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Abstract 

Thermal energy storage (TES) can average the loads of thermal energy systems, thus 

increases their energetic and exergetic efficiencies. The steam boiler plant with violently 

fluctuating loads is a typical example when a steam accumulator is added to it. 

However, the comparatively big first cost constitutes a barrier to wide use of TES. The 

cost will notably be reduced through minimizing the necessary thermal capacity of TES. 

A computer program for performing the optimization is illustrated in the paper. This 

program was applied to an existing boiler plant equipped with a steam accumulator. The 
results show that there would have been a remarkable reduction in the necessary 

capacity, if the capacity of this steam accumulator had been optimized. Four conclusions 

have been reached. 
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1. Introduction 

 Thermal energy storage (TES) plays an 

important role in the strategy of energy 

conservation and economic operation of thermal 

energy systems. It contributes to the 

enhancement of energetic efficiency and the 

environment protection. It serves in various 

systems of energy utilization, such as boilers, 

solar heat supply systems, solar power plants, 

HVAC systems, etc. . Figure 1 is the simplest 

diagram of most thermal energy systems with 

TES. For some cases, TES is indispensable to 

good performance of thermal energy systems. In 

a number of other cases, thermal storage 

improves energetic efficiencies when energy 

loads are low and, especially, frequently 

fluctuating with big amplitudes (Figure 3(a)). 

Besides, TES is also helpful in increasing 

exergetic efficiencies of energy systems.  

 However, the first cost of TES may be a 

rather big part of the total of an energy system. 

For instance, the cost of the thermal storage for 

certain solar systems can be about 3 % to 20% or 

even more of the total initial investment of the 

systems (Winter et al., 1991). In some applica-

tions the high rate of first cost constitutes a 

barrier to the wide use of TES. As an example, 

the cost of a steam accumulator for an industrial 

boiler plant can be up to 1/4 or so of total 

investment of the plant. This is one of the main 

reasons why steam accumulators have not yet 

become popular in many countries so far. There 

appears to be well worth reducing the cost of 

thermal storage so as to break down the barrier 

to its wide use, and to reduce the total costs of 

thermal energy systems. 

A method is introduced in the paper for 

minimizing the required capacity (sizes) of the 

storage vessel in order to make the first cost 

minimum, while the maximum energetic and 

exergetic efficiencies of the system are still 

attainable, thus contributes to the optimization of 

the whole system. 

2. The Contribution of TES to Exergetic 

Efficiency 

As far as the increase of the exergetic 

efficiencies of energy systems is concerned, the 

very example is the steam accumulator added to 

industrial boiler plants under certain conditions.  

 
* This paper was presented at the ECOS’00 Conference in Enschede, July 5-7, 2000 
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Figure 1  Energy system with energy storage 
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Figure 2.  The effect of load fluctuation on the 

overall efficiency curve 

 As a matter of fact, the energetic efficiency 

of a boiler decreases rapidly with the increase in 

frequency of its load fluctuation (Figure 2) 

(Tanton et al., 1987). In P. R. China, e.g., the real 

energetic efficiencies of industrial boilers are 

much lower than those obtained under rated 

loads that are steady, the average fall accounting 

for 10% or so. It is because of low and highly 

changeable loads, which most industrial boilers 

in China are taking. Compared with the pressure 

that the user demands, the rated pressure of an 

industrial boiler is usually much higher. So a rise 

of both the energetic and exergetic efficiencies 

of the system could theoretically be expected if 

cogeneration be adopted in the system. However, 

it is not always the case. When using back-

pressure turbine units, cogeneration would often 

fail in increasing either energetic or exergetic 

efficiencies, provided the loads of systems were 

at low levels and, especially, frequently and 

violently fluctuating. On the other hand, the 

increase in efficiencies due to adopting some 

more sophisticated types of turbine unit would 

not pay for the  increase in the total cost (Gai 

and Zhang, 1994).
 
According to the concept of 

cumulative exergy consumption (CExC) 

(Szargut, 1987; Szargut et al., 1988), this lack of 

economic justification implies that the savings 

on exergy due to increase in exergetic efficiency 

may not be made up for the increase in the total 

amount of CExC for the sophisticated systems. 

In other words, although cogeneration can, in 

general, obtain some higher exergetic 

efficiencies, there are often exceptions for small 

or medium-sized systems that operate at the 

fluctuating loads mentioned above. In this case, 

a better solution is TES, which increase 

exergetic efficiency, as it is going to be 

explained. This is why TES should be used 

widely. As things stand, the energetic effi-

ciencies of the boilers can usually be raised 3% 

~ 11% if steam accumulators are inserted into 

systems. 

 The well-known relationship between 

exergetic and energetic efficiencies of a boiler is 

expressed by Eq. (1) (Kotas, 1985): 
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Let Tm denote the mean thermodynamic 

temperature at constant pressure (Szargut et al., 

1988). 
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Thus Eq. (1) can be transformed into following: 
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 By differentiating Eq. (3), the increment of 

exergetic efficiency will be expressed through 

that of energetic efficiency: 
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In Eq. (4), Vf /εf is a feature of the fuel 

applied to boilers, its value being around unity 

for most fuels (Szargut et. al., 1988). Factor ξ 
takes a value about 1/2 for the cases under 

discussion. So it is obvious from Eq. (4) that 

TES can increase the exergetic efficiency of 

boiler plant if the loads of the plant are low and 

frequently fluctuate with big amplitudes, and that 

the increase can be about half as much as the 

energetic efficiency in this case. In consideration 

of the fact that ηex of boiler is usually less than 

half of ηen, the increase in ηex is remarkable. 

 When TES is applied to some other kinds 

of energy systems, the principle of increasing 

exergetic efficiency tends, in a way, to be similar 

to the above, provided their energy loads are low 

and frequently changing (Figure 3(a)). 

3. Minimization of the Capacity of Thermal 

Storage 

3.1  The concept of capacity computation 

 Examine a system diagrammatically shown 

in Figure 1, and assume that Figure 3(a) shows 

the load curve of an operation cycle of the 

system. There is always the difference D(t) 

between mean load M over the cycle and 

instantaneous load l(t) of the system. 

 D(t) = M – l(t) (6) 

The integral curve — function L(t) —throughout 

the cycle can thus be expressed as following. 

 L(t) = dt)t
t

0
(D∫  (7) 

 Obviously, L(t) is the thermal energy 

accumulated in the storage vessel from the 

beginning of the cycle to the moment t. 

Therefore, the distance C in Figure 3(a) is just 

the capacity of the storage vessel necessary to 

meet the requirement of normal operation of the 

system. 

 C = Lmax – Lmin (8) 

 It is easy to determine the sizes of the 

storage vessel corresponding to the C through 

certain formulas applied to various applications 

of TES. 

However, the C above obtained is usually 

rather big. To reduce the value of C, a well-

known method is to suitably divide the cycle into 

several segments, and then use Eq. (7) to each 

segment. The resultant difference C in Figure 

3(b) over whole cycle will then be the necessary 

capacity that tends to be noticeably smaller than 

does the original C in Figure 3(a). It appears to 

be necessary for developing an algorithm to find 

out an optimized mode of dividing the cycle so 

as to make the C minimum, and to guarantee the 

highest efficiency attainable for each unit in the 

boiler plant that delivers thermal energy to 

consumers of the system. 

3.2  The algorithm for the optimization of 

thermal storage capacity 

It is obvious that there are a lot of patterns 

of segmentation can be made. For any seg-

mentation, the k-th one, the load cycle is 

assumed being divided into N segments (Figure 

3(b) similarly) numbered from 1 to N. τi-1 and τi 

denote the moments at the beginning and the end 

of No. i segment respectively. Since the values of 

integrals of Lk(τi) equal zero when t = τi (i = 1, 

…, N), it follows that Eq. (7) can be transformed 

into the following form: 
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 Figure 3.  The load graphs of thermal energy system and the integral curves of accumulated thermal 

energy in different segmentation of the load cycle 
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τi-1 ≤  t ≤ τi and i =1,…,N (9) 

 Because it is often difficult to find out an 

expression of the load curve l(t) in a form of 

analytical function, the discretization of Eq. (9) 

may be a better way to simplify and quicken the 

calculation through Eq. (10). 
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 In Eq. (10), the whole period of a cycle, its 

length being S (hrs), is supposed to include R 

time cells. Thus, j = 1,…,R. Obviously, jbi and jei 

denote the sequence numbers of time cells at the 

beginning and the end of the i-th segment 

respectively. 

In consideration of the periodicity of the 

load curve, there will be R different load cycles 

if the time cell at the beginning of the original 

cycle moves down the cycle, i.e., the beginning 

point moves in sequence from the 1st time cell to 

the last (R-th) one. By using a subscript r added 

to Lk(jbi, jei, j) to distinguish various cycles, Eq. 

(10) takes the form as following: 
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Usually, there must exist a minimum 

segment length permitted, represented by U 

(hrs), because of technical consideration. The 

value of U should be taken into account when the 

program is being designed according to the 

algorithm. Thus, K, the total number of possible 

patterns of segmentation of the load cycle 

corresponding to certain r can be calculated by 

Eq. (12).  

 The total number of possible segmentations 

will be K multiplied by R when various cycles 

are taken into account. 
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For the sake of simplification, use vectors: 

 jb = (jb1, … , jbN)
T 

(13)
 

 je = (je1, … , j eN)
T 

(14)
 

Lr,k(jb, je, j) = [Lr,k(jb1, je1, j),.., Lr,k(jbN, jeN, j)]
T (15) 

 With certain values of N and U, the 

optimization problem for the minimum 

necessary capacity of TES can be expressed as 

following. 
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The solution of programming (16) is ( *
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The corresponding value of the objective 

function, 
(U,N)
r,kC (j *b , j *e ), is then the minimum 

necessary capacity 
(U,N)
min

C wanted. 

The constrained nonlinear programming 

(16) is rather extraordinary, for its variables serve 

as the limits of integrals in the objective function 

that is, in addition, non-differentiable. In this 

case, the strategies for finding out the global 

optima of problem (16) can not on any account 

be those available and widely used approaches, 

including almost all theoretically based 

strategies. As there seems to be no alternative, 

some heuristically based strategies, i. e., function 

comparison or direct search methods: simplex 

search, polytope, or complex, may be developed 

to solve the particular problem, in spite of any 

limitation in their general usefulness (Gill et al., 

1981; Reklaitis et al., 1983). Computation 

practices showed that an approach to exhaustive 

search proved to be effective and fruitful just due 

to the extraordinarity of the objective function. 

Thanks to powerful computers the minimum 

necessary capacity of TES can readily be 

computed through such a function comparison 

method. 
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The structure flowchart of the algorithm in brief 
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Figure 6.  Recursive call in procedure P when number of segmented intervals of integration being N 
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There must be computation procedures 

covering the whole feasible domain. Now start 

with the simplest, the segmentations of only two 

segments within a cycle, and calculate the 

integrals repeatedly. Figure 5 is the basic 

procedure, P(I,II). The segmentations of the 

cycle will exhaustively be enumerated by 

changing je1 and jb2 from case A to case B 

simultaneously. The same processes will then be 

repeated one by one as the beginning time cell of 

the cycle moves from its initial position to the 

end of the original cycle. 

The whole feasible domain of the problem 

can thus be covered by recursively calling in 

procedure P(I,II) while the beginning time cell of 

the cycle is changed from its initial position to 

the end of the original cycle if the cycle is 

divided into N segmented intervals for 

integration (Figure 6). 

 In consideration of Eqs. (18) and (19) that 

specify the constrained ranges of the first and 

last time cells of the i-th segment, it would not 

be difficult to perform the procedures described 

above 

jbi =1+UR(i -1)/S ~ 1+R-UR(N- i+1)/S (18) 

 jei = i UR/S ~ R-UR(N- i)/S (19) 

As an examination the program that was 

designed according to the algorithm was used to 

an existing boiler plant equipped with a steam 

accumulator at Shanghai Heavy Machine Works 

(SHMW). The steam accumulator of 155 m3 was 

added to the steam supply system that had 

originally had a pulsating load curve (TABLE I) 

and was reported effective on saving fuel (Qu, 

1997). By using the program, the computer read 

in the load curve with U = 3, and gave the 

results, i.e., the minimum necessary thermal 

capacities were 2.76 MJ and 2.51 MJ 

corresponding to N = 5 and 6 respectively. The 

minimum volumes of the steam accumulator 

would be 128 m
3
 and 116 m

3
 accordingly, being 

17.4% and 25.2% less than that originally 

adopted (TABLE II). Meanwhile, the computer 

also offered proposals of optimized load 

distributions over various segments. According 

to the distributions, each boiler in the plant 

would operate within a range of load level 

resulting in the highest efficiencies. 

4. An Example of the Capacity Optimization 

for TES 

TABLE I  DAILY STEAM LOAD OF SHMW 

Time 
1:00-

2:00 

2:00-

3:00 

3:00-

4:00 

4:00-

5:00 

5:00-

6:00 

6:00-

7:00 

7:00-

8:00 

8:00-

9:00 

Steam 

load 

(MJ/hr) 

4.461 4.461 4.461 7.597 4.461 4.461 4.774 5.715 

Time 9:00-

10:00 

10:00-

11:00 

11:00-

12:00 

12:00-

13:00 

13:00-

14:00 

14:00-

15:00 

15:00-

16:00 

16:00-

17:00 

Steam 

load 

(MJ/hr) 

5.715 5.402 4.774 5.715 8.852 5.402 4.474 7.597 

Time 
17:00-

18:00 

18:00-

19:00 

19:00-

20:00 

20:00-

21:00 

21:00-

22:00 

22:00-

23:00 

23:00-

24:00 

24:00-

1:00 

Steam 

load 

(MJ/hr) 

4.461 4.461 4.461 4.461 7.597 4.461 4.461 4.461 

 

TABLE  II  RESULTS OF THERMAL STORAGE COMPUTATION 

 Capacity of 

TES (MJ) 

Pressure of 

charge (MPa) 

Pressure of 

discharge (MPa) 

Volume of storage 

tank (m3) 

Values by 

SHMW 
3.346 1.5 0.4 155 

Values for 

 N=6 
2.51 1.5 0.4 116 

Values for 

 N=5 
2.76 1.5 0.4 128 
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5. Conclusions 

• Thermal energy storage is effective on 

increasing both the energetic and exergetic 

efficiencies of thermal energy systems, of 

which the loads are at low levels and 

frequently fluctuating with big amplitudes. In 

this case, it is economically reasonable to 

insert TES into small or medium-sized 

systems. 

• Higher cost rates are one of the main barriers 

to the wider use of TES. However, by using 

optimization of TES capacity, this barrier 

could be broken down to a great extent. 

• Example proves the algorithm and the 

program for the optimization of TES capacity 

fairly effective and fruitful. 

• The program and algorithm can in principle 

be used not only in boiler plants, but also in 

other thermal systems where the load graphs 

are the same type as devoted in the paper. 

They may also be applied to optimal online 

control over systems where TES has already 

been set up. 

Nomanclature 
C necessary capacity of TES (kJ) 

D difference between mean load 

and instantaneous load (kJ/h) 

h specific enthalpy (kJ/kg) 

j sequence number of discrete 

time cells within load cycle 

K total number of possible 

segmentations of load cycle 

l  instantaneous load of energy  

system (kJ/h) 

L integral of difference D over t (kJ) 

M mean load over a cycle or any 

given period of time (kJ/h) 

N total number of segments in a 

load cycle 

P number 

R total number of time cells within 

a load cycle 

s specific entropy (kJ/kg) 

S length of a load cycle (h) 

T temperature (K) 

t time (h) 

U minimum length of a segment  

permitted (h) 

V lower heating value (kJ/kg) 

ε specific exergy (kJ/kg) 

η efficiency of boiler 

τ moment at the beginning or end 

of a segment (h) 

ξ factor 

Subscript 

b beginning 

e end 

en energy 

ex exergy 

f fuel 

fw feedwater 

i sequence number of segments 

k sequence number marking 

different segmentations 

m mean thermodynamic 

max maximum 

min minimum 

o environmental state 

r sequence number distinguishing  

various cycles 

st steam 

Superscript 

N total number of segments in a 
load cycle 

U minimum length of a segment  
permitted 

* solution 
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