Phononic Stability Analysis of Two-Dimensional Carbon Nitride Monolayers

İki-Boyutlu Tek-tabaka Karbon Nitrürlerin Fononik Kararlılık Analizi

Sevil SARIKURT 1 ©, Fatih ERSAN 2 ©

1Dokuz Eylül University, Department of Physics, Faculty of Science, 35390, Izmir, TURKEY
2Adnan Menderes University, Department of Physics, 09010, Aydın, TURKEY

Abstract

In this study we examined the dynamical stability and electronic properties of carbon nitrides monolayers as C$_6$N$_6$ and C$_6$N$_8$. We found that buckled form of C$_6$N$_8$ monolayer is dynamically stable instead of planar C$_6$N$_8$, which has been studied many times in literature. While planar C$_6$N$_8$ has negative optical phonon modes, properly created buckling in the structure can make these imaginaries disappear and make the system dynamically stable. In the literature, the planar form of C$_6$N$_6$ monolayer is predicted to be stable. In this work, we find out that buckling in the C$_6$N$_6$ destabilizes the out-of-plane transverse acoustic mode (ZA) and the soft mode of the optical branch. Both buckled C$_6$N$_8$ and planar C$_6$N$_6$ have direct band gap of 1.82 eV and 1.58 eV, respectively, which fall in the visible region. Our outcomes may be useful in fabricating optical devices that operate in the visible range of the spectrum.

Keywords: Carbon nitrides, monolayer, 2D materials, density functional theory, phonon.

I. INTRODUCTION

Graphitic carbon nitrides attract great interest due to they can break off hydrogen from water under sunlight irradiation [1]. Several experimental studies focus on the synthesesation and characterization polymorphs of carbon nitrides [2-5]. Recently, Pan et. al have reported that the graphitic carbon nitride nanotubes are promising materials for solar energy absorbers due to their size-dependent bandgaps [6]. And also they have revealed that electronic and optical properties of the carbon nitride nanotubes can be easily tuned via adsorption of metal adatoms [6]. Ma et. al have showed that photoactivity of C$_6$N$_8$ carbon nitride allotrope can be enhanced via nonmetal atom doping and at the end of the functionalization process, the property of visible-light absorption of C$_6$N$_8$ has been increased [7]. These materials have been also investigated for helium detection and it is obtained that C$_6$N$_8$ membrane has high capability to separate He from other gas molecules such as H$_2$, N$_2$, CO and CH$_4$ [8]. Researchers have proposed several new types of carbon nitride membranes by theoretical calculations [9-11], and some of these membranes have already been...
synthesized [12]. But among them mostly interested ones are C_{16}N_{8} and C_{12}N_{4} monolayers [13-18]. The synthesization, detailed structural characterization and stability of bulk graphitic C_{12}N_{4} and C_{16}N_{8} structures have been reported by several researchers [19-21]. All above-mentioned theoretical studies investigated planar carbon nitrides and their interaction with adatom or molecules, but few of them examine the stabilities of the structures by cohesive or formation energy calculations [22,23]. However, as is known the phonon dispersion calculation is one of the most important stability analysis, because of, in spite of the structure can has a large cohesive energy, it can be dynamically unstable. So, in this study we have investigated dynamical stability of the two-dimensional planar/buckled C_{16}N_{8} and C_{12}N_{4} monolayers using first principles calculations. Our simulations indicate that, although planar C_{16}N_{8} is stable, its buckled form is not. On the contrary, buckled form of C_{12}N_{4} monolayer is stable, while its planar form is unstable.

II. COMPUTATIONAL METHOD

In order to investigate the dynamical stability and electronic properties of the carbon nitride monolayers, we employ spin-unpolarised plane-wave calculations within density functional theory (DFT) using the Perdew, Burke, and Ernzerhof (PBE) parametrization [24] and Vanderbilt ultrasoft pseudopotential method implemented in Quantum Espresso (QE) software [25]. Generalized gradient approximation (GGA) is used for exchange-correlation function. Kinetic energy cut-off parameter for plane-wave basis set is taken to be 80 Ry. Monkhorst-Pack method with 9 x 9 x 1 k-points mesh is used to sample the Brillouin Zone [26]. Broyden-Fletcher-Goldfarb-Shanno (BFGS) iterative method is used to optimize the structures [27]. At the end of the optimization procedure, we obtained Hellmann-Feynman forces acting on each atom are less than 0.04 eV/Å. Total energy difference between the successive iteration is set to 10^{-6} Ry. Gaussian smearing method is used with a smearing width of 0.001 Ry. To create monolayer carbon nitride structure, vacuum length is set to 20 Å. Phonon band structures of the C_{16}N_{8} and C_{12}N_{4} monolayers are obtained by using QE software, which implements the density functional perturbation theory (DFPT). For these calculations, 10^{-14} (a.u) is set for threshold for self-consistency. For the phonon calculation on the uniform grid of q-points, 4 x 4 x 1 Monkhorst-Pack grid is chosen. The average cohesive energy is obtained by using below equation

\[E_{coh} = (nE_{C} + mE_{N} - E_{C_{6}N_{8}}) / (n+m) \]

where E_{C_{6}N_{8}} is the total energy of the carbon nitride structure and E_{C} and E_{N} are the total energies of the isolated carbon and nitrogen atoms, respectively. The numbers of the C and N atoms in the unitcell are illustrated by n and m, respectively.

![Figure 1](image)

Figure 1. a) Top and side view of planar C_{16}N_{8} monolayer, also lattice constants are given, b) side view of buckled C_{16}N_{8}, c) Extended top view of planar C_{16}N_{8} structure, d) top and side view of buckled C_{12}N_{4} monolayer, also lattice constants are given, b) side view of planar C_{12}N_{4}, c) Extended top view of planar C_{12}N_{4} structure.

III. RESULTS AND DISCUSSIONS

We first constructed 1x1 carbon nitrides monolayers as illustrated in Figure 1. For each carbon nitrides both planar and buckled structures are created. Figure 1 (a), (b) and (c) represents the top and side views of C_{16}N_{8} monolayer. The obtained lattice parameters for planar C_{16}N_{8} are a=b=7.13 Å, while values of a=b=7.11 Å are found for buckled structure. Planar C_{12}N_{4} has two hexagons in the unitcell with 1.34 Å C-N bond length and these two hexagons bind each other from carbon atoms with of 1.51 Å C-C bond distance. Every six C_{3}N_{3} hexagons surround a pore as illustrated in Figure 1 (c) and the diameter of the pore is 5.48 Å. To form the buckled structure of C_{12}N_{4} some edge atoms in the unitcell have been raised up until the maximum height is reached to 0.30 Å above from the other atoms in z-direction. After optimization, calculated total energy difference between the two C_{12}N_{4} structures is 0.110 eV, and planar one has minimum ground state energy. Calculated the average cohesive energy of planar C_{16}N_{8} is 0.442 eV per atom. Figure 1 (d), (e), and (f) illustrate the top and side views of buckled and planar C_{12}N_{4} monolayer structures.
Lattice parameters of planar C₆N₆ structure are little larger than planar C₆N₆, and are a=b=7.14 Å, while buckled one are a=b=6.97 Å. Ground state energy difference between the buckled and planar C₆N₆ structures is obtained as 0.331 eV and buckled form is predicted as energetically favorable structure for C₆N₆, in contradiction to the C₆N₆ structure. Corresponding average cohesive energy of buckled C₆N₆ is 0.429 eV per atom. Buckling distance is 1.05 Å from the highest atom to the lowest atom in z-direction. C₆N₆ structures, C-N bond lengths vary between 1.29-1.45 Å. All these calculated results are in good agreement with previous studies [13-16,21-23]. Cohesive energy calculation is a way to determine the stability of a structure by evaluating the cohesion strength between the constituent atoms in the cell. But this method is not enough to analyze the stability, because that structure could be in a local minimum on the Born-Oppenheimer surface. To clarify this point, we checked their dynamical stabilities by phonon frequency calculations along the whole Brillouin Zone using QE code with the help of DFPT. The phonon band structures of planar and buckled C₆N₆ structures are given in Figure 2 (a), as seen there is not any imaginary phonon frequency for planar C₆N₆.

The dynamical stability of planar C₆N₆ has also been determined by Wang et al. from first-principles calculations and molecular dynamics simulations [18]. Our obtained phonon spectrum is compatible with their results. In addition to this, we have also investigated the phonon dispersion curves of buckled form of C₆N₆ structure. There are thirty-six separated phonon branches for C₆N₆ structures, which include thirty-three optical and three acoustical branches. Buckling in the C₆N₆ unitcell results structural instability and one of the acoustical branch, which is the out of plane (ZA), and one optical branch (soft mode of optical branch) have imaginary frequencies. In contradiction to C₆N₆, buckled form of C₆N₆ shows dynamical stability (please see Figure 2 (b)). The phonon dispersion of planar form of C₆N₆ structure has large imaginary frequencies for optical modes, while its three acoustical phonon branches have positive values. This situation implies that some atoms in the cell want to raise up from their atomic positions. Hence, we changed their coordinates and created buckling in the cell as mentioned above part, at the end of the optimization C₆N₆ monolayer gains dynamical stability as shown in Figure 2 (b).

Figure 2. Phonon band structures of buckled and planar a) C₆N₆ and b) C₆N₆ monolayers, stable ones are red colored.
occur in the electronic band structure. As can be seen from the BDCD, charges are localized on the whole atoms in the unitcells for the conduction band minimums. Dirac points in the C\textsubscript{2}N\textsubscript{4} band structure consist of the \(p_x \) and \(p_y \) orbitals of the Nitrogen atoms. According to Lowdin analysis, each nitrogen atom receives 0.21 electrons from carbon atoms in the C\textsubscript{2}N\textsubscript{4} structure. For C\textsubscript{2}N\textsubscript{4}, each carbon atom loses 0.40 electrons and nitrogen atoms share these electrons between them and each one takes 0.30 electrons. As can be seen in PDOS figures, \(p \)-orbitals of nitrogen atoms dominate valence band maximums for both systems and a little contribution comes from the \(s \)-orbital of nitrogen atoms. Conduction band minimums for both carbon nitrides occupied by \(p \)-orbitals of C and N atoms.

Figure 3. a) Electronic band structure and partial density of states (PDOS) of planar (stable) C\textsubscript{2}N\textsubscript{4} monolayer, b) Electronic band structure and partial density of states (PDOS) of buckled (stable) C\textsubscript{2}N\textsubscript{4} monolayer. Band gaps are shaded and gap character is labeled by “d” letter which means direct band gap. Band decomposed charge densities (BDCD) at the K symmetry point are also illustrated.

IV. CONCLUSION

In conclusion, by using first principles calculations we investigated the dynamical stability of two carbon nitrides monolayers. Our results show that planar structure of C\textsubscript{2}N\textsubscript{4} is dynamically stable; while C\textsubscript{2}N\textsubscript{4} is stable when proper buckling height is created in the structure. The calculated average cohesive energy values are not so large which can imply that their thermal stability could be poor with respect to the graphene, but they could be suitable materials for optical devices operating in the visible region at the room temperature and above it. We believe that with our extensive study, investigations may condense on buckled C\textsubscript{2}N\textsubscript{4} structure instead of planar one.

Acknowledgment

Computing resources used in this work were provided by the TUBITAK ULAKBIM, High Performance and Grid Computing Center (Tr-Grid e-Infrastructure).

References

