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Abstract: In this paper, we investigated Hamiltonian properties of fractal honeycomb meshes which 

are created in two different ways using 2-bit gray code. We presented the structure of honeycomb 

meshes and examined the fractal properties of them and got perfect matching of labeling of nodes in 

Fractal Honeycomb Meshes for any dimension. 
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1. Introduction 

Network topology is an illustration of nodes and their connections. There are different types of 

network topologies and bus, ring, star, tree, mesh, tori and hypercube topologies are the most 

commonly known network topologies. In this paper, we used honeycomb pattern to construct network 

topology in fractal-like structure with two variants of honeycomb meshes and examined their 

Hamilton properties.  

Honeycomb pattern is inspired from nature and it has rigid, strong and lightweight structure. The 

armadillos’ shells, marine skeletons, insect eyes and, certainly, the wax cells built by bees are just a 

few examples of nature’s honeycombs. Scientist have known the strengths of honeycomb from before, 

studied on its structural properties from the early 20th century (Hales T. C., 2001) and recent years it 

is used in different applications such as cellular phone station positioning (Nocetti F. G., Stojmenovic 

I., Zhang J., 2002), design and use of multiprocessor interconnection networks(Carle J., Myoupo J. F., 

Seme D., 1999; Manuel P., Rajan B., Rajasingh I., M C. M., 2008), computer graphics (Lester L. N., 

Sandor J., 1985), modelling chemical structures in chemistry (Rajan B., William A., Grigorious C., 

Stephen S., 2012), component structure for satellites (Boudjemai A., Amri R., Mankour A., Salem H., 

Bouanane M. H., Boutchicha D., 2012) and even in tissue engineering for heart (Engelmary G. C., 

Cheng M., Bettinger C. J., Borenstein J. T., Langer R., Freed L. E., 2008). Many authors have 

examined Hamilton properties in Honeycomb torus and meshes (Cho, H. J., Hsu, L. Y., 2003, Yang, 

X., Evans, D. J., Lai, H., Megson, G. M. 2004). Honeycomb network has fractal features and can be 

used for representing complex networks. 

Fractal has come from the word Latin frâctus, which means shattered or broken. A Polish 

mathematician Benoit Mandelbrot used the term "fractal" in 1975 for the first time (Mandelbrot B., 

2004). Patterns constructed with proportional reduction or enlargement of a shape are called fractal. 

One characteristic of the fractal is that the pattern in a small part is the same as the pattern in the entire 

shape. Even if it is repeated and seems like regular, it can be seen any kind of irregular or random 

things. The discovery of fractal geometry made it possible to mathematically investigate coarse 

irregularities in nature. In nature, the branching of tracheal tubes, the veins in a hand, a cumulus cloud, 

water swirling, the leaves in trees, the DNA molecule or the oxygen molecule are examples for fractal 

formation (Kluge T., 2000). Fractals are better to describe the real world than a traditional physics and 

mathematics, so, it is more and more used for the applications in art and science. Art (Joye Y., 2005), 
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astronomy, computer science (Keller J., Chen S., 1989; Karci A., Selçuk B., 2014), fluid mechanics, 

telecommunications, surface physics, medicine are some of the areas where fractal is used (Kluge T., 

2000).   

A graph 𝐺 = (𝑉, 𝐸) is geneally used to represent an interconnection networks where 𝑉 is a set of 

nodes and 𝐸 is a set of edges. A honeycomb graph has been used for constructing interconnection 

networks. It can be represented recursively. Each node in honeycomb graph can be labeled with 2-bit 

gray code and successive codewords are different from each other only in a one bit. 

There are different types of graph construct from fractals (Meier J., Reiter C. A., 1996; 

Warchalowski W., Krawczyk M. J., 2017; Fiala J., Hubička J., Long Y., Nešetřil J., 2017; Jaggard D. 

L., Bedrosian S. D., 1987; Montiel M. E., Aguado A. S., Zaluska E., 1995; Brown J. I., Hickman C. 

A., Nowakowski R. J., 2003; Ejov V., Filar J. A., Lucas S. K., Zograf P., 2007). Generating of 

hierarchical scale-free graphs from fractals is shown by Komjathy et al. in (Science N., Phenomena C., 

Komjáthy J., Simon K., 2011). In this paper, we constructed a honeycomb network topology from 

fractal structure and examined the Hamiltonian-like properties of this graph. 

We defined 2-bit gray code in the following table that is used in the rest of the paper; 

 

Table 1. 2-bit Gray Code. 
A B C D 

00 01 11 10 

 

Here, we investigated Hamilton properties of Fractal Honeycomb Meshes. The paper is organized 
as follows: Section 2 informs about variants of fractal honeycomb meshes. Hamilton properties of 

Fractal Honeycomb meshes are explained and two recursive algorithms are given in Section 3. These 

recursive algorithms are used for labeling the nodes of mesh structure is given in Section 2. In section 

4, the conclusion of this work is stated. 

 

2. Variants of Fractal Honeycomb Meshes 

Honeycomb Networks can be used for hierarchical fractal structure. In this section, we consider 

two variants of Fractal Honeycomb Meshes called FHC and FHCC. Both FHC and FHCC are suitable 

for creating this structure.  

Case 1: Constructing FHC hierarchical fractal, six hexagons are placed around central one for 1st 

order structure. For second order, around 1st order structure, six duplications are placed and similarly 

for third order, around 2nd order structure, six duplications are placed. 

 

 

(a)                          (b)                                          (c) 

  Figure 1. Fractal HC (a) 1st order (b) 2nd order (c)3rd order 
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Case 2: Constructing FHCC hierarchical fractal, four hexagons are placed without overlapping to 

form 1st order structure, two of these hexagons have two neighbor and other two hexagons have three 

neighbors. For second order, four 1st order structure FHCC and for third order, 2nd order structures are 

placed and similarly. 

 

  Figure 2. Fractal HCC (a) 1st order (b) 2nd order (c)3rd order 

 

3. Hamiltonian Properties of Fractal Honeycomb Meshes 

3.1. FHC Networks 

In this subsection, we introduce the construction of FHC(n) .The Fractal Honeycomb network 

FHC(0) is a hexagon. As shown in figure 3, we find two different labeling of FHC for 𝑛 = 0 choosing 

the starting node is D or B; 

FHC(0) = 𝐷 → 𝐶 → 𝐵 → 𝐴 → 𝐵 → 𝐶,FHC−1(0) = 𝐵 → 𝐴 → 𝐷 → 𝐶 → 𝐷 → 𝐴 

 

            

  (a)                           (b) 
Figure 3. (a) Labeling of FHC(0) (b) Labeling of FHC−1(0) 

On FHC(1), coordinates are𝑥, 𝑥′, 𝑦, 𝑦′, 𝑧, 𝑧′ coordinates can be seen in Figure 4 and according to 

these coordinates fractals are placed around central part that is origin as seen in the Figure 5. 

 

  

Figure 4. FHC coordinates 

 

We call origin, 𝑦, 𝑧, 𝑥, 𝑦′, 𝑧′ and 𝑥′ direction Part 0 (central part), Part I, Part II, Part III, Part IV, 

Part V and Part VI areas, respectively.  
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Figure 5. FHC coordinates and parts for placement of fractal 

In Figure 6, how a placement of FHC(0)  and FHC−1(0)  has done to construct FHC(1) and 

FHC−1(1) can be seen. 

                                                                

                                             (a)                  (b) 

Figure 6. (a) F1: main placement of FHC(1) (b) F1
-1: Inverse placement of FHC(1) 

As shown in Figure 7, we find two different labeling of FHC  for 𝑛 = 1  using FHC(0)  and 

FHC−1(0).  

 

         (a)                                   (b) 

Figure 7. (a) Labeling of FHC(1) (b) Labeling of FHC−1(1) 

On FHC(2), coordinates are 𝑥, 𝑥′, 𝑦, 𝑦′, 𝑧 and 𝑧′coordinates placed around central part that is origin 

as seen in the Figure 8.  

          

    Figure 8. Coordinates of FHC(2). Figure 9. (a) Placement of FHC(1)s to construct FHC(2). 

                                                                            (b) Placement of FHC(n-1)s to construct FHC(n). 
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Figure 10. Labeling of FHC(2). 

 

Coordinates of the fields change at one higher level. For F1, coordinates are in the original position. 

For F2, fields change one-step at counterclockwise, then for F3, coordinates return back to its original 

position. For F4, fields change one-step at clockwise, then for F5, coordinates return back to its original 

position. This coordinate changes repeats every four level. It starts with original position, then moves 

one step counterclockwise, then returns original position and moves one step clockwise. Figure 5, 

Figure 8, Figure 11 and Figure 12 shows the placement of fractals according to given coordinates.  

 

                

Figure 11. Coordinates of FHC(3).       Figure 12. Coordinates of FHC(4).       

 

Recursive Algorithm 1. (FHC) Firstly, we define FHC(0) = 𝐷 → 𝐶 → 𝐵 → 𝐴 → 𝐵 → 𝐶 , 

FHC−1(0) = 𝐵 → 𝐴 → 𝐷 → 𝐶 → 𝐷 → 𝐴.The following recursive algorithm is used for labeling the 

nodes of mesh structure FHC(n). 
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1. FHC(n, m)                                   // if m=-1, then we calculate 𝐹𝐻𝐶−1, if m=0, then we calculate 𝐹𝐻𝐶 

2.     if level is 1 

3.             if m!=-1                                                                                              // construction of 𝐹𝐻𝐶(1)  

4.       Copy FHC(0) to Part O, Part I and Part IV 

5.       Copy FHC-1(0) to Part II, Part III, Part V and Part VI 

6.              else                                                                                                 // construction of 𝐹𝐻𝐶−1(1) 

7.                  Copy FHC(0) to Part II, Part III, Part V and Part VI  

8.                  Copy FHC-1(0) to Part O, Part I and Part IV 

9.     else 

10.             if m!=-1                                                                                     // construction of 𝐹𝐻𝐶(𝑛 − 1) 

11.                 Call FHC for Part O with level n-1 

12.                 Call FHC-1 for Part II with level n-1          

13.         Copy Part O to Part I and Part IV 

14.         Copy Part II to Part III, Part V and Part VI 

15.             else                                                                                        // construction of 𝐹𝐻𝐶−1(𝑛 − 1) 

16.                 Call FHC for Part II with level n-1 

17.                 Call FHC-1 for Part O with level n-1          

18.         Copy Part II to Part III, Part V and Part VI 

19.         Copy Part O to Part I and Part IV 

20. end 

 

The time complexity of the recursive algorithm 1 on FHC(n) can be written as 𝑇(𝑛) =
2𝑇(𝑛 − 1) + 𝜃(1). Solving this recurrence relation, obtained running time of is 𝑇(𝑛) = 𝜃(2𝑛). 

 

3.2. FHCC Networks 

In this subsection, we introduced the construction of FHCC(n).The Fractal Honeycomb network 

FHC(0) is a hexagon. As shown in Figure 13, we found two different labeling of FHCC for 𝑛 = 0 

choosing the starting node is A or C; 

FHCC(0) = 𝐴 → 𝐵 → 𝐶 → 𝐷 → 𝐶 → 𝐵,FHCC−1(0) = 𝐶 → 𝐷 → 𝐴 → 𝐵 → 𝐴 → 𝐷 

On FHCC we used two different labeling for FHCC(0) and used these at FHCC(1). 

 
(a)           (b) 

Figure 13. (a) Labeling of FHCC(0) (b) Labeling of FHCC−1(0) 

When we are using FHCC(0) while constructing FHCC(1), we are duplicating them to other parts 

of FHCC(1). If FHCC(0) is the Part I and FHCC−1(0) is the Part II for FHCC(1), duplicate Part I to 

Part III and duplicate Part II to Part IV is the first step for constructing FHCC.  

The coordinates of FHCC is 𝑥, 𝑥′, 𝑦 and𝑦′ can be seen in Figure 14. 

 

Figure 14. Coordinates of FHCC 

The areas of FHCC according to coordinates as𝑥, 𝑥′, 𝑦 and𝑦′and as Part I, Part II, Part III and Part 

IV can be seen in Figure 15. 
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Figure 15. Areas of FHCC(1) (a) Coordinates (b) Parts. 

Labeling FHCC(1) is the base for fractal HCC algorithm and how is the labeling done is shown in 

the Figure 16. 

 
Figure 16. Labeling of FHCC(1) according to coordinates. 

As shown in Figure 17 we could get two different labeling of 𝐹𝐻𝐶𝐶 for 𝑛 = 1 using 𝐹𝐻𝐶𝐶(0) and 

𝐹𝐻𝐶𝐶−1(0) according to given algorithms for FHCC.  

 

(a)                                  (b)                              (c)  

Figure 17. (a) F1: main placement of FHCC(1) (b) F1
-1: Inverse placement of FHCC(1) 

                               (c) Fn: main placement of FHCC(n) 

Coordinates of FHCC have never been changed during the whole process. Parts for FHCC(2) and 

FHCC(3) are same with parts of FHCC(1). If Figure 18 is examined, it can be seen easily. 

 

     (a)                                           (b) 

Figure 18. Parts for level 2 and level 3 FHCC (a) FHCC(2) (b) FHCC(3). 

 

                    Figure 19. Labeling of FHCC(2).     Figure 20. Labeling of FHCC(3). 
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Recursive Algorithm 2.(FHCC) Firstly, we define FHCC(0) = 𝐴 → 𝐵 → 𝐶 → 𝐷 → 𝐶 → 𝐵 , 

FHCC−1(0) = 𝐶 → 𝐷 → 𝐴 → 𝐵 → 𝐴 → 𝐷.The following recursive algorithm is used for labeling the 

nodes of mesh structure FHCC(n). 

1. FHCC(n) 

2.     if level is 1 

3.           Copy FHCC(0) to Part I and Part III 

4.           Copy FHCC-1(0) to Part II and Part IV 

5.     else 

6.            Call FHCC for Part l with level n-1 

7.  Copy Part l to Part ll-Part lll-Part IV 

8. end 

 

In the above algorithm, it can be used by exchanging third and fourth lines. As a result, different 

labelling (reverse labelling) can be achieved in FHCC(n). 

Without loss of generality, the time complexity of the recursive algorithm 2 on FHCC(n) can be 

written as 𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝜃(1) (if initial level is 2). Solving this recurrence relations, obtained 

running time of is 𝑇(𝑛) = 𝜃(𝑛). 

4. Conclusion 

We get perfect matching of labeling of nodes in Fractal Honeycomb meshes (FHC and FHCC) for 

dimension one and two using 2-bit gray code. Therefore, if desired to construct fractal meshes, it 

would be better to use recursive algorithm 2. Because, recursive algorithm 1 has exponential running 

time. 

Acknowledgement. The authors are very grateful to Professor Ali Karcı (The University of İnönü, 

Turkey) for his valuable suggestions, which helped to improve the paper significantly. 
 

References: 

Hales T. C. (2001) The Honeycomb Conjecture. Discrete and Computational Geometry 25(1):1-22. 

Nocetti F. G., Stojmenovic I., Zhang J. (2002) Addressing and Routing in Hexagonal Networks with 

Applications for Tracking Mobile Users and Connection Rerouting in Cellular Networks. IEEE 

Trans. Parallel Distrib. Syst. 13(9): 963-971. 

Carle J., Myoupo J. F., Seme D. (1999) All-to-all Broadcasting Algorithms on Honeycomb Networks 

and Applications.Parallel Process. Lett.9(4): 539-550. 

Manuel P., Rajan B., Rajasingh I., MC. M. (2008)On Minimum Metric Dimension of Honeycomb 

Networks.J. Discret. Algorithms 6(1): 20-27. 

Lester L. N., Sandor J. (1985) Computer Graphics on a Hexagonal Grid.Comput. Graph8(4): 401-409. 

Rajan B., William A., Grigorious C., Stephen S. (2012) On Certain Topological Indices of Silicate , 

Honeycomb and Hexagonal Networks.J. Comp. Math. Sci3(5): 530-535. 

Boudjemai A., Amri R., Mankour A., Salem H., Bouanane M. H., Boutchicha D. (2012) Modal 

Analysis and Testing of Hexagonal Honeycomb Plates Used for Satellite Structural Design. Mater. 

Des.35: 266–275. 

Engelmary G. C., Cheng M., Bettinger C. J., Borenstein J. T., Langer R., Freed L. E. (2008) 

Accordion-like Honeycombs for Tissue Engineering of Cardiac Anisotropy. Nature Materials 7: 

1003-1010. 

Mandelbrot B. (2004)Fractals and Chaos : The Mandelbrot Set and Beyond, Springer Science & 

Business Media, United States of America. 

Kluge T. (2000) Fractals in Nature and Applications. https://kluge.in-

chemnitz.de/documents/fractal/node2.html.Accessed 13 December 2018. 



46 
 

Joye Y.(2005) Evolutionary and Cognitive Motivations for Fractal Art in Art and Design Education. 

International Journal of Art and Design Education2(2): 175-185. 

Keller J., Chen S. (1989) Texture Description and Segmentation Fractal Geometry. Computer Vison, 

Graphics, and Image Proccessing45: 150–166. 

Karci A., Selçuk B. (2014) A new hypercube variant : Fractal Cubic Network Graph.Engineering 

Science and Technology, An International Journal18(1): 32-41. 

Meier J., Reiter C. A. (1996) Fractal Representations of Cayley Graphs.Caos & Graphics. 20(1): 163-

170. 

Warchalowski W., Krawczyk M. J. (2017) Line Graphs for Fractals.Commun. Nonlinear Sci. Numer. 

Simul. 44: 506-512. 

Fiala J., Hubička J., Long Y., Nešetřil J. (2017) Fractal Property of the Graph Homomorphism 

Order.Eur. J. Comb. 66: 101–109. 

Jaggard D. L., Bedrosian S. D. (1987) A Fractal-Graph Approach to Large Networks. Proceeding of 

IEEE 75(7): 966–968. 

Montiel M. E., Aguado A. S., Zaluska E. (1995) Topology in Fractals.Caos, Solitons & Fractals 7(8): 

1187-1201 

Brown J. I., Hickman C. A., Nowakowski R. J. (2003)The Independence Fractal of a Graph. J. Comb. 

Theory87: 209-230. 

Ejov V., Filar J. A., Lucas S. K., Zograf P. (2007) Clustering of Spectra and Fractals of Regular 

Graphs.J. Math. Anal. Appl.333: 236-246. 

Science N., Phenomena C., Komjáthy J., Simon K. (2011) Generating Hierarchial Scale-Free Graphs 

from Fractals.Chaos , Solitons Fractals 44: 651–666, 2011.  

Cho, H. J., & Hsu, L. Y. (2003). Generalized honeycomb torus. Information Processing Letters, 86(4), 

185-190.  

Yang, X., Evans, D. J., Lai, H., & Megson, G. M. (2004). Generalized honeycomb torus is 

Hamiltonian. Information Processing Letters, 92(1), 31-37. 

 


