in which both of the two interclaim times have phase-
type distributions and a constant dividend barrier. We obtain the
integro-di�erential equations with boundary conditions for the moment-
generating function of the sum of the discounted dividend payments un-
til ruin. Explicit expressions for arbitrary moments of the discounted
dividend payments are derived if the distribution of the two classes
claim amount both belong to the rational family. Finally, numerical
illustrations are presented to show how the results are applied.
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1. Introduction

The ruin problems for a risk model involving two independent classes of risks have
been considered by many researchers, see, for example, [9], [10], [15], and among others.
As an extension of these papers, [5] investigated the risk model with two classes of renewal
risk processes by assuming that both of the two claim number processes have phase-type
interclaim times. The topics of these literatures are concentrated on the Gerber-Shiu
discounted penalty function, which is an important tool to quantify the riskiness of the
risk model.

In recent years, particular attention has been devoted to the risk models with dividend
strategies. We refer the readers to, e.g. [6], [12], [13], [14] for details. The distribution of
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the discounted sum of dividend payments until ruin which is an important quantity in as-
sessing the quality of dividend strategies has been studied by [7], [11], and the references
therein. In particular, [1] presented some results on the distribution of dividend pay-
ments until ruin in a Sparre Andersen risk model with generalized Erlang(n)-distributed
interclaim times and a constant dividend barrier which complemented the results of [8].
[16] considered dividend payments with a threshold strategy in the compound Poisson
risk model perturbed by di�usion. [4] extended the results of [16] via assuming that the
interclaim times follow a generalized Erlang(n) distribution. As a more general frame-
work, [3] considered surplus processes of which the claim number is a Markovian arrival
process perturbed by di�usion with dividend barrier strategies.

The main purpose of the current paper is to investigate the distribution of the dis-
counted sum of dividend payments until ruin for two classes of risk processes in the pres-
ence of a constant dividend barrier, where both of the two claim number processes have
phase-type interclaim. This paper is a natural extension of [1] and enriches the results
for two classes of renewal risk processes. The rest of the paper is structured as follows.
Section 2 describes the risk model. In Section 3, we derive systems of integro-di�erential
equations for the moment-generating function of the sum of discounted dividend pay-
ments until ruin. Section 4 presents the results for arbitrary moments of the discounted
dividend payments and derives explicit expressions when the two classes claim amount
distributions both belong to the rational family. In Section 5, a numerical example is
given.

2. Model setup

The surplus process R(t) of an insurance portfolio is given by

(2.1) R(t) = u+ ct− S(t), t ≥ 0,

where u ≥ 0 is the initial surplus, c denotes the insurer's premium income per unit time,
and the aggregate-claim process {S(t) : t ≥ 0} is de�ned by

S(t) =

N1(t)∑
i=1

Xi +

N2(t)∑
i=1

Yi, t ≥ 0,

where {X1, X2, · · · } and {Y1, Y2, · · · } are independent and identically distributed (i.i.d.)
positive random variables representing the successive individual claim amounts from
the �rst and the second class, respectively. The random variables {X1, X2, · · · } are
assumed to have common cumulative distribution function F (x) = 1 − F̄ (x), x ≥ 0,
with probability density function f(x) = F ′(x), of which the Laplace transform is

f̃(s) =
∫∞
0
e−sxf(x)dx, s ∈ C, C denotes the complex space. Similarly, common cu-

mulative distribution function, density function and the Laplace transform of the den-
sity function of {Y1, Y2, · · · } are given by G(x) = 1 − Ḡ(x), x ≥ 0, g(x) = G′(x) and
g̃(s) =

∫∞
0
e−sxg(x)dx. The renewal processes {N1(t); t ≥ 0} and {N2(t); t ≥ 0} denote

the number of claims up to time t caused by the �rst and the second class of claim
respectively, and are de�ned as follows:

N1(t) = sup{n : T1 + T2 + · · ·+ Tn ≤ t},

N2(t) = sup{n : V1 + V2 + · · ·+ Vn ≤ t},

where the i.i.d. interclaim times {T1, T2, · · · } have common cumulative distribution func-
tion K1(t), t ≥ 0 and density function k1(x) = K′1(x), and {V1, V2, · · · } have common
cumulative distribution function K2(t), t ≥ 0 and density function k2(x) = K′2(x).
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In addition, we assume that {X1, X2, · · · }, {Y1, Y2, · · · }, {N1(t); t ≥ 0} and {N2(t); t ≥
0} are mutually independent. The net pro�t condition is given by c > E(X1)/E(T1) +
E(Y1)/E(V1).

In the present paper, we consider the risk model (2.1) with a constant dividend barrier
d(≥ 0). For such a dividend strategy, it is assumed that whenever the surplus process
reaches the level d, the premium income is paid out as dividends to policyholders; oth-
erwise, no dividend is paid. Let Rd(t) be the surplus of an insurance company at time t
under a constant dividend barrier d, then

dRd(t) =

{
cdt− dS(t), Rd(t) < b,
−dS(t), Rd(t) ≥ b.

The time of (ultimate) ruin is T = inf{t|R(t) < 0}, where T = ∞ if R(t) ≥ 0 for all
t ≥ 0. The probability of ruin is ψ(u) = Pr(T <∞).

Denote by D(t) the cumulative amount of dividends paid out up to time t and δ > 0

the force of interest, then D =
∫ T
0
e−δtdD(t) is the present value of all dividends until

ruin time T . In the following text, we turn to the moment generating function of D,

M(u, y, d) = E[eyD|R(0) = u]

(for those values of y where it exists) and the rth moment

W (u, r, d) = E[Dr|R(0) = u], r ∈ N.

Note that W (u, 0, d) ≡ 1. We will always assume that 0 ≤ u ≤ d (otherwise the over�ow
is immediately paid out as dividends) and that M(u, y, d) and W (u, r, d) are su�ciently
smooth functions in u and y, respectively.

Throughout the text of the paper, all bold-faced letters represent either vectors or
matrices and all vectors are column vectors. We assume that the distribution K1(t)
of the interclaim time random variable T1 is phase-type with representation (α>,A,a),
where α> = (α1, α2, · · · , αn), with αi ≥ 0,

∑n
i=1 αi = 1, A = (aij)

n
i,j=1 is an n × n

matrix with aii < 0, aij ≥ 0, for i 6= j,
∑n
j=1 aij ≤ 0, for any i = 1, 2, · · · , n, and

a = (a1, a2, · · · , an)> with a = −Aen, where x> denotes the transpose of x and en
denotes a n-dimensional column vector with all elements being one. Following [2], we
have

K1(t) = 1−α>eAten, k1(t) = α>eAta, t ≥ 0,

and

(2.2) k̃1(s) =

∫ ∞
0

e−stk1(t)dt = α>(sI−A)−1a.

By the de�nition of phase-type distributions, each of the interclaim times Ti, i = 1, 2, · · · ,
corresponds to the time to absorption in a terminating continuous-time Markov Chain,

say, I
(i)
t with n transient states {E1, E2, · · · , En} and one absorbing state E0.

Correspondingly, the distribution K2(t) of the interclaim time random variable V1 is
phase-type with representation (β>,B,b), where β> = (β1, β2, · · · , βm), B = (bij)

m
i,j=1

is an m×m matrix, b = (b1, b2, · · · , bm)> with b = −Bem. Then we have

K2(t) = 1− β>eBtem, k2(t) = β>eBtb, t ≥ 0,

and

(2.3) k̃2(s) =

∫ ∞
0

e−stk2(t)dt = β>(sI−B)−1b.

Similarly, J
(i)
t denotes the terminating continuous-time Markov Chain of Vi, i =

1, 2, · · · , with m transient states {F1, F2, · · · , Fm} and one absorbing state F0.
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Now, we construct a two-dimensional Markov process {(I(t), J(t)); t ≥ 0} by piecing

the {I(i)t ; i = 1, 2, · · · } and {J(i)
t ; i = 1, 2, · · · } together,

I(t) = {I(1)t }, 0 ≤ t < T1, I(t) = {I(2)t−T1
}, T1 ≤ t < T1 + T2, · · · ,

J(t) = {J(1)
t }, 0 ≤ t < V1, J(t) = {J(2)

t−V1
}, V1 ≤ t < V1 + V2, · · · .

So {(I(t), J(t)); t ≥ 0} is the underlying state process with states
{(E1, F1) , (E2, F1), · · · , (En, F1), (E1, F2), (E2, F2), · · · , (En, F2), · · · , (E1, Fm), (E2, Fm),
· · · , (En, Fm)}, initial distribution γ = β ⊗α, where ⊗ denotes the Kronecker product
of two matrices.

For k = 1, 2; i = 1, 2, · · · , n; j = 1, 2, · · · ,m, let M (k)(u, y, d) denote the moment
generating function of D if the ruin is caused by a claim from class k and R(0) = u.

M
(k)
ij (u, y, d) denotes the moment generating function of D when the ruin is caused by a

claim from class k and initial state (I
(1)
0 , J

(1)
0 ) = (Ei, Fj), then the moment generating

function can be written as

(2.4) M (k)(u, y, d) = γ>M(k)(u, y, d),

where M(k)(u, y, d) ≡
(
M

(k)
11 (u, y, d),M

(k)
21 (u, y, d), · · · ,M (k)

n1 (u, y, d), M
(k)
12 (u, y, d),

M
(k)
22 (u, y, d), · · · ,M (k)

n2 (u, y, d), · · · , M (k)
1m (u, y, d),M

(k)
2m (u, y, d), · · · ,M (k)

nm(u, y, d)
)>

. Thus

(2.5) M(u, y, d) = γ>M(u, y, d) = γ>[M(1)(u, y, d) + M(2)(u, y, d)].

Let Wij(u, r, d) denote the rth moment of D if (I
(1)
0 , J

(1)
0 ) = (Ei, Fj). Then the

moment can be computed by

(2.6) W (u, r, d) = γ>W(u, r, d),

where W(u, r, d) ≡ (W11(u, r, d),W21(u, r, d), · · · ,Wn1(u, r, d), W12(u, r, d), W22(u, r, d),

· · · ,Wn2(u, r, d), · · · , W1m(u, r, d), W2m(u, r, d), · · · , Wnm(u, r, d))>.

3. Integro-di�erential system for M(k)(u, y, d)

Let ∂·
∂u

and ∂·
∂y

denote the di�erentiation operators with respect to u and y, respec-

tively.

3.1. Theorem. The vectors M(k)(u, y, d), 0 ≤ u ≤ d, k = 1, 2 satisfy the following partial

integro-di�erential system, respectively,

(3.1)

(
c ∂
∂u
− yδ ∂

∂y

)
M(1)(u, y, d) + Im×m ⊗AM(1)(u, y, d)+

B⊗ In×nM(1)(u, y, d) + Im×m ⊗ (aα>)
∫ u
0

M(1)(u− x, y, d)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

M(1)(u− x, y, d)g(x)dx+ (em ⊗ a)F̄ (u) = 0,

and

(3.2)

(
c ∂
∂u
− yδ ∂

∂y

)
M(2)(u, y, d) + Im×m ⊗AM(2)(u, y, d)+

B⊗ In×nM(2)(u, y, d) + Im×m ⊗ (aα>)
∫ u
0

M(2)(u− x, y, d)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

M(2)(u− x, y, d)g(x)dx+ (b⊗ en)Ḡ(u) = 0,

with boundary conditions

(3.3)
∂M(k)(u, y, d)

∂u

∣∣∣∣
u=d

= yM(k)(d, y, d), k = 1, 2,

where In×n denotes the n × n identity matrix, 0 denotes a column vector of length mn
with all elements being 0.
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Proof. Considering an in�nitesimal time interval (0, dt) for 0 ≤ u ≤ d, there are four
possible events regarding to the occurrence of the claim and change of the environment:
(i) no claim arrival and no change of state; (ii) a claim arrival but no change of state; (iii)
a change of state but no claim arrival; (iv) two or more events occur. Taking into account
the above four events in (0, dt) and using the total expectation formula, it follows that

(3.4)

M
(1)
ij (u, y, d)

= (1 + aiidt)(1 + bjjdt)M
(1)
ij (u+ cdt, ye−δdt, d)

+(1 + bjjdt)
n∑

k=1,k 6=i
(aikdt)M

(1)
kj (u+ cdt, ye−δdt, d)

+(1 + aiidt)
m∑

h=1,h6=j
(bjhdt)M

(1)
ih (u+ cdt, ye−δdt, d)

+(1 + bjjdt)(aidt)

[
n∑
s=1

αs
∫ u+cdt
0

M
(1)
sj (u+ cdt− x, ye−δdt, d)f(x)dx

+
∫∞
u+cdt

f(x)dx
]

+(1 + aiidt)(bjdt)
m∑
r=1

βr
∫ u+cdt
0

M
(1)
ir (u+ cdt− x, ye−δdt, d)g(x)dx+ o(dt).

By Taylor expansion,

(3.5)
M

(1)
ij (u+ cdt, ye−δdt, d)

= M
(1)
ij (u, y, d) + cdt

∂M
(1)
ij (u,y,d)

∂u
+ y(e−δdt − 1)

∂M
(1)
ij (u,y,d)

∂y
+ o(dt).

Substituting (3.5) into (3.4), dividing by dt and then letting dt→ 0, it yields that

(3.6)

c
∂M

(1)
ij (u,y,d)

∂u
− yδ

∂M
(1)
ij (u,y,d)

∂y
+

n∑
k=1

aikM
(1)
kj (u, y, d) +

m∑
h=1

bjhM
(1)
ih (u, y, d)

+ai

(
n∑
s=1

αs
∫ u
0
M

(1)
sj (u− x, y, d)f(x)dx+

∫∞
u
f(x)dx

)
+bj

m∑
r=1

βr
∫ u
0
M

(1)
ir (u− x, y, d)g(x)dx = 0.

Rewriting (3.6) in matrix form and rearranging it, we have (3.1). By similar derivation
to (3.4)-(3.6), we get (3.2).

When u = d, we have

(3.7)

M
(1)
ij (d, y, d)

= (1 + aiidt)(1 + bjjdt)e
ycdtM

(1)
ij (d, ye−δdt, d)

+(1 + bjjdt)e
ycdt

n∑
k=1,k 6=i

(aikdt)M
(1)
kj (d, ye−δdt, d)

+(1 + aiidt)e
ycdt

m∑
h=1,h6=j

(bjhdt)M
(1)
ih (d, ye−δdt, d)

+(1 + bjjdt)(aidt)e
ycdt

[
n∑
s=1

αs
∫ d
0
M

(1)
sj (d− x, ye−δdt, d)f(x)dx

+
∫∞
d
f(x)dx

]
+(1 + aiidt)(bjdt)e

ycdt
m∑
r=1

βr
∫ d
0
M

(1)
ir (d− x, ye−δdt, d)g(x)dx+ o(dt).
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It follows from Taylor expansion that

(3.8)

ycM
(1)
ij (d, y, d)− yδ

∂M
(1)
ij (d,y,d)

∂y
+

n∑
k=1

aikM
(1)
kj (d, y, d) +

m∑
h=1

bjhM
(1)
ih (d, y, d)

+ai

(
n∑
s=1

αs
∫ d
0
M

(1)
sj (d− x, y, d)f(x)dx+

∫∞
d
f(x)dx

)
+bj

m∑
r=1

βr
∫ d
0
M

(1)
ir (d− x, y, d)g(x)dx = 0.

Comparing the above equations with the corresponding equations in (3.6) and utilizing

the continuity of M
(1)
ij (u, y, d) at u = d, then

∂M(1)(u, y, d)

∂u

∣∣∣∣
u=d

= yM(1)(d, y, d).

By the same approach, we can obtain the boundary conditions (3.3) for k = 2. �

3.2. Remark. When m = 1 and G(0) = 1, from Eq.(3.1), we have

(3.9)

(
c ∂
∂u
− yδ ∂

∂y

)
M(1)(u, y, d) + AM(1)(u, y, d)

+
[∫ u

0
α>M(1)(u− x, y, d)f(x)dx+ F̄ (u)

]
a = 0.

In this case, M(2)(u, y, d) need not be considered. Specially, when the distribution K1(t)
of the interclaim time is a generalized Erlang(n) distribution, i.e.,

α> = (1, 0, . . . , 0),A =


−λ1 λ1 0 · · · 0 0

0 −λ2 λ2 0 · · · 0
...

...
. . .

. . .
. . .

...
0 · · · 0 0 0 −λn

 ,a =


0
0
...
λn

 .

Then (3.9) can be expressed as(
n∏
i=1

yδ ∂
∂y
− c ∂

∂u
+ λi

λi

)
M (1)(u, y, d)−

∫ u

0

M (1)(u, y, d)f(x)dx− F̄ (u) = 0,

which is identical to (2) in [1].

4. The moments of the discounted dividend payments

4.1. Integro-di�erential system. Adding (3.1) to (3.2), by virtue of (2.5) leads to

(4.1)

(
c ∂
∂u
− yδ ∂

∂y

)
M(u, y, d) + Im×m ⊗AM(u, y, d)+

B⊗ In×nM(u, y, d) + Im×m ⊗ (aα>)
∫ u
0

M(u− x, y, d)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

M(u− x, y, d)g(x)dx+ (em ⊗ a)F̄ (u)
+(b⊗ en)Ḡ(u) = 0.

Note that W (u, r, d) = E[Dr|R(0) = u]. With the help of the representation

M(u, y, d) = emn +

∞∑
r=1

yr

r!
W(u, r, d),

by equating the coe�cients of yr(r ∈ N) in (4.1), using a = −Aen, b = −Bem, Im×m ⊗
Aemn = −Im×m ⊗ (aα>)emn = −em ⊗ a and B ⊗ In×nemn = −(bβ>) ⊗ In×nemn =
−b⊗ en, we have the following result.
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4.1. Theorem. The vector W(u, r, d), 0 ≤ u ≤ d, satis�es the following integro-di�erential
system,

(4.2)
c dW(u,r,d)

du
− rδW(u, r, d) + Im×m ⊗AW(u, r, d)+

B⊗ In×nW(u, r, d) + Im×m ⊗ (aα>)
∫ u
0

W(u− x, r, d)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

W(u− x, r, d)g(x)dx = 0,

with boundary conditions

(4.3)
∂W(u, r, d)

∂u

∣∣∣∣
u=d

= rW(d, r − 1, d).

4.2. Remark. When m = 1 and G(0) = 1, from Eq.(4.2), we get

(4.4) c
dW(u, r, d)

du
− rδW(u, r, d) +AW(u, r, d) + (aα>)

∫ u

0

W(u−x, r, d)f(x)dx = 0.

Furthermore, when the distributionK1(t) of the interclaim time is a generalized Erlang(n)
distribution, see Remark 3.1 for the representation (α>,A,a). Under this scenario, we
recover (9) in [1] from (4.4) as follows:(

n∏
i=1

rδ − c ∂
∂u

+ λi

λi

)
W (u, r, d)−

∫ u

0

W (u− x, r, d)f(x)dx = 0.

4.2. Explicit results for claim-size with rational family distributions. Now de-
�ne the Laplace transforms W̃(s, r, d) =

∫∞
0
e−suW(u, r, d)du by ignoring for a moment

that W(u, r, d) is only de�ned for 0 ≤ u ≤ d.
Taking Laplace transforms on both sides of (4.2) yields

(4.5)

[
(cs− rδ) Imn×mn + Im×m ⊗A + B⊗ In×n + Im×m ⊗ (aα>)f̃(s)

+ (bβ>)⊗ In×ng̃(s)
]
W̃(s, r, d) = cW(0, r, d).

Let L(s) = (cs− rδ) Imn×mn + Im×m ⊗A + B⊗ In×n + Im×m ⊗ (aα>)f̃(s) + (bβ>)⊗
In×ng̃(s), and L∗(s) be the adjoint of matrix L(s). In the following, we assume det[L(s)] 6=
0. So, from (4.5), it holds that

(4.6) W̃(s, r, d) =
L∗(s)

det[L(s)]
cW(0, r, d).

Thanks to [5], the generalized Lundberg's equation det[L(s)] = 0 has exactlymn roots
in the right half of the complex plane when δ > 0. We denote them by ρ1, ρ2, · · · , ρmn
respectively, and for simplicity, we assume that they are di�erent from each other.

Next, we present some explicit results for the moments of the discounted dividend
payments by assuming that the claim amount distributions F and G are both from the
rational family distribution. That is, the Laplace transforms of the density functions are
of the forms

f̃(s) =
pm1−1(s)

pm1(s)
, g̃(s) =

qm2−1(s)

qm2(s)
, m1,m2 ∈ N+,

where pm1−1(s), qm2−1(s) are polynomials of degreem1−1 andm2−1 or less, respectively,
while pm1(s) and qm2(s) are polynomials of degree m1 and m2 with only negative roots,
and satisfy pm1−1(0) = pm1(0), qm2−1(0) = qm2(0). Without loss of generality, we
assume that pm1(s) and qm2(s) have leading coe�cient 1. This wide class of distributions
includes the phase-type distributions, and in particular, it includes the Erlang, Coxian
and exponential distribution and all the mixtures of them.
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In what follows, let h(s) = [pm1(s)qm2(s)]mn. Multiplying both numerator and de-
nominator of (4.6) by h(s) results in

(4.7) W̃(s, r, d) =
h(s)L∗(s)

h(s)det[L(s)]
cW(0, r, d).

Obviously, the factor h(s)det[L(s)] of the denominator is a polynomial of degreemn(m1+
m2 + 1) with leading coe�cient cmn. Therefore, the equation h(s)det[L(s)] = 0 has
mn(m1 +m2 + 1) roots on the complex plane. We can factorize h(s)det[L(s)] as follows

(4.8) h(s)det[L(s)] = cmn
mn∏
i=1

(s− ρi)
(m1+m2)mn∏

j=1

(s+Rj),

where Rj for each j has positive real part and we assume that all of them are distinct
from each other.

Since the numerator h(s)L∗(s) in (4.7) is a polynomial with degree less than mn(m1 +
m2 + 1). By the partial fraction decomposition, it follows that

(4.9) W̃(s, r, d) =

mn∑
j=1

Γj(d)

s− ρj
+

(m1+m2)mn∑
j=1

Λj(d)

s+Rj
,

where Γj(d), for j = 1, 2, · · · ,mn, and Λj(d), for j = 1, 2, · · · , (m1 + m2)mn, are the
coe�cient matrices de�ned respectively by

(4.10) Γj(d) = − h(ρj)L
∗(ρj)W(0, r, d)

cmn−1

[
(m1+m2)mn∏

k=1

(Rk + ρj)

][
mn∏

i=1,i 6=j
(ρi − ρj)

] ,
and

(4.11) Λj(d) =
h(−Rj)L∗(−Rj)W(0, r, d)

cmn−1

[
mn∏
k=1

(ρk +Rj)

][
(m1+m2)mn∏
i=1,i 6=j

(Ri −Rj)

] .
Obviously, Γj(d) and Λj(d) depend on dividend barrier d. Inverting (4.9) leads to

(4.12) W(u, r, d) =

mn∑
j=1

Γj(d)eρju +

(m1+m2)mn∑
j=1

Λj(d)e−Rju.

Since we don't need to distinguish Γj(d) and Λj(d), for notational convenience, (4.12)
can be reexpressed as

(4.13) W(u, r, d) =

mn(m1+m2+1)∑
j=1

Υj(d)eκju,

where κj , j = 1, . . . ,mn(m1+m2+1) denote mn(m1+m2+1) roots of h(s)det[L(s)] = 0.
Now we announce that the explicit forms for arbitrary moments of the discounted div-

idend payments can be obtained from (4.13) if the two classes claim amount distributions
both belong to the rational family. The coe�cients Υj(d) can be determined by boundary
conditions (4.3), and we can obtain the other demand equations for determining these
coe�cients by substituting (4.13) into (4.2), and equating coe�cients of the resulting
exponential terms. At the same time, the asymptotic behavior limd→∞W(u, r, d) = 0
holds.
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5. Numerical illustrations

In this section, we will illustrate numerically an application of the main results in
this paper. We assume that the claim amounts from class 1 and class 2 both follow
exponentially distributions with density functions, respectively,

f(x) = µ1e
−µ1x, µ1 > 0, x > 0, g(y) = µ2e

−µ2y, µ2 > 0, y > 0.

We also assume µ1 6= µ2 for simplicity. Thus, the Laplace transforms f̃(s) = µ1
s+µ1

,

g̃(s) = µ2
s+µ2

. At the same time, we suppose that the interclaim times from class 1 occur

following a Poisson process with parameter λ and interclaim times from class 2 occur
following a phase-type distribution with the following parameters: β> = (1/2, 1/2),B =(
−λ1 0

0 −λ2

)
,b =

(
λ1

λ2

)
. So, we also have α = (1),A = (−λ),a = (λ), and

L(s) =

(
cs− rδ − λ− λ1 + λµ1

s+µ1
+ λ1µ2

2(s+µ2)
λ1µ2

2(s+µ2)
λ2µ2

2(s+µ2)
cs− rδ − λ− λ2 + λµ1

s+µ1
+ λ2µ2

2(s+µ2)

)
.

From (4.2), we have

(5.1)

c dW(u,r,d)
du

− rδW(u, r, d) +

(
−λ 0
0 −λ

)
W(u, r, d)+(

−λ1 0
0 −λ2

)
W(u, r, d) +

(
λ 0
0 λ

)∫ u
0

W(u− x, r, d)f(x)dx+(
λ1
2

λ1
2

λ2
2

λ2
2

)∫ u
0

W(u− x, r, d)g(x)dx = 0.

Using (4.13), we obtain the representation

(5.2) W(u, r, d) =

6∑
j=1

Υj(d)eκju.

Obviously, s = −µ2 is one of the roots of h(s)det[L(s)] = 0. Hence, (5.2) can be rewritten
as

(5.3) W(u, r, d) =

5∑
j=1

Υj(d)eκju + Υ6(d)e−µ2u.

Substituting (5.3) into (5.1) results in

(5.4)
5∑
j=1

L(κj)Υj(d)eκju =[
5∑
j=1

(
λ 0
0 λ

)
Υj(d) µ1

κj+µ1
+

(
λ 0
0 λ

)
Υ6(d) µ1

−µ2+µ1

]
e−µ1u+{(

cµ2 + rδ + λ+ λ1 − λµ1
−µ2+µ1

0

0 cµ2 + rδ + λ+ λ2 − λµ1
−µ2+µ1

)
Υ6(d)+

5∑
j=1

(
λ1
2

λ1
2

λ2
2

λ2
2

)
Υj(d) µ2

κj+µ2
−
(

λ1
2

λ1
2

λ2
2

λ2
2

)
Υ6(d)µ2u

}
e−µ2u,

from which we have the following conditions

(5.5)
5∑
j=1

L(κj)Υj(d) = 0,
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(5.6)
5∑
j=1

(
λ 0
0 λ

)
Υj(d)

µ1

κj + µ1
+

(
λ 0
0 λ

)
Υ6(d)

µ1

−µ2 + µ1
= 0,

(5.7)

(
cµ2 + rδ + λ+ λ1 − λµ1

−µ2+µ1
0

0 cµ2 + rδ + λ+ λ2 − λµ1
−µ2+µ1

)
Υ6(d)+

5∑
j=1

(
λ1
2

λ1
2

λ2
2

λ2
2

)
Υj(d) µ2

κj+µ2
= 0,

and

(5.8)

(
λ1
2

λ1
2

λ2
2

λ2
2

)
Υ6(d) = 0.

For r = 1 we have from (4.3) ∂W(u,1,d)
∂u

∣∣∣
u=d

= emn, which yields

(5.9)
5∑
j=1

Υj(d)κje
κjd −Υ6(d)µ2e

−µ2d = e2.

By virtue of the asymptotic behavior limd→∞W(u, r, d) = 0, we have

(5.10) lim
d→∞

[
5∑
j=1

Υj(d)eκju + Υ6(d)e−µ2u

]
= 0.

Thus the coe�cients Υj(d), j = 1, . . . , 6, can be determined from Eqs. (5.5)-(5.10), then
we obtain W(u, 1, d). By the same arguments and in view of the boundary conditions
(4.3), we can derive W(u, r, d) for r = 2, 3, . . . .

For illustration purpose, we set c = 2.5, δ = 0.01, λ = 1, λ1 = 1, λ2 = 2, µ1 = 1, µ2 = 2.
It is easy to check that the net pro�t condition holds. Now, we consider the expecta-
tion of discounted dividend payments, namely, r = 1. In this case the solutions of
h(s)det[L(s)] = 0 are κ1 = 0.8082, κ2 = 0.0118, κ3 = −0.4017, κ4 = −0.7713, κ5 =
−1.6390, κ6 = −µ2 = −2.000. In the following, Table 1 gives some numerical values of
W (u, 1, d) = γ>W(u, 1, d).

Table 1. Exact values for W (u, 1, d).

d\u 0 1 2 3 4 5 6 7 8

0 1.0372
1 0.7157 1.4795
2 0.3980 0.7842 1.4831
3 0.2003 0.3858 0.7050 1.3935
4 0.0621 0.1376 0.2784 0.5856 1.2718
5 0.0449 0.0847 0.1498 0.2878 0.5942 1.2803
6 0.0206 0.0388 0.0680 0.1296 0.2663 0.5722 1.2582
7 0.0094 0.0176 0.0307 0.0582 0.1191 0.2555 0.5613 1.2472
8 0.0042 0.0079 0.0138 0.0261 0.0532 0.1140 0.2503 0.5560 1.2419
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