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f-BIMINIMAL SUBMANIFOLDS OF GENERALIZED SPACE
FORMS

FATMA KARACA

ABSTRACT. We study f-biminimal submanifolds in generalized complex space
forms and generalized Sasakian space forms. Then, we analyze f-biminimal
submanifolds in these spaces. Finally, we consider f-biminimal integral sub-
manifolds in Sasakian space forms and give an example.

1. INTRODUCTION

Harmonic map is a map ¢ : (M,g) — (N,h) between Riemannian manifolds
which is a critical point of the energy functional

1
Be) = 5 | Il dv,

where (2 is a compact domain of M. The Euler-Lagrange equation of energy func-
tional E(yp) is given by
() = tr(Vdep) =0,

where 7(p) is the tension field of ¢ [4]. A map ¢ is called to be biharmonic if it is
a critical point of the bienergy functional

Bae) = 5 | (@)l dvg,

where Q is a compact domain of M. In [§], the Euler-Lagrange equation of bienergy
functional Es(yp) is given by

o) = tr(VPV? = VE)7(p) — tr(RN (de, 7())de) = 0, (1.1)

where T2(¢p) is the bitension field of ¢ and RY is the curvature tensor of N.
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A map ¢ is said to be f-harmonic with a function f : M T Rifit is a critical
point of f-energy functional

1
Bi() = 5 | 1ldel® v,

where  is a compact domain of M. In [3] and [I5], the Euler-Lagrange equation
of the f-harmonic functional Ef(yp) is given by

Ti(p) = fr(p) + de(gradf) = 0, (1.2)

where 7;(p) is the f-tension field of ¢. The map ¢ is called to be f-biharmonic
[12] if it is a critical point of the f-bienergy functional

Payle) =3 [ £1r(o)IP v,

where (2 is a compact domain of M. The Euler-Lagrange equation of f-bienergy
functional Fs f(¢) is given by

T2,1(0) = fr2(p) + Af7(p) + 2V 4 ,7(p) =0, (1.3)

where 79 ¢(¢) is called the f-bitension field of ¢ [12]. If f is a constant, an f-
biharmonic map turns into a biharmonic map.

An immersion ¢ is called biminimal [I1] if it is a critical point of the bienergy
functional Fs(¢p) for variations normal to the image (M) C N, with fixed energy.
Equivalently, there exists a constant A € R such that ¢ is a critical point of the
A-bienergy

Ea(¢) = E2(p) + AE(p) (1.4)

for any smooth variation of the map ¢, :]—¢, +€[, ¢, = ¢, such that V = % lt=0=10

is normal to ¢(M). The Euler-Lagrange equation of A-bienergy functional E; »(¢)
is given by

[F20 (@) = [T2(@)]F = Alr(0)] - =0 (1.5)
for some value of A € R.

An immersion ¢ is called to be f-biminimal [7] if it is critical points of the f-
bienergy functional Es ;(¢) and f-energy functional Ef(yp) for variations normal
to the image (M) C N, with fixed energy. Equivalently, there exists a constant
A € R such that ¢ is a critical point of the A-f-bienergy functional

Es ) 5() = Ea 5(0) + AEf ()
do,

for any smooth variation of the map ¢, :] —€, +¢[, ¢y = ¢, such that V = =2 |,_o=
0 is normal to ¢(M). The Euler-Lagrange equation of A-f-bienergy functional
Es . ¢(¢) is given by

[r2x s (@) = [T2,5 ()] = AlTs(0)]F =0 (1.6)

for some value of A € R. It is called an immersion free f-biminimal if it is f-
biminimal for A = 0. If f is a constant, then the immersion is biminimal [7].
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In [II], Loubeau and Montaldo defined biminimal immersions. They studied
biminimal curves in a Riemannian manifold, curves in a space form, and isomet-
ric immersions of codimension 1 in a Riemannian manifold. In [7], the author
and Ozgiir introduced f-biminimal immersions. They studied f-biminimal curves
and hypersurfaces in a Riemannian manifold. In [I7], Roth and Upadhyay studied
biharmonic submanifolds in generalized space forms. In [I8], the same authors stud-
ied necessary and sufficient conditions for f-biharmonicity and bi- f-harmonicity in
generalized space forms. Motivated by the above studies, in the present paper, we
consider f-biminimal submanifolds in generalized space forms. We find the nec-
essary and sufficient conditions for submanifolds in generalized space forms to be
f-biminimal.

2. PRELIMINARIES

2.1. Generalized complex space forms. Let (N?", g, J) be an almost Hermitian
manifold. The manifold (N?", g, J) is called generalized complex space form if its
curvature tensor R is given by

R(Xa Y) Z =« [g(Yv Z)X - g(Xv Z)Y}
+Bg(JY, 2)JX — g(JX,Z)JY +29(JY,X)JZ]. (2.1)
where o and § are smooth functions on N [I4],[I9]. Assume that M be a subman-

ifold of N(a, ) which is 4-dimensional generalized complex space form . Denote
by J is an almost complex structure. It is easy to see that J satisfies

J2 =1 (2.2)
and
g(JX,Y)=—g(X,JY) (2.3)
for X, Y tangent to N(a, ). Then we have
VJ=0 (2.4)

where V means covariant derivation according to the Levi-civita connection.
Let X € TM and ¢ € T*M. The decompositions of JX and J¢ into tangent
and normal components can be written as

JX = kX + hX and J€ = s¢ + L€, (2.5)

where k: TM — TM, h:TM — T+*M, s:T+*M — TM,and t : T*M —
T+M are (1,1)-tensor fields. From equations (2.2) and (2.3), it is easy to see that
k and t are skew-symmetric and satisfy the following properties:

E*X = —X — shX, (2.6)
t2¢ = —€ — hsé, (2.7)
ks& + st€ =0, (2.8)
hkX +thX =0, (2.9)
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9(hX,§) = —g(X, s§) (2.10)
for all X € TM and all £ € T-M [17].

2.2. Generalized Sasakian space forms. Let M2+l = M(cp,{,n,@ be an al-
most contact metric manifold with almost contact metric structure (¢, &, 7,9). The
notion of a generalized Sasakian space form is introduced by Alegre, Blair and Car-
riazo in [I]. The manifold M2+ = M(y,£,7,9) is called a generalized Sasakian

space form if its curvature tensor R is given by

R(X,)Y)Z = fi{g(V,Z2)X —g9(X,Z)Y}
+f{9(X,02)pY — g(Y,0Z)pX +29(X, oY )pZ}

+ fs{n(X)n(2)Y =n(Y)n(2) X +g(X, Z)n (V)€ —g(Y, Z)n(X) &} (2.11)

for certain differentiable functions f1, f2 and f3 on M2+t [1]. The typical examples
of generalized Sasakian space forms with constant functions are a Sasakian space
form (f1 = <2, fo = f3 = <) [2], a Kenmotsu space form (f; = <32, fo = f3 = <)
[9], a cosymplectic space form (f1 = fo=f3= i) [13].

Let (M, g) be a submanifold of an almost contact metric manifold M?"*1. Let
X € TM and ¥ € T+M. The decompositions of ¢ X and ¢ into tangent and
normal components can be written as

X = PX + NX and @9 =t + sv, (2.12)

where P: TM — TM, N : TM — T+M, t:T+*M — TM, and s : T+-M —
T+M are (1,1)-tensor fields. A submanifold M of a generalized Sasakian space form

M* L s called anti-invariant (vesp. invariant) if P (resp.N ) vanishes identically.
Moreover, it is known that ¢ (TxM) C TxM for all X € M, then M is anti-
invariant [10], [20]. A submanifold M of a Sasakian space form N2 is called an
integral submanifold if n(X) = 0 for any vector field X tangent to M [2].

3. f—BIMINIMAL SUBMANIFOLDS OF GENERALIZED COMPLEX SPACE FORMS

Let N (o, ) be a generalized complex space form and M™ an n < 4-dimensional
submanifold of N(a, 8) and denote by B, A, H, V* and At | the second funda-
mental form, the shape operator, the mean curvature vector field, the connection
and the Laplacian in normal bundle, respectively.

We have the following theorem:

Theorem 3.1. Let M"™ be a submanifold of a generalized complex space form
N(a, B). The submanifold i : M™ — N(a, 3) is f-biminimal if and only if

A
— AYH +traceB(., Ay.) —naH 4 38hsH — NH + —fHJrQV;‘mdlan =0. (3.1)

f
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Proof. Let {e;}, 1 <i <n be alocal geodesic orthonormal frame at p € M. From
[5], [6] and [16], it is clear that the normal parts of the tension field, the bitension
field and f-bitension field of ¢ are

[r(i)]" = nH, (3.2)
n 1
[r2(i)]" =n{ —ATH + traceB(., Ay.) + (Z RN(ei,H)eZ) (3.3)
i=1
and N
[ra @) = F (@ + AF @] +2 Vo r@)] - (39)
Using the equation (3.2)) into (1.2]), we can write
[Fr(@) = Flr(@)]" = fnH. (3.5)
From the equation (2.1)), after a straightforward computation, we have
n 1
(Z RN (e;, H)ei> = —anH + 33hsH. (3.6)
i=1
Then, putting the equation (3.6]) into equation (3.3), we can write
[r2()]" =n {~A*+H +traceB(.,Ay.) — anH + 38hsH } . (3.7
From the Weingarten formula, we have
%4 S (v mH| = nvi o H 3.8
grad fT(@) = |Vgrad f™ =M Vgraq 41 (3-8)

Putting the equations (3.2)), (3.7) and (3.8]) into (3.4]), we find
[7'27f(gp)]L =nf (—AYH + traceB(.,Ay.) — anH + 38hsH )

+nf (Af)H 420V, fH. (3.9)
Finally, substituting the equations (3.5 and (3.9) into the equation (|1.6)), we obtain
A
nf {ALH + traceB(., Ay.) — naH + 38hsH — \H + TfH + 2V;adlan} =0.
This completes the proof. [l
Corollary 3.1. Let M™ be a submanifold withn < 4 of a generalized complex space
form N(a, B).
1) M™ is an f-biminimal hypersurface if and only if
A
—ALYH + traceB(., Ag.) — <3a +36+ X — ff> H+ QV;ad mpH =0.
2) M™ is an f-biminimal complex surface if and only if

~AYH + traceB(., Ag.) — <2a +A- Aff) H+ ZV;adlan =0.
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3) M™ is an f-biminimal Lagrangian surface if and only if

A
7AJ-H +t7’CLC€B(.,AH.) — <20£ + 3ﬂ + )\ — ff> H —+ QV;adlan = 0

4) M™ is an f-biminimal curve if and only if

—ALYH + traceB(., Ag.) — <a + 368+ 3Bt 4+ ) — Aff> H+ 2V oanm s H = 0.
Proof. 1) Since M™ is a hypersurface, we have t = 0 and n = 3. By the use of
equation , we have ksH = —H. From Theorem we get the result.

2) Since M™ is a complex surface, we get k = 0, s = 0 and n = 2. Using Theorem
[3.1] we obtain the result.

3) Since M™ is a Lagrangian surface, we have k = 0, ¢ = 0 and n = 2. By the
use of equation , we have hsH = —H. From Theorem |3.1] we get the result.

4) Since M™ is a curve, we get k = 0 and n = 1. By the use of equation ,
we have hsH = — (H + t*H). Using Theorem 3.1} we obtain the result.

This completes the proof. ([l

As an immediate consequence of the above corollary for curves and complex or
Lagrangian surfaces with parallel mean curvature, we have:

Corollary 3.2. Let M™ be a submanifold with n < 4 of a generalized complex
space form N(a, ).

1) M™ is an f-biminimal complex surface with parallel mean curvature if and
only if

A
traceB(.,Ag.) = (2a + A= ff> H.
2) M™ is an f-biminimal Lagrangian surface with parallel mean curvature if and
only if

traceB(.,Ap.) = <2a+ 3+ — Af) H.

f
3) M™ is an f-biminimal curve with parallel mean curvature if and only if
Af 2
traceB(.,Ap.) = o+ A — 7 H+36(H+t°H).

Now, we have the following proposition for hypersurfaces with constant mean
curvature in a generalized complex space form N(a, ).

Proposition 3.1. Let M? be a hypersurface of a generalized complex space form
N(a, ) with non-zero constant mean curvature H. Then M3 is f-biminimal if and
only if
A
B> = 3a + 38 + A — Tf
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and the scalar curvature of M3 satisfies

A
ScalM:3a+36—)\+7f+9H2.

Proof. Assume that M?3 is a hypersurface, from Corollary M?3 is f-biminimal
if and only if
Af

_AJ-H +tTaC€B(.,AH.) — (3& + Sﬂ + )\ — f) H + QV;adlan = 0

Since M? has constant mean curvature, we can write
A
traceB(., Ag.) = <3a +38+ A — ff) H.
In addition, for hypersurfaces, it is clear that Ay = HA. Then, we get

H|B|? = <3a+3ﬂ+/\ Af) H.

f
Since H is a non-zero constant mean curvature, we get
|B|? = (3a+3ﬂ+>\— Aff) (3.10)
By the use of the Gauss equation, we obtain
Scaly = 23: g (RN (e, ¢5)ej, ;) +9H? — 1B (3.11)
i,j=1

where {e;}, 1 < ¢ < 3 be a local geodesic orthonormal frame at p € M. Using
equation ({2.1)), we can write

3 3
Z g (RN(ei’ej)ejaei) =« Z [g(ejvej)g(eiyei) - g(eivej)ﬂ
i,j=1 ,j=1

3
+8 Y [9(Tej e5)g(Tei,e) — g(Jei e5)g(Tej, ei) +29(JTej, e)g(Tej, e:)] -
inj=1
Hence, we find

23: g (RN(ei,ej)ej, ei) = 6a + 64. (3.12)
i,j=1
Finally, in view of equatiZ)ns (3.-10) and (3.12) into (3.11), we get
Scaly :304—1—36—)\—&-%—&-9]{2.
This proves the proposition. O

For Lagrangian surfaces of N(a, ), we can state the following proposition:
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Proposition 3.2. Let M? be a Lagrangian surface of N (o, 3) with non-zero con-
stant mean curvature H.
1) If M? is f-biminimal, then

(3.13)

200+ 38+ A — &L
0< | H|? gmf( 5 L.

2) Assume that [ is an eigenfunction of the Laplacian A corresponding to real
etgenvalue p. Hence the equality in occurs and M? is f-biminimal if and
only if M? is pseudo-umbilical and V-H = 0.

Proof. Let M? be a Lagrangian surface. From Corollary (3.1)), we have

A
— AYH + traceB(., Ag.) — <2a +38+A— ff> H+ 2Vg}adlan =0. (3.14)

Then taking the scalar product of equation (3.14]) with H, we find

—g(ATH, H)+g(trB(., A (), H)— (2a +38+ A Aff> 9UH, H)+29 (Viaara g H. H) = 0.

Since ||H|| is a constant, we have

_g(ALH,H) + [ Ag? = <2a+35+x— Aff) T

Using the Bochner formula, we get
2 A
HVLHH +lAr|? = <2a+3ﬂ+)\— ff) 1H|?. (3.15)

By the use of Cauchy-Schwarz inequality, we have |Ag|> > 2||H||*. Hence, we
find
Af 2 4 1|2 4
2a+36+)\77 |H|”>2||H|"+ |V H| >2|H|". (3.16)
Since ||H|| is a non-zero constant, we can write

2a+3ﬂ+)\—Aff>
5 .

0<|H|*< inf< (3.17)

Now, if f is an eigenfunction of the Laplacian A corresponding to the real eigenvalue

1, then % = 1. We can write

204+ 38+ A —p
j)? = (2SR, (3.18)
Assume that M? is f-biminimal. From 1) we obtain V- H = 0. In addition,
substituting the equation (3.18]) into (3.16]), we get

20438+ A — p)’

s = 23
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That is, M?2 is pseudo-umbilical. This completes the proof. O

Remark 1. Let M? be a Lagrangian surface of a generalized complex space form
N(a, 8) with non-zero constant mean curvature H.

Remark 3.1. 1) If inf (2a+36+)\— %) is non-positive then M? is not f-
biminimal.
2) Using the Proposition 3.8 in [18], we obtain that if inf (2a +35 — %) is non-

positive and \ > ‘20[ + 36— %‘ then M? is f-biminimal and not f-biharmonic.

For complex surfaces of N(«, ), we can state the following proposition:

Proposition 3.3. Let M? be a complex surface of the generalized complex space
form N(«a, 8) with non-zero constant mean curvature H.
1) If M? is f-biminimal, then

(3.19)

) 204+ A — &L
0<|H|? <inf | ——— 1.

2

2) Assume that f is an eigenfunction of the Laplacian A corresponding to real
eigenvalue p. Hence the equality in occurs and M? is f-biminimal if and
only if M? is pseudo-umbilical and V-H = 0.

Proof. By the same method in the proof of Proposition (3.2)), we get the result. O

Remark 3.2. Let M? be a complex surface of the generalized complex space form
N(a, B) with non-zero constant mean curvature H.

1) If inf (2a + A= %) is non-positive then M? is not f-biminimal.

2) Using the Proposition 3.9 in [18], we obtain that if inf (2a — %) s non-

positive and \ > ‘2a — %‘ then M? is f-biminimal and not f-biharmonic.

4. f—BIMINIMAL SUBMANIFOLDS OF GENERALIZED SASAKIAN SPACE FORMS

Let M2+ = M(yp,£,7m,G) be a generalized Sasakian space form and (M™, g) an
n-dimensional submanifold of M2"+! and denote by B, A, H, V* and AL | the
second fundamental form, the shape operator, the mean curvature vector field, the
connection and the Laplacian in normal bundle, respectively.

We have the following theorem:

Theorem 4.1. Let M™ be a submanifold of a generalized Sasakian space form
M2+ The submanifold i : M™ — M?"*1 is f-biminimal if and only if
Af

—ALYH + traceB(., Ag.) — (nfl +A- f) H+3f,NtH + f3 |72 H
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+nfan (H) €5 42V gaam (H = 0. (4.1)

Proof. Let {e;}, 1 <i <n be alocal geodesic orthonormal frame at p € M. From
the equation (2.11)), after a straightforward computation, we have

R(ei, H)e; = — fig(es, e)H — 3f23(H, pe;) pe;
+ fa [n(e0)” H —n(H)n(e:) e + Gles,en (H) €] (4:2)
Using the equation (2.12)), we obtain

> R(ei,H)e; = —nfiH + 3fy [PtH + NtH]
i=1
+ 3 |77 H = (H) € +nn (H)g]. (4.3)
Hence, we have
n 1
(Z R(es, H)ei> = —nfiH +3fs (NtH) + f3 [\ST PH+nn(H) . (4.4)
i=1
Then, putting the equation (4.4]) into equation (3.3)), we can write
[ra()]" = n{-AYH +traceB(., Ap.) — nfiH + 3f> (NtH)

+ f |I€71P H () €]} (4.5)
Putting the equations (3.2)), (3.8) and (4.5)) into (3.4]), we find
[7'27f(go)]L =nf (=A H +traceB(.,Ay.) —nfiH + 3f> (NtH))

() fo €1 H +nn () €| +nf (Af) H 4 20Vua (H. (46)
Finally, substituting equations (3.5) and (4.6) into equation (|1.6), we obtain
A
nf {—ALH + traceB(., Ag.) — (nfl + A - ff> H+3f,(NtH)
S [J€T H 4 mn (H) €] + 2V i H } = 0.
This completes the proof. ([

Corollary 4.1. Let M™ be a submanifold of a generalized Sasakian space form
M2ntl

1) If M™ is invariant, then M™ is f-biminimal if and only if

A
—ATH +traceB(., Ay.) + 2V§radlan = (nfl A= ff) o

~f3|€T P H —nfan (H) €.
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2) If € is normal to M™, then M™ is f-biminimal if and only if

—ALYH + traceB(., Ag.) + QV;adlan = <nf1 N - Aff> H
~3f,NtH — nfsn (H)E,
3) If £ is tangent to M™, then M™ is f-biminimal if and only if
Af

—ATH +traceB(., Ay.) + QV;adlan = <nf1 —f3+A— f) H —-3f;NtH.

4) If M?™ is a hypersurface, then M?" is f-biminimal if and only if

A
~AYH + traceB(., Ap.) —|—2V;&dlan = <2nf1 +3fs4+ N — ff) H

—(3fo+2nf3)n(H)E — f3 €7 H.

Proof. 1) Assume that M™ is invariant, then we have N = 0. From Theorem {4.1}
we obtain the result.

2) If £ is normal to M™, then M" is anti-invariant, £ = ¢ and €7 = 0. From
Theorem we obtain this case.

3) If £ is tangent to M™, then £ = 0 and ¢7 = ¢ and |¢| = 1. From Theorem
[41] we find this case.

4) Assume that M?" is a hypersurface. Hence, we have ¢(H) is tangent and
sH = 0. Then, we obtain —H + n(H)¢{ = PtH 4+ NtH. Hence comparing the
tangential and normal parts, NtH = —H + n (H) ¢t and PtH =g (H)&™ which
gives the result. 0

Proposition 4.1. Let M?" be a hypersurface of a generalized Sasakian space form

M2+ with non-zero constant mean curvature H such that £ is tangent to M?".
Then M?" is f-biminimal if and only if

A
I1BI? =20f1 4 3%~ fatr - =
and the scalar curvature of M>" satisfies
A
Scalyr = 2n(2n — 2)f1 +6(n —1) fo — (4n — 3) f3 — A+ 4n*H? + ff.

Proof. Suppose that M2 is a hypersurface, from Corollary M?" is f-biminimal
if and only if

_AJ-H+traceB(.,AH.) —|—2V2_‘radlnf]—[ = (anl +3fa+ A — Aff> H

— (3fa+2nfs)n (H) & — f5|€T]° H.
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Since M?" has constant mean curvature, we can write
A
raceB( ) = (205 4352 0= ) 1 - 0 4 )y )€ — o 67

Using Lemma 4.4 in [I7], we have Pt = 0 and Nt = —I. Suppose that £ is tangent
to M?" then it is known that £~ = 0, €T = ¢ and |¢| = 1. Hence,

traceB(., An.) = <2nf1 +3fa—fa+A- Aff> H.

In addition, H is a non-zero constant and it is clear that Ay = HA for hypersur-
faces. Then, we get

A
I1BI* = <2nf1+3f2—f3+>\—ff). (4.7)
Using the Gauss equation, we obtain
2n
Scaly = Z g (E(ei,ej)ej,ei> + (2n)2H? — ||B|? (4.8)
i,j=1

where {e;}, 1 < i < 2n be a local geodesic orthonormal frame at p € M. By the
use of equation (2.11)), we obtain

2n 2n
Z §(RN(€i,€j)€j,€i) =f Z [g(ejvej)§(€i7€i) _g(eiaej)Q]
i,j=1 ij=1
2n
+f2 Y [Glei pe)dlpes, i) — Glej, pe;)g(wei e:) + 25 (e, e;)a( e, €)]
ij=1
2n

+fs > (e n(e;)gley,e) —n(e;)n(e;) gles )
3,j=1
+ g(eise5)n (ei) n(ej) — glej, e5)n (ei) n (ed)] .
Hence, we find

2n

Z g (RN (e e5)eje5) =2n(2n—1) f1 +3(2n—1) fo+ f3 (2—4n).  (4.9)

i,j=1
Finally, in view of equations (4.7) and (4.9) into (4.8)), we get
Af

ScalM:2n(2n—2)f1—|—6(n—1)f2—f3(4n—3)—)\+4n2H2+7.

This proves the proposition. [
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Remark 4.1. Let M?" be a constant mean curvature hypersurface of generalized
Sasakian space form M2+ ith tangent &.

1) If the functions fi, fa, f3 satisfy the inequality 2nfi; + 3fa — fs + A < % on
M then M is not f-biminimal.

2) Using the Corollary 3.18 in [18], we obtain that if 2nf1 + 3fs — f3 — % <0

and A > |2nf1 + 3fo — f3 — % then M is f-biminimal and not f-biharmonic.

5. f—BIMINIMAL INTEGRAL SUBMANIFOLDS OF SASAKIAN SPACE FORMS

In the present section, we consider f-biminimal integral submanifolds in Sasakian
space forms and give an example. Now, we have the following theorem:
Theorem 5.1. Let M™ be a submanifold of a Sasakian space form N?"T1. The
integral submanifold i : M™ — N2"t1 is f-biminimal if and only if

A
~AYH +traceB(., Ay.) — <nf1 + A= ff) H+3fH + ZV;adlan =0.

Proof. Using the Theorem and definition of integral submanifold, we obtain the
desired result. O

To obtain an example of f-biminimal integral submanifolds, similar to the proof
of Theorem 4.1, Remark 4.2 and Theorem 4.3 in [6], we state the following Theorem

Remark [5.1] and Theorem

Theorem 5.2. Let (N*"*1 . & n,9) be a strictly regular Sasakian space form
with constant p-sectional curvature ¢ and i : M — N an r-dimensional integral
submanifold of N, 1 <r <n. Consider

F:M=IxM—N , F(tp)=¢/(p)=o,(t),
where I = S' or I = R and {¢,},c; is the flow of the vector field §. Then F :
]\7,5 =dt?> +i*g) — N is a Riemannian immersion [6]. Then M is f-biminimal

if and only if M is a f-biminimal submanifold of N, where f : M — R is a
differentiable function.

Proof. By [6], we have

T(F)p) = (doy), 7(i) (5.1)
and
T2(F)(tp) = (dy), T2(7). (5.2)
Let 0 € C(F~1(TN)) be a section in F~1(T'N) defined by
O(t,p) = (d¢t)p (Zp)a (5.3)

where Z is a vector field along M. Then we have

(V%0) o = (d), (VXZ) . VX € O(TM), (5.4)
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where V¥ is the pull-back connection determined by the Levi-Civita connection on
N (see [6]). Using the equations (5.1]) and (5.4)), we calculate

ViorarT(E) = Viragr (400, 7))

= (dd)t)p V_f]radfT(i)' (55)
In view of the equations (5.1, (5.2) and (5.5 into the equation ([2.3)), we get
1 .
(72,1 (F) ey ] = (dey),, [T2,5 (D)) - (5.6)
Using the equations (5.1)) in (1.2), we obtain
1 .
[T (F) ] = (doy), [rs(D)] (5.7)

By the use of the equations (5.6)), (5.7]) in (1.6]), we find
1 1L
[roa s (F) el = [20(F)em] ™ = A rp(F) )

= (ds), {[r2 O] =A@ } = (o), [raa s D]
This completes the proof. (I

By the use of f-biminimality of F' and Fubini Theorem, we have

Remark 5.1. Let (N?"*1 o & 1, 9) be a compact strictly reqular Sasakian manifold
and G : M — N be an arbitrary smooth map from a compact Riemannian manifold
M. If F is f-biminimal, then G is f-biminimal, where
F:M=S'xM—=N , F(tp)=6(G0).
Using the above remark, we can state the following theorem:

Theorem 5.3. Let N*" ! (¢) be a Sasakian space form with constant ¢-sectional
curvature ¢ and M? a surface of N?"*1(c) invariant under the flow-action of the
characteristic vector field &. Then M is f-biminimal if and only if, locally, it is
given by F(t,s) = ¢,(v(s)), where v is a f-biminimal Legendre curve.

In [7], it is given by an example of f-biminimal Legendre curve in R®(—3) :
Example 5.1. ([7]) Let us take y(t) = (sin 2t, — cos 2¢,0,0,1) in R3(—3). The curve
v is an f-biminimal Legendre curve with osculating order r = 2, ky = 2, f = e,
T L Es. The curve v is not f-biharmonic. For A # —4, it is easy to see that v is
not biminimal.

Using Example and Theorem [5.3] we can give the following example of f-
biminimal surfaces:

Example 5.2. Let M2 be a surface of R®(—3) endowed with its canonical Sasakian
structure which is invariant under the flow-action of the characteristic vector field
& If v is a Legendre curve given in Example and locally, M? s given by
F(t,s) = ¢.(v(s)), then M? is f-biminimal. Since 7y is not f-biharmonic, M? is
not f-biharmonic.
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