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Abstract  

This paper presents a first order analysis of four types of overdriven free-displacer Stir-
ling machines.  All the presented types of machines can work as refrigerating machines, 
prime movers or heat exchange accelerators depending on parameters such as the hot to 
cold source temperatures ratio, the nondimensional mass of working gas in the ma-
chine, the displacer rod to displacer cross sectional area ratio, the corrected dead space 
to piston cylinder volume ratio and the displacer to piston cylinder volume ratio.  

In its analytical form this theory holds for machines at low speed as it is assumed that 
the piston displacement can be neglected during the displacer movement duration.  This 
analysis may be used to find the conditions and values giving either the best theoretical 
refrigerating cycle or the best theoretical prime mover cycle, the associated reference 
work, reference time, efficiency and heat quantities involved.  A table gives the analyti-
cal expressions and the limiting values of the main parameters for the four different 
types of Ringbom machines considered. 

The preliminary design of a Ringbom prime mover is then presented.  The main pa-
rameters influences are predicted and the magnitude of work, rotational speed limit and 
efficiency are obtained.  

Keywords:  Stirling machine, Ringbom machine, free-displacer, first order analysis, 

ideal analysis, Schmidt analysis.  

 
1.   Introduction 

The Stirling cycle is one of the most inter-

esting practical thermodynamic cycles and up to 

now, numerous works have been devoted to its 

development, especially with the kinematic Stir-

ling engines and the refrigerating machines (Or-

gan 1992, Reader and Hooper 1983, Urieli and 

Berchowitz 1984, Walker 1980, Walker 1983, 

West 1986).  But the low-cost simple free-

displacer machines, also called Ringbom ma-

chines (Walker and Senft 1985, Senft 1993, Senft 

1996), have been less studied though the Schmidt 

analysis could be easily applied to that kind of 

system in which the displacer movement is 

merely caused by the difference between work-

ing-gas and bounce-space pressures. 

The presented model is extensively devel-

oped for a separate lower-volume guiding-rod 

free displacer engine (type I-Figure 1), and the 

results are extended to the three other main types 

of machines (Figure 2).  They give pre-dictions 

of the main parameters influences.  

2.  Principle of Operation 

In order to minimize the difficulties of 

treatment and, also, not to be unrealistic, the 

following assumptions have been used:  

- constant mass of a perfect gas 

- isothermal heat exchanges during compres-

sion and expansion 

- perfect regeneration 

- inelastic shocks of the displacer 

- clearance volume (dead space) Vd at an over-

all temperature Td 

- uniform instantaneous gas pressure 

- sinusoidal motion of the heavy working piston 
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- constant bounce space pressure. 

 
Figure 1.  Type I of free-displacer Stirling machines. 

The operation of the free-displacer Stirling 

engine is described with reference to Figure 1.  

The annular gap between displacer and cylinder 

wall is used as hot and cold heat exchanger and 

regenerator.  Let us assume that the displacer is 

near the top of the displacer cylinder and that the 

piston is moving upward.  The piston motion 

causes an increase of the working gas pressure 

which becomes greater than the bounce space 

pressure.  Then the increasing gas pressure dif-

ference acting on the displacer rod area pushes 

the displacer down. The displacer moves the 

working gas from the cold to the hot volume, 

thus further increasing its pressure and accelerat-

ing the displacer downward until it reaches the 

bottom of the displacer cylinder.  The piston 

moves downward (working stroke) increasing the 

cold volume and reducing the working gas pres-

sure which becomes lower than the bounce space 

pressure.  Then, the pressure difference induces 

an upward motion of the displacer which moves 

the hot gas to the cold space, reducing the work-

ing gas pressure and accelerating the displacer 

motion.  The piston is then moving upward due 

to its sinusoidal motion (flywheel energy or elas-

tic spring energy) and increases the working gas 

pressure once again.  Then the cycle repeats. 

3.   Basic Equations 

In order to generalize the results of the cal-

culations we use dimensionless parameters and 

variables with the following reference parame-

ters: 

- temperature:  TC working cylinder temperature  

- volume:  Vw = x0 S0 working cylinder volume  

- pressure:  pB bounce space mean pressure  

- mass:  CWB TrVp  working fluid mass con-

tained in the working cylinder when at maxi-

mum volume and at mean pressure.  

 
Figure 2. Other types of free-displacer Stirling 

machines. 

The total mass of working gas enclosed in 

the cylinders is: 
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The dimensionless total mass of working gas is 

thus: 
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and the dimensionless pressure is: 

 
***

*
*

y
1

s1
1

x1

m
p









τ

−−Σ+







τ

+σΣ+−

=  (2) 

The dynamic equation of the displacer is 

given by: 
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the dimensionless expression of the displacer 

dynamic equation is: 
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where 
0t
t*t = , t2πν=α  is the rotation angle (in 

radian), and ν  is the frequency of the piston 

motion. Let the working piston have a sinusoidal 

motion: 
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4.   Description of the Cycles 

We consider a separate lower-volume guid-

ing-rod free displacer machine (Type I). 

From Eq. (2), we obtain the limiting pres-

sure curves.  When the displacer is down, that is 

for y* = 0 , we have: 
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and when the displacer is up, that is for y* = 1, 

we have: 
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Moreover a value of x* (with 0 < x* < 1) must 

exist which makes p* equal to 1 to permit the 

displacer take-off. When the displacer is down, 

this leads: 

 







τ

+σΣ+−=
1

m1x
**

0  (7) 

with the necessary condition: 
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and when the displacer is in the upper position: 

 ( )***
1 s1m1x −σ+Σ+−=  (9) 

with the necessary condition: 

 ( ) ( )***
s11ms1 −σ+Σ+<<−σ+Σ  (10) 

Two cases should be distinguished, according to 

the relative values of s
*
 and τ. 

4.1  First case (Figure 3)  

The dimensionless guiding-rod area and the 

temperature ratio are related by: 
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It yields: 
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From relation (11) we have: 
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and from relation (14) we get: 
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Hence the possible temperature ratio range is: 
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We have a refrigerating machine or a heat pump 

(counterclockwise cycle); when pressure p0

*  

passes under 1 (x
*
 decreasing) the displacer takes 

off and y* increases from 0; when pressure p1

*  
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passes over 1 (x
*
 increasing) the displacer takes 

off from the upper position y
*
=1. 

− For τ < 1, heat is taken from the cold volume 

and is rejected through the hot volume walls. 

− For τ > 1, we have a heat exchange accelera-

tor. Though the work is positive, heat is taken 

from the hot volume and rejected through the 

cold volumes walls. 

 
Figure 3.  Refrigerating cycle. 

It is possible to deduce some particular 

additional parameters such as: 
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4.2  Second case (Figure 4)  

The dimensionless guiding-rod area and the 

temperature ratio are related by: 
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From relation (17) the minimum temperature 

ratio is: 
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Figure 4.  Prime mover cycle. 

Hence the possible temperature ratio range is: 

 ∞+
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We have a prime mover (clockwise cycle): 

when pressure p1

*  passes over 1 (x
*
 increasing) 

the displacer takes off from the upper position 

y* = 1; when pressure p0

*  passes under 1 (x
*
 

decreasing) the displacer takes off from the lower 

position y* = 0 . Heat is given to the 'expansion' 

space and rejected from the 'compression' space. 

The particular parameters are: 
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5.   Analysis of the Prime Mover Cycle 

5.1  Thermodynamic analysis 

From the first law of thermodynamics and 

from the assumption of isothermal process in the 

'expansion' volume the cycle averaged heat 

supplied to the engine is given by: 

∫= EE pdVQ  
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The dimensionless heat supplied is written as: 
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At very low speed of rotation, let us assume that 

the piston displacement can be neglected 

 

Figure 5.  Pressure evolution of a prime mover 

(low r.p.m.). 

during the displacer motion duration (Figure 5). 

From Eqs. (2), (7), (9), Eq. (22) can be rewritten 

as: 
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which gives, after integration: 
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The dimensionless low speed cycle averaged 

work is given by: 
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which becomes after integration taking account 

of Eq. (5), (6), (7), (9): 
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Hence the thermodynamic efficiency is expressed 

as: 
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we obtain the following expressions: 
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with m
*
 in the range given by expression (19). 

Maximum absolute value of Wls

*  and ηth ls,  occur 

with a displacer taking-off at x0 0* =  and x1 1* =  

corresponding to: 
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It implies  
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where ηth,ls,max is the maximum thermodynamic 

efficiency: 
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This leads to the following expressions for the 

maximum work: 
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and for the optimum heat supplied: 
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Note that, in the case of a prime-mover, having 

W Wls ls

*

,max

*=  implies that τ reaches a maximum 

while s
*
, σ, m

*
 and Σ reach a minimum. 

Minimum values of s
*
 and Σ are contradictory to 

a minimum value of reference time t0. It seems 

that, as usual in technology, an equilibrium has to 

be found between opposite trends. 

5.2  Displacer dynamics 

As before we assume that the piston 

displacement is negligible during the displacer 

movement duration. For a displacer take-off from 



Int.J. Applied Thermodynamics, Vol.2 (No.2) 86 

y* = 0  (displacer moving up) we obtain from 

Eq. (2), (3), (5) and (27): 
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down) 
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which gives after integration: 
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At any take-off initial time the displacer speed is 

zero, so that C A= −2 0 . Hence with a take-off 

from y* = 0  the displacer velocity is: 
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At the end of the displacer stroke ( y* = 1 ) the 

dimensionless ultimate speed is: 
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The dimensionless displacer rising time is: 
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With a take-off from the upper position ( y* = 1 ) 

the dimensionless ultimate speed at the end of the 

falling stroke is: 
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The dimensionless displacer falling time is: 
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So the total dimensionless displacer motion 

duration is: 
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The dimensionless time tT

*  gives the order of 

magnitude of the dimensionless revolution time 

lower limit.  Figure 6 gives values of that time 

and of the dimensionless work **
ls mW  versus 

A0. We should remember that according to 

relations (19) and (27) A0 is in the range: 
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6.   Preliminary Design of a Prime Mover 

 We shall use the lower part (crankcase and 

crankshaft) of an existing single cylinder S.I.  

 
Figure 6. Dimensionless total displacer motion 

duration and work versus A0. 

engine as the working equipment of the Stirling 
engine. The working volume is Vw = 50 cm

3
 and 

the stroke is x0 = 42mm. The other fixed parame-

ters (some of them being imposed by thermal or 
mechanical stresses limits) are: 

- cold source temperature:  TC = 300K  

- displacer mass:  MD= 0.4kg  

- bounce space pressure:  pB= 3.2 105 Pa 

- nominal temperature ratio:  τ = 3  

- minimum temperature ratio:  τmin = 4
3

 

- maximum temperature ratio:  τmax = 4  

- negligible clearance volume:  σ = 0 

We assume a sealed engine with a constant 

mass of gas m. From the previous data and from 

Eq. (20), (31) and (33) we find, for the optimal 

case where x0 0* =  and x0 1* = : 

.2;5.1m;25.0s opt
*
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* =Σ==  

Nevertheless, as the displacer must be allowed to 

surely take-off, we need: 

1xx0 *
1

*
0 <<<  
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So it is more realistic to choose lower values of Σ 

and m
*
, for instance: 

6.1;3.1m
* =Σ=  

Then Eq. (7), (9), (26), (27), (29) and (46) yield: 

1.22t;397.0W;513.0A

;42.0;900.0x;233.0x

*
T
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ls0
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1

*
0

===
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Furthermore if we assume y0 = 4cm we obtain: 

s10t;cm5s;cm20S 2
0

22
2

−===  

From these results we deduce the lower revolu-

tion time limit: trev > 22.1 10-2s. 

 

TABLE I.  Some Characteristics Relations for Ringbom Machines. 
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7.  Other Main Types of Free-Displacer 

Stirling Machines 

The preceeding analysis could be easily re-

peated with the three remaining Ringbom con-

figurations (Figure 2).  The main results are gath-

ered in TABLE I.  They permit the evaluation of 

a Ringbom machine performance as a function of 

the main parameters s
*
, Σ, σ, τ, y0, m

*
, MD, pB, Vw.  

For instance power is an increasing function 

of absolute work and  efficiency and a decreasing 

function of reference time.  Maximum prime-

mover absolute work imposes minimum m
*
, Σ, σ 
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and s* and maximum pB, Vw and τ. Maximum 

prime-mover efficiency imposes minimum s
*
 and 

maximum temperature ratio τ. Minimum refer-

ence time impose minimum y0, MD and maximum 

pB, Vw, Σ and s*. Some of those parameters such 

as Σ and s
*
 have to match contradictory theoreti-

cal conditions. Finally technological conditions 

and practical considerations impose realistic 

values. 

8.   Conclusion 

The Schmidt analysis is known for its 

simplicity. Obviously the associated assumptions 

depart from real phenomena but they are useful 

to get a simple model of different types of free-

displacer machines.  

All the presented types of free-displacer 

machines can work as refrigerating machines, 

prime movers or heat exchange accelerators, 

depending on parameters τ, m*
, s

*
, Σ and σ. We 

are able to predict the main parameters influences 

and to get the magnitude of work, rotational 

speed limit and efficiency of a theoretical free-

displacer machine provided that the main 

parameters are chosen. The values of those 

parameters are determined by the above study 

and by thermal stress, thermal exchange, 

mechanical stress or space considerations.  

A more accurate design procedure should 

require a more refined and complicated model 

taking into account frictional works, temperature 

gradients, actual heat exchanges and imperfect 

regeneration. 

Nomenclature 

A0 a parameter ( ) 0ls,th
*m ηΣ=  

m mass of gas 

mD mass of the displacer  

p pressure  

Q cycle averaged heat exchanged  

r specific gas constant  

s guiding rod area 

S cylinder area  

T temperature 

t time  

v displacer velocity  

V volume  

W cycle averaged work  

x piston position  

y displacer position  

α  angle of 'rotation'  

ηth thermodynamic efficiency 

ν frequency  

π 3.14... 

Π maximum to minimum pressure ratio  

Σ displacer volume to piston volume ratio  

σ reduced dead volume  

τ temperature ratio 

Subscripts: 

0 with displacer down ( p x0 0

* *, ) 

  or reference value (S0, x0, y0, t0, W0, ...) 

1 with displacer up ( p x1 1

* *, ) 

2 in the displacer cylinder (S2) 

B in the bounce space  

C in the 'compression' (heat rejected) space  

d in the 'dead' space (clearance volume) 

E in the 'expansion' (heat added) space 

f with displacer falling 

hea heat exchange accelerator 

ls  with low rotational speed assumption 

m mean value  

max maximum value  

min minimum value  

opt optimum value  

prim prime mover  

r with displacer rising  

ref refrigerator  

T total value (tT)  

w in the working volume (Vw)  
*
 dimensionless value (superscript) 
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