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Abstract

An “available energy” is defined for every state of any system. The definition is
independent of (a) the concept of work, (b) any reference environment, and (c) the make-
up of the system (e.g., “macro” or “micro). On the basis of this available energy, given
any composite system, the contribution of each subsystem to the available energy -- that
is, the exergy content of a subsystem -- is defined, as well as the instantaneous “dead

state” of the composite and each subsystem.

Some pedagogical, scientific and engineering implications are discussed.
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1. Basic Concepts

A system is distinguished at any instant
by its contents. Associated with each content is
an additive property. For any composite system
consisting of two or more systems, the amount
of any additive property is equal to the sum of
the values for the systems comprising the com-
posite.

For each system, a balance equation can be
written for changes in the amount of any addi-
tive property in the system. The balance equa-
tion represents any change in an additive prop-
erty in terms of the causes of the change, namely
transports and productions. Thus, given any
additive property of a system, symbolized by
N(),

dN = dN, + dN, (¢))

For any additive property represented by
N(t), the net transport into the system from some
reference time-zero up to time t is Ni(t); this
function reflects exchanges of content with other
systems. An interaction between two systems
occurs whenever there is any exchange between
them. An exchange between two systems has an
equal and opposite immediate effect on the ad-
ditive properties of the two, and it has no effect
on the additive properties of the composite of the

two. When there are exchanges with more than
one other system, the function N(t) can be ex-
pressed as a sum with each term representing an
exchange with one of the others. A system is
isolated when there are no interactions with
other systems (or, in practice, when any interac-
tions with other systems have negligible effect
upon the phenomenon being modeled).

The net production within the system up to
time ¢ is given by the function N(t), which re-

flects any change of N(t) which is not a result of

transports. Hence for any composite system the
value.of Ny(t) equals the sum of the values asso-
ciated with the systems making up the compos-
ite. Any phenomenon which changes an addi-
tive property independently from a transfer
thereof is said to occur spontaneously. An addi-
tive property is said to be conserved when there
is no production, positive or negative, thereof.
Obviously, the conserved additive properties of
an isolated system are constant in value.

Among the additive properties employed to
model a phenomenon, some are primitive,
namely those representing contents whose exis-
tence is simply accepted, postulated. Examples
of additive properties which are commonly taken
as primitive are “number of electrons” and-
“number of H atoms”, and “number of H, mole-
cules” ot “number of H' ions”, and momentum.
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Herein, energy and entropy are taken as primi-
tive, as for example by Obert (1949) and Callen
(1960). However unlike Callen, who postulates
the existence of entropy only for “equilibrium”
states, here it is postulated that every state has a
value of entropy (as in the case of energy). This
postulate is in accord with the conclusion, that
every state has an associated entropy, deduced
by Gyftopoulos and Baretta (1991) on the basis
of alternative postulates.

Among the dependent variables associated
with a system at an instant 7, those which make
no reference to earlier times are called proper-
ties. Included, of course, are those variables
called additive properties above. The transport
functions represent “historical logs” -- amounts
transported from the beginning of the phenome-
non being modeled up to the instant ¢ -- and
hence are not properties. The same is true for
the production functions.

The state of the system at an instant t is
determined by the values of its properties. The
state of any composite system is determined by
the states -- the values of the properties -- ex-
hibited by its subsystems.

2. First Law

Herein, the first law is taken to postulate
(1) the existence of the additive property, en-
ergy, with a finite value at every state of a sys-
tem, (2) conservation of energy, and (3) that
whenever systems interact there is a transfer of
energy between them, and every energy transfer
is associated with the transfer of another addi-
tive property.

That is, for every independent dNy there
corresponds a dE;, and hence a coefficient, to be
called C;, relating the two and defined by:

dE;; = C;-dNy 2)

3. Thermostatic States

Consider any set of additive properties as-
sociated with a system, excluding its energy.
For example, consider the set consisting of the
entropy, the volume and the component amount
of a, {S, V, N,} -- component as defined by Hat-
sopoulos and Keenan (1965). Given any state of
the system, with its values of (S, V, N,), many
other states of the system may have those same
values. Each of the states with these values of
the constraints has its own value of the energy
E. Among all of these values of the energy,
there can be only one minimum value, and many
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of the states may have that minimum value.

A state which has the minimum value is
said to be thermostatic, when subject to the con-
straints (i.e., for this example, when subject to
specified values of {S, V, N.}).

Figure 1 may be helpful for illustrating the
concepts being developed here. The overall
system consists of two subsystems, 1 and 2,
composed of gas a, of total fixed amount N,. At
the instant at hand the total entropy is S(t) and
total volume is V(t). Traditionally we call any
least-energy state which is consistent with S(t)
and V(t), the equilibrium state of the system at
that S and V. Here such a state is called a ther-
mostatic state. This alternative terminology is
chosen in order to emphasize that “thermostatic
state” is defined in a manner which is different
from the usual definition for “equilibrium state.”
Here it is not implied that, at a thermostatic
state “nothing moves” or “nothing is happen-
ing” or “if the system were isolated, then noth-
ing would happen.”

Figure 1

It follows that for thermostatic states there
exists a function relating the value of the energy
to the constraints. For the case at hand,

Eo =Eq(S, V, No) 3)

At any state with the values (S, V, N,) for
the constraints, E, will be called the thermo-
static energy of that state, which may of course
be less than the actual energy. The function
which relates the thermostatic energy to the val-
ues of the constraints will be called the funda-
mental thermostatic property relation.

The thermostatic energy, being a function
of other properties, is a property of every state.

Any variable which is a function of the
constraints alone will be called a thermostatic
property. Thus, in addition to E,, every deriva-
tive of the fundamental property relation is a
thermostatic property. For examples, given the
function Eg(S, V, N,) then Ty = OEq«(S, V; N,)/8S
and py = —0E¢(S,V,Ny)/O0V are thermostatic
properties, called the thermostatic temperature
and pressure respectively. At any state, there




are associated values of all the thermostatic
properties. These associated values are in gen-
eral not identical to actual values, just as the
thermostatic energy is not identical to the actual
energy (except at a thermostatic state).

4. Available Energy

Given any set of constraints, such as {S, V,
N,,}, the corresponding available energy at any
state, is equal to the actual energy minus the
thermostatic energy.

A() =E() - Ee(1) @)

For example, with the constraints
{S!V!Na}?

A(t) = E(t) - Ee[S(), V(), N.(©) ] (&)

Clearly, since Eg(S(t), V(1), Ny(1)) is the
minimum value of energy consistent with the
constraints {S(t), V(t), Nu(t)}, the available en-
ergy cannot be negative. And it is positive at all
but thermostatic states, where the actual energy
equals the thermostatic energy.

The value of Eq and hence the available
energy corresponding to one set of constraints
will in general differ from that corresponding to
another set of constraints.

The available energy of a system which
consists of two or more subsystems is not an ad-
ditive property. That is, if each subsystem is
subject to the same constraining properties as
the overall subsystem, the sum of the subsystem
available energies is generally not equal to the
available energy of the overall system. In fact
the available energy of every subsystem could be
zero -- that is, each could be, alone, at a thermo-
static state -- while the available energy of the
overall system were positive,

For example, in Figure I, each of the two
samples of gas could, alone, be “at equilibrium,”
while they were not “in equilibrium with each
other.” Or better, subject to ifs entropy and vol-
ume {S;,V,} subsystem 1 could be at a thermo-
static state, and so could 2 relative to {S,,V,}.
Whereas, at the same instant, the overall system
could be at a state which is not thermostatic
relative to the overall {S,V}.

The available energy of a system can be re-
duced (a) by lowering the energy toward the
thermostatic value with no ner change of the
constraints, or (b) by raising the thermostatic
energy toward the current value by changing the
value of one or more constraints, or (c) by any

combination thereof. Any such reduction of the
available energy can result in (a) an equal in-
crease in the available energy of another system,
(b) a lesser increase, or (c) no increase in the
available energy of any other system.

For example, consider the (very) special
case where Subsystems / and 2 are each, alone,
at a thermostatic state, both have the same pres-
sure and the same amounts of each component,
but the temperature of 2 is greater than that of /.
The overall system has positive available energy.
We could envision lowering the available energy
without net change of any overall constraint in
several manners: (a) The available energy could
be obtained from the overall system by removing
energy from 2 with entropy and adding energy
to I with equal amounts of entropy, until the
temperatures were equal -- while allowing their
pressures to remain equal (but not constant); (b)
the available energy could be obtained by isen-
tropically compressing / and expanding 2 until
the temperatures are equal and then -- keeping
their temperatures equal (but not constant) --
compressing 2 and expanding / until the pres-
sures are equal. In the former case all of the
available energy is obtained via the exchange of
entropy between the subsystems, and in the lat-
ter via the exchange of volume. The net energy
obtained is the same in both cases, equal to the
energy of the initial state of the overall system
minus the energy of the thermostatic state corre-
sponding to the initial (S, V). The amount is
shown by the shaded area in Figure 2a, corre-
sponding to the first scheme, and by the shaded
area in Figure 2b, corresponding to the second.
Although it is not recommended, one could say
that in Scheme a the available energy is ob-
tained as a “useful heat output” and in Scheme b
it is obtained as a “useful work output.” It is
true that the “useful heat output” could be con-
verted to the “the useful work output.” It is
equally true that the “useful work output” could
be converted to the “the useful heat output.”
Therefore, neither is better than the other.

Although only one is necessary, the avail-
able energy could be obtained by any combina-
tion of “useful heat” transfers and “useful work”
transfers.

Even though available energy is not addi-
tive, given (a) any breakdown of an overall sys-
tem into subsystems, and (b) a set of constraints
imposed upon the overall system, it is possible
to attribute a portion of its available energy to
each of the subsystems composing it.. That por-
tion of the overall available energy attributed to
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Figure 2(a)

a sub-system is called the exergy of the subsys-
tem, to be developed presently. First, though, it
is necessary to determine conditions which must
be satisfied at a thermostatic state of a system
which is a composite of several subsystems,

5. Sufficient Conditions for Thermostatic
States

The overall available energy at any state is
equal to the actual energy minus the energy at
the corresponding thermostatic state. That is, in
accord with the preceding equation, A(t) = E(t)
minus the energy at the thermostatic state which
has the same values of the constraints as the ac-
tual state. For simplicity, suppose that the sys-
tem consists of only two subsystems. Then,

E(@®) = E (1) + Ex(1) (6)

and

Eo[S(1), V(©), N,(D] =
Bo[ S1(1)+8,(t), V1()+V (1), Ny ()+N,(®)] (7)

where the function E¢(S, V, N,) is for the overall
system.

If, relative to the same set of constraint
properties, a subsystem has available energy
then so must the overall system have at least as
much. Hence, when the overall system is at a

thermostatic state, each of its subsystems must
be at a thermostatic state of its own. So,

Eo[S(1), V), Ni(®)] = Esp[Ser(t), Ver(V),
NaBl(l)]

+ B[ Sez (1), Vez (1), Negz (0)] ®)
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Figure 2(b)

Here, the functions E.e(S, V, N, and
Eo(S, V, Np) are those of Subsystem 1 and Sub-
system 2, specifically. On the other hand, for
example Sg;(t) denotes the value of the entropy
of Subsystem 1 when the overall system is at its
thermostatic state with overall entropy equal to
S(t). (Notice that the subscript on Sg, is in the
reverse order of the subscript on the function
Ee.)

What are the implications of the last two
equations?  What necessarily follows from
them? Of course, at the thermostatic state of the
overall system, the following relations must be
satisfied:

Eq; (1) + Bqg, (1) = Eo() ©
Se1 (1) + Sz () = S(D) (10)
Vo1 () + Ve (1) = V(1) (11)

Similar relations hold for N,(t), but to sim-
plify the deductions suppose that all of the actual
states under consideration have fixed values of
Nam and Nm

Then, with Equations (9) through (11), at
the specified S(t) and V(t),
dE, = [OE,¢/051(Se1 , Vo1 )dSer
+ [OE6/8V1(Se1,, Ve1)dVey
+{0E;6/081(Sez » Ve ) —dSe1 ]
+ [OB0/0V](Sez , Vo2 ) -dVerl  (12)

Since the‘overall S and V are fixed, dE; =
0. Then Equation (12) requires




[OE16/3S1(Se1 ,Ve1 ) = [OE26/0S1(Sez ,Ver)

T16(Se1 ,Ver1 ) = T2e(Sez ,Ver) (13)

[OE16/GV] (Se1 ,Ver1 ) = [OE26/6V](Sez ,Vez )

P16(Se1 ,Ver ) =P20(Sez ,Vez ) (14)

These two apparently trivial equations
along with Equations (10) and (11) suffice to
determine values of Se] Vo1 , Sez and Ve
which satisfy the requirements for the overall
system to be at its thermostatic state.

It is interesting to note, for example, that if
the constraints imposed upon the system of Fig-
ure 1 were {S, V1,V,} then the equality of ther-
mostatic pressure of subsystem 1 and subsystem
2, as indicated by Equation (14), would not be
necessary. There are practical instances when
such constraints are appropriate (e.g., refrigera-
tion systems, Wepfer and Gaggioli, 1980).

When any such values of Sg; ,Ve; , Sez and
Vg, -- i.e., values satisfying Equations (10), (11),
(13) and (14) -- and corresponding values for
Ne61, and N, are substituted into the right-hand
side of Equation (8) and the result, along with
Equation (6), is substituted into Equation (5) the
following expression for the overall available
energy is obtained:

A() = Ey(t) — Es6[Se1 (1), Vor (1), Nag1 (0]
+Ey(t) - Exe[(Sez (1), Ve (1, Neex ©]  (15)

Then, the available energy of the overall
system could be represented as a sum over sub-
systems in the following manner:

A =Y(®) =% Y (16)

where Y;(t) is defined by

Yi(t) = By(t) - Big[Sei (1), Vei (8), Naos 0] (17)

provided that Sg; (t), Vg (t) satisfy Equations
(10), (11), (13) and (14) and N, (t) satisfies the
counterpart to those equations. However, the
function Y; would not be a satisfactory repre-
sentation of subsystem j's contribution to the
available energy, because Y; can be negative.

No subsystem can take away from a system’s
available energy; removing a subsystem from a
composite system could not cause its available
energy to increase. So, to represent any subsys-
tem’s contribution to the overall available en-

ergy -- a contribution which must be at least
zero -- what is needed is a function which is
non-negative. Of course, when the subsystem
values are added up, the sum must yield the
overall available energy.

6. Exergy

When the fundamental thermostatic prop-
erty relations are homogeneous functions of de-
gree one (i.e., for simple systems in the termi-
nology of Gyftopoulos and Beretta, 1991),

Ejo(S;, Vj, Ny) = Tje(S;, Vj, Ny)S;
= Pp(Sj Vi No)Vj + Haje(S;, Vi, Ny)Ny; (18)
From the additivity of energy and of the
constraining additive properties, it is straight-
forward to prove that the subsystem values of
Tje(S;, V;, Ng) -- which are equal according to
Equation (13) -- are also equal to the overall

system value, To(S, V, No). And likewise for pjg
and pge. That is,

To(Se,Ve) = T16(Se1,Ve1 ) = T20(Se2,Ve2)  (19)
Pe(Se. Vo) = p1e(Se1, Ver ) = P26(Se2, Ver) (20)
Heo(Se1, Vor) = Ha16(Se1,Ver ) = Haze(Se2, Ve ) (21)

Therefore,

Eo[S(1), V(©), Nu(®)]
= 23 EiolSej (0, Vej (0), Nogy (0]

= 2; [To(S,V.NDSq
— pe(S,V,No) Vg
+ M(S,V,N.)Naej] (22)

Then with 2 Ve = V(t) and 2 Sej = S(t) and
2’ Nagj = No(1), Equation (22) yields

Eo[S(), V(V, N.(V)]
= 25[To(S.V.NJS; - pe(S,V.N)V,
+ peo(S,V,NON,, ] (23)
Thus, with Equations (5), (6) and (7),
AQ = 2 [B~Te(S,V.N)S;
+ Po(S, V. NIV~ Heo(S,V.NIN,] (24)

Hence, with the exergy defined for any subsys-
tem j by
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Xj = Ej = Te(s, V, Na)Sj
+Pe(S, V, N)V; — pag(S, V, N)N,; (25)

it follows that
A(®) = X(® = 5 X, (26)

Thus, the exergy is additive, and the total value
equals the overall available energy.

It remains to be proven that the exergy is
non-negative. Consider a subsystem state such
that Sj differs from Sje and/or Vj differs from Vje‘
Furthermore suppose that the subsystem is at a
state which is thermostatic, relative to the con-
straints {S,V} and, for convenience, that Ny is
fixed so, for subsystem j, dE =T dS —p dV and

dX=TdS -pdV - Te dS + ps dV 27

Initially, consider the special case when T
< T at the given state. First, take the subsystem
isothermally from the state at (Te, ps) to a state
1 which has volume equal to that at the given
state, then cool at constant volume to reach the
given state. Thus, with Equation (27) applied to
the first step,

X, =X-Xs
= Te[S1—Se] — PulV1— Vel
— Te[S1—Se] + pe[V1—Ve]
= [Pe—Pul[V-Vel

where pp is the mean value of the integrand.
And, applied to the second step,

X - X1 = Tu[S-8:1] - Te[S-81]

The quantity X - X; = Ty[S-Si] -
Te[S—S,] is positive because for the cooling
process [S — S,] is negative and T, < Te. Fur-
thermore, the quantity X; = [pe—pul[V1—Ve] is
non-negative because either

(@) [V-Ve¢] >0 in which case py < pe
because of the expansion, or

(b) [V-Ve] < 0 in which case py, > pe be-
cause of the compression, or

(©) [V-Ve] =0. Therefore,
X=X1+X—X1>0.

When T > Ty the conclusions are the same,
because heating is required to go from state 1 to
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the given state, so that [S—S;] > 0 and Ty, > Te.

The foregoing proof is for the case when
the given state is thermostatic, and it depends
upon the relations [Ope/dV]s >0 and [6Te/6S]y >
0 (e.g., Gyftopoulos and Beretta 1991). If the
given state is not thermostatic, then the energy is
greater than the thermostatic value and the ex-
ergy is all the more positive.

Transfer and production relations.
Changes of the exergy of any system or
subsystem can be expressed in terms of produc-
tions and transports, hence exergy balances can
be written. With Equation (25),
dX = dE — Te(S,V,No)dS + pe(S,V,N,)dV
e “ﬂB(S;V:Na)dNa
— S8 dTe+ V dps — Nodpye
With the Gibbs-Duhem relation for simple
states, it then follows that
dX =dE - Te(S,V,N,)dS + pe(S,V,N)dV
— Mao(S,V,Ng)dN,
In turn, insofar as energy, volume and the

amount of components are conserved,
dX =dE, - Te(S,V,N,)dS; — Te(S,V,N.)dS,

+ Po(S,V.No)dVi — peo(S,V,No)dNy  (28)

Hence, the change in exergy can be written
dX=dX; +dX;, or dX
= X - dX; (29)
and the usual Gouy-Stodola relation is a result:

~dX, = dX, = To(S, V, N dS, 30)

If in lieu of components (from which the
system has been composed), the symbol ﬁi rep-

resented constrained constituents (species pres-
ent within the system at the instant t), then the
counterpart to Equation (28) would yield

dX _ =Te(S,V,N,,N,,.) ds
P [:] 1 2 P (31)

<Y i, SV N, N, L) AN

Suppose, for example, at the thermostatic
state of the system the affinity of a reaction*were
positive, because of the absence of a reactant.



Then at a state which is not thermostatic, the
last term could contribute to dX,.

From Equations (28) and (29),

dX; = dE, —Te(S,V,N.)dS;
+Do(S,V,No)dVi—pas(S,V,.NJAN,:  (32)

Then, with Equation (2), dE, = >.C;-dNy
wherein dN;; represents a transport of any addi-
tive property. Hence, from Equation (32),

Xy = dEw+pedV, = —[P—pe8]-dV, (33a)
dXs = dEs — T dS; = [T-T, 8]-dS;

= dQ - TedS, (33b)
dXis = dEis — pap ANy = [pa—ptes 8]-dNw(33¢)

More generally, whatever the constraints
(Nl} mighl be’

dX; = dE; — Cig-dN;; = [C—Ce]-dN;  (33)

To develop a convenient transfer relation
for bulk flow, let the expression for exergy given
by Equation (25) be re-presented in the follow-
ing manner: X = E - [TesS,V,N)s +
Pe(S,V, NV — 146(S,V, Non,Jm. Then,

dX=0Ew — [To(S,V.Ny) s + pe(S,V.N)) v
~ peo(S,V,Non,] dm,  (33d)

7. Conclusions

Available energy has been defined for
every state of any system. The definition is in-
dependent of (a) the concept of work, (b) any
reference environment, and (c) the make-up of
the system.

No distinction between “heat” and “work”
has been employed because any such distinction
is, as shown, unnecessary. Furthermore, it is
held to be erroneous to contend that “a work
transfer of energy is better -- more valuable --
than a heat transfer thereof.” To state that (eve-
rything else being equivalent) work can always
be used as a substitute for heat is erroneous. For
example, consider Equations (33a) and (33).
Energy extracted from a system with an expan-
sion “work transfer” cannot, totally, be substi-
tuted for any “heat transfer” dead-state pressure
pe were zero. It it is conceivable to have pg = 0,
then it is conceivable to have Ty = 0 so that a
“heat transfer” could then be substituted for any

“work transfer.” To imply to students that a
work transfer of energy is fundamentally better
than a heat transfer thereof is pedagogically un-
sound and confusing.

As amply illustrated by Figure 2, the avail-
able energy of a system can be extracted via
work transfers or heat transfers or any combina-
tion of the two.

Dead State. No mention has been made of
any reference environment for exergy nor, ex-
plicitly, to the concept of “dead state.” The
thermostatic state of the isolated system is con-
ceptually sufficient, in lieu of “reference envi-
ronment,” and that thermostatic state is the
“dead state.” The appropriate dead state for en-
gineering calculations is determined by (a) the
engineering system of interest and the systems
with which it interacts, and (b) the modes of (i)
interaction between all of these systems, and (ii)
spontaneous changes within each system, con-
ceived for modeling the systems. These modes
are the constraints, which the definitions of
available energy of the isolated system and the
subsystem exergies, as well as the sufficient
conditions for the thermostatic (i.e., dead) state

depend upon.

It is not the intent to criticize much im-
portant, excellent work which has been carried
out to help determine the appropriate contents of
the isolated system and appropriate thermostatic
states -- including constraints needed to define
them -- but to elucidate what is essential. This
is not only of fundamental importance but also
of practical. For example, the engineer’s choice
of the isolated system should not include sub-
systems which, if added, would increase the
available energy but at greater marginal cost.
Also, the choice of constraints should be ade-
quate to maintain the integrity of the subsystem-
equipment.

Closure. On the basis of the available en-
ergy defined herein, given any composite sys-
tem, it has been shown (a) how to determine
sufficient conditions to be satisfied at the in-
stantaneous “dead state” of the composite and
each subsystem, (b) how to define the contribu-
tion of each subsystem to the available energy --
that is, the exergy content of a subsystem so that
exergy balances can be written, (¢) how to de-
termine exergy transfers in terms of transports of
other additive properties, (d) how to determine
the generalized Gouy-Stodola relation, which
may have important consequences associated
with productions other than entropy.
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This last statement certainly reflects upon
the Second Law of Thermodynamics, for which
no explicit statement has been made in this arti-
cle. One might state the second law as, “The
available energy of the isolated system decreases
as a consequence of all real processes, and is
conserved only with hypothetical ideal proc-
esses.” However, the author believes that this is
only a corollary of a more fundamental state-
ment, which would include “the equation of
motion” referred to by Gyftopoulos and Beretta
(1991), as “one of the most intriguing and chal-
lenging problems in physics.”

Little reference has been made to the “state
principle” in this paper, although its domain has
been elucidated. An important aspect, which
hopefully will be further developed in future
articles, is the relevance of the work presented
here to the selection of appropriate properties for
the conventional modeling of “nonequilibrium
processes,.” (Gaggioli 1996).

Nomenclature

Available energy content
Transport coefficient
Energy content

Additive property
Content of component a
Content of constituent I
Mass

Specific amount of component a

Thermostatic pressure

Entropy content

Specific Entropy

Thermostatic temperature

Time instant

Volume content

Specific volume

Energy content

Component potential of species a
Constituent potential of species I

NEMX<<"Hows s 2220A%
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Subscripts

a Component a
i Index

j Subsystem j
m Mean value
P Production

t Transport

1 Subsystem 1
2 Subsystem 2
0 Thermostatic
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