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Abstract 

In this study, the fractional Sine-Gordon (SG) equations (time-fractional, space-fractional and time-

space- fractional) are solved using Homotopy Perturbation Method (HPM). The crucial point is the 

attained remarkable result from these solutions. While the solutions of classical and time-fractional SG 

equations are kink of type (Although of being the same type, they are different from each other), 

solution of the space-fractional SG equation is breather of type i.e., different types of soliton solutions 

are obtained using similar initial conditions for time and space fractional SG equation. Also these results 

show that some events such as vortex-antivortex couples in a Josephson junction or losses in signal 

dispersion of fiber optics communication can be modelled by fractional SG equations. In other words, 

this study may be very important for bringing to light the real behaviour of physical systems which have 

usually been described by classical SG equation. Because some physical events such as the memory 

effects of non-Markovian processes, the effects of non-Gaussian distribution, interactions between the 

systems and environment and some physical losses in the systems which are neglected in classical SG 

equation can be taken into account with fractional SG equations. 

 

Reel Mertebeli Sine-Gordon Denklemlerinin Yaklaşık Soliton Çözümleri  

Anahtar kelimeler 

Caputo kesirsel türev 

operatörü; HPM; SG 

denklemi; kesirli lineer 

olmayan denklemler 

Özet 

Bu çalışmada kesirli Sine-Gordon denklemleri (zaman-kesirli, uzay-kesirli ve zaman-uzay-kesirli) 

homotopy pertürbasyon metodu (HPM) kullanılarak çözülmüştür. Bu çözümlerden dikkat çekici sonuçlar 

elde edilmiştir. Klasik ve zaman-kesirli SG denklemlerinin çözümü kink tipi iken (aynı tipte olmalarına 

rağmen, birbirlerinden farklıdır), uzay-kesirli SG denkleminin çözümü breather tiptir; başka bir ifadeyle 

zaman ve uzay kesirli SG denklemi için benzer başlangıç koşulları kullanıldığında farklı tip soliton 

çözümleri elde edilmiştir. Ayrıca bu sonuçlar josephson eklemlerindeki vorteks-antivorteks çifleri veya 

fiber optik iletişimde sinyal dağılımındaki kayıplar gibi bazı olayları kesirli SG denklemleri ile 

modelleyebileceğini göstermiştir. Diğer bir deyişle, bu çalışma genellikle klasik SG denklemleri ile 

tanımlanan fiziksel sistemlerin gerçek davranışlarına ışık tutabilir. Çünkü Markovian olmayan süreçlerin 

bellek etkileri,  Gaussian olmayan dağılımların etkileri, sistem ile dış çevre arasındaki etkileşmeler ve 

klasik SG denkleminin ihmal ettiği sistemler içerisindeki bazı fiziksel kayıplar gibi bazı fiziksel olaylar 

kesirli SG denklemleri ile hesaba katılabilir.   

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

The classical SG equation being a nonlinear partial 
differential equation has firstly been created by 
Edmond Bourin during the study of negative but 

constant Gaussian curvature 1K    surface in 

1862 (Bracken 2011). Later in 1939 the dislocation 
of similar atoms in a chain was defined using this 
equation (Frenkel et al. 1939). Its importance 
greatly increased when kink and anti-kink 
solutions possessing the collisional properties of 
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solitons were found (Int sour. 1). The classical SG 
equation is also used in a number of other 
physical applications. Among these are the motion 
of a rigid pendulum attached to a stretched wire 
Jin (2009); Wazwaz (2012), the dynamical 
properties of DNA molecules Wazwaz (2012), the 
stimulation of phonon modes Aktosun et al. 
(2010), the signal dispersion in fiber optics for 
long-distance communications (Int sour. 2) and 
the phase difference across a long Josephson 
junction carrying a current infinitely under any 
applied voltage through two superconductors 
separated by an insulator layer Derks et al. (2003). 
The classical SG equation in normalized units is 
Kaya (2003); Batiha et al. (2007) 

2 2

2 2
sin 0

u u
u

t x

 
  

 
                                                  (1)                                                                                                                                

for  ,u u x t . 

The classical SG equation description of 
behaviours occurring in physical systems is 
considered to be of superficial form; because this 
equation is somehow an idealization and 
therefore cannot bear in itself some processes 
occurring in nature, due to the complexity of real 
phenomena. This is so, since all quantum systems 
always interact with their surroundings and hence 
are open. Also, strong interactions between 
particles in the systems, the effects of the 
fractallity (fractal nature of space where 
occurrence of physical events are realized) and 
memory effects of non-Markovian processes lead 
to dissipation and quantum decoherence due to 
the transition of information, energy and particles 
flows. All of these effects cause irreversibility, 
non-conservation, in-homogeneousness and non-
unitarity in systems.  

  

Considering these facts, many scientists, who are 
in different fields such as physics, mathematics, 
economy…, have been started to work out on 
fractional linear and nonlinear differential 
equations. Especially, in physics fractional 
equations with fractional derivative and integral 
operators have been used for explaining the cases 
where the laws of classical physics are inadequate 
(Tsallis 1988; Tarasov 2005; Metzler et al. 2000) 
and some physical events such as memory effects 
can be better described with fractional operator 

(Akgul et al. 2015). Therefore, in this study we 
intend to consider the generalized SG equations 
with fractional differo-integral operators and to 
numerically solve them using HPM, carrying the 
hope that we can find solutions with some 
interesting properties corresponding to real 
behaviours. Also this study has attempted to shed 
light on the important issue of solid state physics 
such as optical fiber communication and 
Josephson junction (Ray 2015). These two physical 
systems have got soliton behaviour and all losses 
in these systems can be explained with fractional 
SG equation. There are a few of studies about 
numerical solution of fractional Sine –Goedon 
equation with using different method (Akgul et al. 
2016; Yousef et al. 2016; Pandir 2016) and to our 
knowledge there isn’t any study about space- 
time- fractional SG equation in the literature. Here 
different initial conditions, which were not used 
previously in the literature, were used for solving 
these SG equations. Also, since we are going to 
consider here the fractional SG equations we have 
to use different definition of sine function which is 
created by fractional numbers. We think that this 
paper would make an important contribution to 
the literature because of these new 
approximations and interesting results. Some 
general information is given for using in the 
solution phase as follows. 

 
2. Materials and Methods 

2.1. Basic definitions for fractional calculus 

There are several derivative and integral operator 
definitions which are used for fractional calculus 
such as Riemann-Liouville, Caputo and Grünwald-
Letnikov (Podlubny 1999). Caputo’s definition is 
the most successful one in expressing the real 
world phenomena (Ateş 2010). Also it reduces to 
the ordinary derivative operator for integer-order 
values of the fractional parameter and allows us 
to take the initial and boundary conditions in the 
same form used in integer order differential 
equations (Podlubny 1999). The temporal Caputo 
fractional derivative operator is expressed in the 
following form (Podlubny 1999; Miller et al. 1993; 
Oldham et al. 1974; Caputo 1967).  
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We shall also utilize the following equations 
during our calculations (Podlubny 1999; Miller et 
al. 1993; Oldham et al. 1974; Caputo 1967). 

   D J f x f x
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2.2. Fractional SG equations 

Below we present time-fractional, space-fractional 
and time-space-fractional SG equations, written 
using Caputo definition, respectively  

 
2

0 2
sin 0

t

u
D u u

x

 
  


,       0 2                  (2a)                                                                                                                                                                                  
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D u u
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,       0 2                   (2b)                                                                                                                                 

0
sin 0

t x
D u D u u

 
   , 0 2  , 0 2  .     (2c)                                                                               

The memory effects, the strong interactions 
between particles and some restrictions about 
physical systems can be taken into account with 
the time-fractional SG equation; whereas the 
fractallity of the space can be taken into account 
with the space-fractional SG equation and all of 
the above mentioned phenomena can clearly be 
taken into account with the time-space-fractional 
SG equation. 

2.3. Homotopy perturbation method 

HPM is a powerful method for solving all of 
classical or fractional ordinary and partial 
differential equations easily (He 2000; El-Shahed 

2005; He 2004; He 2005; Momani et al. 2007). Actually 
HPM gives only an approximate solution, not an 
exact one. In this method, in solving the target 

differential equation, a guess initial solution is 
suggested and the final solution is obtained using 
this guess initial solution with a number of 
perturbative operations. Our fractional nonlinear 
partial differential equations will be solved with 
this method; therefore basic information about 
how to solve a nonlinear equation with HPM is 
given here. Firstly consider the following 
differential equation 

   , 0A f x t  
                                                   (3) 

                                                                                                                                    
which satisfies the boundary condition 

 
 

0.
,

, ,
x t

B x t
t


 

 
 

 
 

Where  A   is a non-linear partial differential 

equation,  ,x t  is the unknown function 

depending on the independent variables x and t. B 
is the boundary operator and f (x, t) is a known 

constant or function
 
 A  can be divided into two 

parts which include the linear  L   and nonlinear  

 N  terms. Therefore Eq. (3) can be written as  

  
     , 0L N f x t    .                                                    

According to the definitions of HPM, a homotopy 
function is constructed as 

   ( , ), : 0,1 Rr t p       satisfying the 

following equations. 

           0, 1 ,H p p L L p A f x t                
          0 0

, 0L L pL p N f x t           (4)                                                                      

where p  is a parameter changing from 0 to 1. 0  

is the initial guess solution of  Eq.(3) and 
0 0
   is 

generally accepted. In general, the approximate 
solution function depends on time and space (only 
x  as considered in this paper). The solution of the 

differential equation changes from 0 0   to 

 ,x t  when p  changes from 0 to 1. 

Additionally, this initial guess solution must satisfy 
the boundary conditions of Eq. (3). 
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The final solution can be written as a Taylor series 
according to the powers of p : 

2
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

      .                       (5)                                                                                                                                     

This expression is substituted in Eq. (4) and the 

solution functions i  are found according to the 

powers of p . Then substituting 1  for p , the 

approximate solution is obtained. 

 

 

3. The Numerical Solutions of Fractional SG 

Equations  

 

There are a few studies on time fractional and 

space fractional SG equations. Only  terms 

in the Taylor series of sine function which is 
created by integer 

number
 

 
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 
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 
 
 

 are taken to solve 

time fractional SG equation with Caputo fractional 
derivative operator for different initial conditions 
(Elsaid et al. 2012). At this study and other studies 

Lu (2009); Jin (2009) consider the Taylor series 
expansion of sin( )u  to obtain the approximate 

solution. The other studies have been done on the 
space fractional SG equation with Riesz fractional 
derivative operator using modified decomposition 
method with Fourier transform Int sour.4; Miskinis 
(2005); Saha Ray (2016) or using fractional Euler-
Lagrange equations (Nasrolahpour 2013) and 
reproducing kernel method (Akgul 2016). Almost 
similar results were obtained in most of these 
studies. To our knowledge there isn’t any study 
about space-time- fractional SG equation in the 
literature and here different initial conditions, 
which were not used previously in the literature, 
were used for solving these SG equations.  Also, 
since we are going to consider here the fractional 
SG equations we have to use the following 
definition of sine function which is created by 
fractional numbers in Eq. (6). 
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    (6)                                                                                        
 

 
3.1. Time-fractional SG Equation 
 
Contrary to the above mentioned Ref Elsaid et al. 
(2012) we are going to consider the term of Taylor 
series of sine function up to 14th degree. The 
solution of time fractional was obtained for 2, 4, 6, 
8, 10, 12 and 14th terms of Taylor series of sine 
function, respectively. Under the approximation 
which is given in Eq. (6), the time fractional SG 
equation becomes 

 

2 2

0 2
0

2!
t

u u
D u i

x

 
 



                                              (7a)                                                                                                                    

 

. 

. 

. 

2 2 4 6 8 10 12 14

0 2
2! 4! 6! 8! 10! 12! 14!

0
t

u u u u u u u u
D u i i i i i i i

x

 


       

     
(7g) 

Its solution obtained by second order HPM, 

with  0 0
,0 4arctan e

x

ku u x    . Here not all of 

the numerical and graphical results for the above 
equations are given. Only approximate solution is 
given for 4th terms of sine function as following.    
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  is the gamma function. u(x,t) is evidently 
complex. 

The probability density graphs belonging to the 
above kink of type solution are given in Fig.1 
versus x  and t  for different values of   and 

0.8k  .The graphs in Fig. 1 break down at the 
same position as time progresses. So it can be 
thought that the system is non-conserved, 
irreversible and inhomogeneous and possess non-
Gaussian distributions for non-integer   values. 
However as   approaches 2  the situation 
changes and a Gaussian probability density 
appears again. 

 
 
Fig. 1. The probability density of solution of time-
fractional SG equation for 4th term of sine function 

with initial condition 
0 0

4arctan e

x

ku     for  

(a) 1.9  , (b) 1.8  , (c) 1.6   and (d) 1.2  . 

Kink of type solution is obtained for Eqs. (7a-7g). 
As the number of the Taylor expansion terms 
lowers distortions in the figure become more and 
more and as the number of the terms increases 
the difference between the solutions becomes 
less and finally almost vanishes (Fig. 2). 

 

Fig. 2. The  probability density of solution for (a) 
 with 14th terms (b)  with 10th 

terms  (c)  with 14th terms (d)  

with 10th terms depending on  x and t. 
 

Time fractional SG equation approaches the 
classical SG equation and, it was observed that 
the  dependence of solution is almost eliminated 

for higher terms. The solution moves away from 
the classical one for the lowest valued parameter 

=1.2 for all terms.  

 

For comparison we have to consider the solution 
of classical SG equation and the graph of mod 
square of u(x,t) versus x and t. Under the 
approximation about sine function with Taylor 
series expanded, the classical SG equation takes 
the form 

2 2 3

2 2
0

3!
.

u u u
u

t x

 
   

 
 

The solution is going to be obtained with second 
order HPM using the initial guess solution as 

 0 0
,0 arctan e

x

ku u x     which comes from 

the kink soliton solution of classical SG equation 

by taking the initial position 0
0x   and 

2
1k c  , with c  the propagation of soliton (Int 

sour. 1) The approximate solution is                          
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These extra terms are due to the consideration of 
the last term. The probability density graph 
belonging to this solution is shown in Fig.3 for 

0.8k  , depending on both x  and t .  

 

Fig. 3. Graph of probability density of classical SG 
equation solution depending on x and t. 

The most striking aspect of nonlinear differential 
equations is that they have solutions which show 
different behaviours under different initial 
conditions and parameter values. Here kink of 
type solution is obtained depending on the chosen 
initial guess solution. It does not seem a disorder 
at the graph in Fig.3 as time progresses. In other 
words, when the time changes, there is no 
variation of probability density for the same 
position. It may suggest that this system is 
conserved, reversible and homogenous and is 
expected since all losses in the system and 
interactions with environment have been 
neglected. The system described by the integer 
derivatives is local in the vicinity of any point in 
space and time, i.e., the system is described in a 
rough draft way. Also we have done the 
calculations up to 15th power and see no 
difference between the two results. 

 

Fig.4a and 4b depict the probability density 
function against the fractional order 

parameter for Eq.(7b) and Eq.(7g), respectively. 
0.5t   and 1x   are assumed for the numerical 

representations. A nearly exponential behaviour is 
observed from Fig. 4a. Here the probability of 
occurrence of physical events is higher always and 
decreases as   increases and tends almost to 
zero in the vicinity of 2  . Fig. 4b belongs to the 
14th order solution and shows clearly that  

dependence of solution disappears at higher 
orders. 

 
 
Fig. 4. The graphical representation of variation of 
|u|2 against α for (a) 4th terms, (b) 14th terms of 
Taylor series of sine function. 

In fact, the real systems are always under some 
interactions, restrictions and enforcement due to 
the flow of information and energy with their 
environment. These cause such systems to be 
excited, complex and random. Moreover for 
realistic systems there are flows of information 
from the environment back to the system. That is 
the earlier states of any system affect its future 
states; in other words, the future and past of the 
system are interdependent. This is the realization 
of memory effects. Hence such systems, open 
systems can be defined only with stochastic 
(probability) processes. On the other hand 
classical SG equation does not include memory 
effects since it describes the system at a specific 
time t. This means that many physical phenomena 
are neglected and the system is in a steady state. 
Any open system only reaches a steady state 
when all losses of information and energy come to 
an end. Combining the obtained results we 
conclude that time-fractional SG equation is 
suitable for representing the memory effects of 
non-Markovian processes. 

 

3.2. Space-fractional SG Equation 
 
The effects of space fractallity arising from the 
non-uniformity of particles density and scattering 
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between particles shows up itself in Eq.(2b). The 
space fractional SG equation was solved for 2, 4, 
6, 8, 10, 12 and 14th terms of Taylor series of sine 
function, respectively in this section. Under the 
approximation that we have followed up to, this 
equation takes the form   

 

2 2 4 6 14

2
0

2! 4! 6! 14!
x

u u u u u
D u i i i i

t


  


   
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The second order HPM solution of these 
equations was obtained starting with the initial 

condition  
0 0

0, 4 arctan e

t

ku u t    . Here only 

the numerical and graphical solutions of 4th terms 
of sine function are given. The numerical result is 
found as  
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The fractional parameter   which is of the order 

of space derivative operator is the same as the 
scale of fractal structure of space. It plays a 
fundamental role on the probability density versus 

x  and t , for 0.8k   (Fig.5). These graphs which 
are not complying with central limit theorem 
show that space fractional SG equation has non-
conserved and non-Gaussian distribution. 
However as   approaches 2, the system receives 

a nearly Gaussian distribution.  

 
 

Fig. 5. The graphs of probability density of ( , )u x t  

with 4th terms of sine function for (a) 1.9  ,              

(b) 1.8  ,    (c) 1.6   and (d) 1.2   

The graphical results for different terms of Taylor 
series of sine function show that solutions are 
nearly same. But there are some differences. 
Especially, the result is the same at =1.2 for all 

orders. All numerical and graphical results are not 
given in this paper because of they occupy a lot of 
space. To compare between the obtained 
solutions, some graphical results are given with 
fractional parameter   =1.2 and 1.9 for 10th and 

14th terms of sine function. 

 

Fig. 6. The  probability density of space- fractional 
SG equation solution for (a)  with 14th 

terms (b)  with 10th terms  (c)  

with 14th terms (d)  with 10th terms 

depending on  x and t. 

These obtained results are also supported by 
Fig.7a and 7b which depict the graphical 
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representation of probability density function 

versus the space- fractional parameter   for 4th 

terms and 10th terms of Taylor series, respectively. 

Here 1x   and 0.5t  .  The  dependence of 

mod square of u is the same graphically for all 
orders, but it varies as numerical value.   

 

Fig. 7. Graphical representation of probability of 
solution functions versus the space- fractional 
parameter   for (a) 4th terms, (b) 10th terms . 

Here x = 1 and t = 0.5 are taken. 

The crucial point is the attained remarkable result. 
While the solution of classical and time-fractional 
SG equation was kink of type, it is clearly seen 
from Figs. 5 and 6 that this time the solution is 
breather of type. Although kink of type soliton is a 
particle of type solution; breather of type soliton 
is a non-linear wave. Therefore kink and breather 
of type solutions are known as topological and 
non-topological solitons, respectively. While kink 
of type solution is non-localized, breather of type 
soliton is localized periodic solution. Actually, 
breather of type soliton corresponds to a collision 
of two different of type solitons; the kink-antikink 
solitons (Int sour. 3). By using this feature, some 
losses in physical systems can be explained; such 
as vortex-antivortex couples in a Josephson 
junction or scattering of signal flux and antiflux in 
a fiber optics system (Ivancevic Vladimir et al. 
2013). For these reasons this result may be 
important to explain some physical events.  

3.3. Time and Space-Fractional SG Equation 

Finally, let us consider Eq. (2c) under the 
approximation with 2, 4, 6, 8, 10, 12 and 14th 
terms of Taylor series of sine function, 
respectively. 
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 Only the first order HPM solution is taken for 

initial condition  0 0
,0 4arctan e

x

ku u x    in 

this case, because of the complex structure of the 
equation. The obtained approximate solution is 
given for the 4th terms of power series of sine 
function as following. 
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               (13)        

This example describes a real system with 
considering both non-Markovian and non-
Gaussian distribution effects. For a specific time 
value chosen as 0.1 , the plot of probability density 
of the above solution is shown in Fig.8 versus x . 
Here one clearly sees the non-Markovian and non-
Gaussian effects together since the curve 
represents both breather and kink of type 
solitons. Here 0.8k   is accepted for the graphical 
representations. 

 

 

Fig. 8. The graph of probability density of time and 
space -fractional SG equation versus x  at 0.1t  . 
Both of the breather and kink of type soliton 
characteristics are seen in the graph, clearly. 



 Approximate Soliton Solutions of Real Order Sine- Gordon Equations, Üzar 

423 

 

The difference in the space-time fractional SG 
equation for same parameter in all terms is very 
little. We can say that the order of power series of 
sine function does not affect the graphical 
solution. When the second-order HPM solutions 
carried out, the effect of the order of power series 
of sine function is not observed again. Only 
second order HPM solution gives the more detail 
result (Fig. 9).  

10 5 5 10

2

4

6

8

2

 

Fig. 9: The graph of probability density of space-
time- fractional SG equation with 6th order of 
Taylor series. 

 4. Conclusion 

In this study, the behaviours of some physical 
systems which have ordinarily been described by 
the SG equation are intended to be re-
investigated under conditions closer to the real 
world. These are the physical systems having 
memory effects of non-Markovian processes, 
strong interactions between particles of the 
systems and environment and some physical 
losses. This aim is tried to be realized by 
describing these systems with fractional SG 
equations. Time-, space- and time-space-fractional 
SG equations are all defined using Caputo 
derivative operator. Both the classical and 
fractional SG equations are solved using HPM for 
integer and fractional (up to 14th terms) Taylor 
series of sine function, respectively and the 
probability densities belonging to the obtained 
solution functions are plotted against time and 
space and also the fractional parameters. For the 
classical SG equation, the probability density 
graph has naturally the form of conserved 
probability density. This is consistent with the fact 
that classical SG equation describes homogeneous 
systems. The classical SG equation represents the 
instantaneous state of the system.  According to 

the obtained results when the numbers of terms 
of Taylor series increase, the difference between 
the obtained results steadily gets smaller. 
Especially, time- fractional SG equation 
approaches the classical SG equation and, it was 
observed that the  dependence of solution is 

almost eliminated. The solution moves away from 
the classical one for the lowest valued parameter 

=1.2 for all terms. The difference in the space-

time- fractional SG equation for same parameter 
in all terms is very little. 

 

However, as is clearly observed from the solutions 
of fractional SG equations, the probability 
densities of the solution functions are non-
Gaussian. This shows that the systems are 
inhomogeneous, irreversible and they bear non-
Markovian effects. Strong interactions between 
the particles in the systems, the system-
environment interaction, some physical losses 
such as friction and all-history of the systems give 
birth to such properties. Kink of type solution was 
obtained for both classical and time-fractional SG 
equations. But the results for time-fractional SG 
equations are different from that of classical one, 
depending on the fractional parameter α. The 
graphical representations show that when the 
fractional parameter gets closer to the integer 
values, the results tend nearly the same with the 
classical SG equation. The interesting result was 
achieved for space-fractional SG equation; 
because breather of type solution was obtained 
unlike the others. It means a coupled kink and 
antikink soliton. Kink of type soliton is non-
localized and particle of type. Consideration of 
space-fractional derivative operator in SG 
equation transforms the structure type of the 
solution from a non-localized particle to a 
localized non-linear wave. Thus losses at signal 
dispersion in the fiber optics may be explained 
with this approximation. Also when the order of 
Taylor series of sine function increases the result 
is the same as classical one. Dependence of 
fractional parameter disappears for time-
fractional SG equation. 
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