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Abstract 

In this paper an algorithm is presented, which combines a powerful optimizing tool, 
Evolutionary Algorithms, with an exergo-economic analysis. The latter supports the 
optimizer by evaluating certain parameters as the exergetic efficiency and the relative 
cost difference. A simple cogeneration system has been chosen to illustrate this algo-
rithm. 
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1. Introduction 

The economic optimization of thermal en-
ergy systems and chemical processes has often 
proven to be very complicated due to the great 

amount of subsystems and their interrelation. 
Conventional optimization algorithms do not 
accomplish the requirements, as they either do 
not converge or persist in local optima. With 

developments in computer technology Evolu-
tionary Algorithms have become more popular in 
recent years. In the majority of cases they con-
verge and they have the ability to overcome local 

optima (Baeck, 1996). Nevertheless, the required 
computing time is still very high due to the simu-
lation procedures of complex processes. There-
fore, it is desirable to reduce the number of the 

simulation steps. To attain this goal a new 
method has been developed by combining Evolu-
tionary Algorithms with an exergo-economic 
analysis. Instead of using pure stochastic muta-

tion to choose the set of decision variables for 
the next generation, the information attained by 
an exergo-economic analysis is used to affect the 
mutation operator. 

To illustrate the application of the method 
the CGAM problem has been chosen, which is 

well-known from literature (Bejan et al., 1996; 
Valero et al., 1994). The design of the cogenera-
tion system representing the CGAM problem is 
shown in Figure 1. Driven by natural gas, which 

is taken as methane, the cogeneration system 
delivers a net power output of 30 MW and 14 
kg/s of saturated water vapor at 20 bars. The 

compressor pressure ratio ΠC, the isentropic effi-
ciencies of the compressor ηsC and of the turbine 
ηsT as well as the temperature of the preheated 
air Tair and the turbine inlet temperature Tgas are 
regarded as the system’s decision variables, 
which will be optimized. 

After a brief view over Evolution Strategies 
in section 2 the exergy-aided optimization tech-
nique is presented in section 3. Finally the results 
for the cogeneration system are discussed in sec-

tion 4. 

2. Evolution Strategies 

Evolutionary Algorithms are optimization 
techniques based on the biological evolution. 

Generally, Evolutionary Algorithms are divided 
in Evolution Strategies (ES) (Rechenberg, 1994; 
Schwefel, 1995) and Genetic Algorithms (GA) 
(Holland, 1992). Traditionally, GA work on bit 
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strings, while ES use real-valued decision 
variables. The latter has been used for the 
process under consideration since using real-
valued parameters allows for greater flexibility in 
designing the mutation operator, which is crucial 

to the combination of ES and exergy analysis. 

Corresponding to nature, the main mecha-
nisms of ES being used here are mutation and 
selection. Fulfilling the physical and technical 
constraints, any set of n decision variables {x1,..., 
xn} can be chosen as the parent of the first gen-
eration. This parent generates one or more off-
spring when imposed to the mutation operator, 
which is obtained by multiplying normal distrib-

uted random numbers and step sizes for each xi. 
Fulfilling all constraints, the offspring’s fitness is 
determined by evaluating the objective function. 
The offspring with the better fitness is selected to 

be the parent of the next generation. In some 
variants of the ES the parent could be selected 
again to be the new parent of the next generation. 
The kind of selection is identified by using a 

general notation for the ES (Schwefel, 1995): 

(µ+λ)-ES or (µ,λ)-ES. The first one is called 
"plus strategy", because the µ parents are in-
cluded in the selection and the second one is 

called "comma strategy", because only the λ off-
spring are compared. In this paper only one par-

ent per generation is used, i.e. a (1,λ)-ES is ap-
plied. 

The mutation operator is determined by 
normal distributed random numbers z and step 

sizes δ underlying a self-adapting step size con-
trol, which itself uses the mechanism of mutation 
(Rechenberg, 1994). The use of a step size con-
trol is of considerable importance as this is the 

most significant item that distinguishes the ES 
from the Monte-Carlo method. Offspring are 
generated with both enlarged and reduced step 

sizes. The step size of the best offspring will be 
the parent's step size of the next generation. 
Therefore, that offspring whose step size is best 
adapted to the objective function will be selected 
and finally, hopefully, lead to the global opti-

mum. Using a (1,λ)-ES with self-adapting step 
size control, the offspring are determined as fol-

lows 
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where ξ adjusts the offspring’s step size by 
enlarging or decreasing the parent’s step size 
randomly. 

3. Exergy – Aided Cost Optimization 

The objective function F of the optimiza-

tion problem under consideration, which will be 
minimized is the total annual costs 

∑⋅κ+=
k
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The fuel costs FC
& are determined by the market 

price of natural gas, while the investment costs Ik 
for each system component k are quantified by 

cost functions given in (Bejan et al., 1996). Sup-
posed that those cost functions are in full agree-
ment with market prices, they enable the calcula-
tion of investment costs as a function of thermo-

dynamic data obtained by the thermodynamic 
model solving the mass and energy balances. The 
economic analysis, which is based on (Bejan et 
al., 1996), is taken into account by the capital 

factor κ considering both the annuity factor and 
the operating and maintenance expenses, which 
are assumed to be calculated by a factor applied 
to investment costs. 
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Figure 1.  Design of the cogeneration system. 
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3.1  Exergo-economic analysis 

The optimization algorithm should be sup-
ported by information gained from an exergo-
economic analysis. Therefore, the thermody-
namic model for the single components is en-
hanced by exergy and cost balances. The basic 
concept of this methodology is the evaluation of 
average cost per exergy unit ci associated with 
the i’th stream. In fact, the cost flow can be 
traced throughout the whole process with the 
cost per exergy unit. It is possible to detect for 
each component, whether the cost of the compo-
nent’s product increases mostly due to capital 
investment or due to exergy loss. This analysis 
yields to certain parameters for each component, 
which are used to guide the Evolutionary Algo-
rithms. 

Using suitable exergy balances, the exer-
getic efficiencies are determined for each com-
ponent. Generally, the exergetic efficiency of the 
system component k is defined as 

kF,
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k

E

E

&

&

=ζ  (3) 

where kP,E
&  represents the exergy rate of product 

and kF,E
&  the exergy rate of fuel. Depending on 

the service rendered by each component, product 
and fuel have to be defined carefully. Further-
more, the average cost per exergy unit of fuel cF,k 
and product cP,k for each component are neces-
sary. They result from the cost balances and the 
definition of fuel and product (Bejan et al., 
1996). A parameter of the exergo-economic 
analysis introducing these cost contributions is 
the relative cost difference rk, which describes 
the ratio of cost increase to the cost flow of fuel 
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These parameters are evaluated in order to 
provide the optimizer with information. Basi-
cally, the components are ranked in descending 
order of the amount of the total costs. Special 
attention should be turned to those components 
which have also high values of the relative cost 
difference. Following this list of components, the 
exergetic efficiency is compared to its value at a 
reference point for each component and at each 
step of the ES. It is then decided in which direc-
tion the decision variables shall be changed in 
order to approach the exergetic efficiency at the 
reference point. An increase or decrease of the 
exergetic efficiency can be realized by mutating 
the decision variables in a certain direction. It is 
desirable to find a rational way to the evaluation 
of the reference points for the single components. 
They should not depend on heuristic rules, as this 
limits the universality of this method. Here, an 
isolated optimization of each system component 

has been used, whereby some process data calcu-
lated previously remain constant. 

3.2  Reference points 

Considering each component isolated from 
the remaining process, not only the complexity 
of the objective function but also the number of 
decision variables is reduced. In principle, there 
is still more than one decision variable left. 
Therefore, the optimization problem should be 
reduced to one variable, the exergetic efficiency, 
which is a function of the decision variables. The 
exergetic efficiency has been chosen, because it 
is related to both fuel and capital costs. Figure 2 
illustrates the most common case, that the fuel 
costs of each component increase with decreas-
ing exergetic efficiency, while the component’s 
capital costs increase rapidly with increasing 
exergetic efficiency. Therefore, an optimum of 
the total costs of the component under considera-
tion exists and can be found easily. The corre-

sponding optimum exergetic efficiency ζk opt of 
the component k is taken as reference point for 
guiding the optimization of the whole process. In 
fact, those reference points are not identical with 
the final optimum exergetic efficiencies. The 
isolated optimization is used to calculate refer-
ence points analytically, which are close to the 
optimum. Especially those components with the 
greatest impact on total costs are assumed to 
yield reasonable reference points. 

Considering a small interval around the ac-
tual set of variables, the component’s cost func-
tion, which in fact depends on the decision vari-
ables, can be formulated depending on the exer-
getic efficiency only by applying a general equa-
tion introduced by Tsatsaronis (Bejan et al., 
1996), which has been slightly modified here 
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Certainly, this approximation is only valid for 
small changes in the decision variables. There-
fore, only one of the decision variables is slightly 
changed in each case in order to determine the 
constants Bk and nk by evaluating both the exer-
getic efficiency as well as the capital costs with 
the thermodynamic and the economic model for 
the component under consideration. This is done 
for both a positive and a negative change of the 
current value of each variable leading to a lower 
and an upper value for the optimum exergetic 
efficiency. If the actual exergetic efficiency of 
the component k lies in between this interval, no 
decision can be made about the optimum direc-
tion of the variable. The total costs are calculated 
corresponding to Equation {2}, whereby the fuel 
costs depend on the average cost per exergy unit 
of fuel and the exergy flow rate of  the product, 
which both are assumed to remain constant, and 
on the exergetic efficiency: 
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Figure 2.  Cost as a function of the exergetic efficiency. 
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This optimization problem can be solved analyti-

cally and leads to the optimum exergetic effi-

ciency of the component k (Bejan et al., 1996) 
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In each generation the reference points are recal-

culated in order to improve their reliability. But 

according to the assumptions and simplifications, 

the guiding information can only lead to a pa-

rameter set which is close to the optimum. From 

this point on the information obtained by an iso-

lated optimization will mislead the optimizer. 

Therefore, a conventional optimization technique 

can be used in order to determine the optimum 

exactly as can be seen in the example in section 

4. 

3.3  Key design variables 

Comparing the current exergetic efficien-
cies with the reference points yields the informa-
tion on increasing or decreasing the exergetic 
efficiencies. But, in fact, information on chang-
ing the decision variables is needed to guide the 
optimizer. Therefore, the key design variables 
are defined. The key design variables are the 
decision variables which are most promising for 
the optimization of one component. In principle, 
each of the decision variables can act as the key 
design variable for each of the components. To 
decide which variables affect the component’s 
cost most significantly, the cost functions as well 
as the exergy loss must be examined considering 

changes in the decision variables. In addition it 
has to be proven that the capital costs increase 
with increasing exergetic efficiency and the fuel 
costs of a component increase with decreasing 
exergetic efficiency. Otherwise the optimization 
of a single component is impossible as Figure 2 
confirms. Thus, the key design variables are de-
termined for each component of the system. In 
principle, one decision variable can act as the 
key design variable for more than one compo-
nent. To avoid contradictory information, the 
components are ranked in a priority list (see sec-
tion 3.4). 

The compressor’s key design variable is the 

isentropic efficiency as it affects the compres-

sor’s costs significantly. The influence of the 

pressure ratio on the compressor’s costs is not 

negligible, too. But this parameter cannot be 

chosen as a key design variable for the compres-

sor, as the fuel costs for the compressor  increase 

with increasing exergetic efficiency in the proc-

ess as a whole. Therefore, the reference point 

gained from an isolated optimization would mis-

lead the optimizer. Regarding the gas turbine the 

isentropic efficiency is the most promising vari-

able and not the turbine inlet temperature. The 

pressure ratio is ruled out, because the capital 

costs increase with decreasing exergetic effi-

ciency. The combustion chamber (CC) depends 

on the inlet temperature of the air and the outlet 

temperature of the hot gas. The two heat-

exchangers, the air preheater as well as the heat 

recovery steam generator, depend on all five de-

cision variables, but in both cases the tempera-

tures Tair=T3 and Tgas=T4 are most important. 

Therefore, they are selected both. 
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3.4  Algorithm for guiding the optimiza-

tion 

The following methodology is proposed for 
the automated algorithm using the exergo-
economic analysis to guide the Evolution Strat-
egy. 

• Rank the components in descending order of 

total costs with special attention to those 

components with high values for the relative 

cost difference rk. 

• The system components heading this list 

have priority, i.e. the component ranked 

higher decides on the direction. If the heat 

recovery steam generator, for example, leads 

the ranking, a decision is made on Tair and 

Tgas. Therefore, the combustion chamber and 

the air preheater need not to be taken into 

account. 

• Determine the upper and the lower optimum 

exergetic efficiencies following the method-

ology described in section 3.2. 

• Decide on the direction the key design vari-

able shall be changed to. This information is 

passed on to the mutation operator of the ES. 

If the current exergetic efficiency is lower 

than the lower optimum exergetic efficiency, 

increase ζk by changing the key design vari-
able. If the current exergetic efficiency is 

higher than the upper optimum exergetic ef-

ficiency, decrease ζk by changing the key 
design variable. Otherwise the mutation op-

erator is free to choose the value of the key 

design variable for the offspring. 

The information on the direction the key design 
variable shall be changed affects the normal dis-
tributed random numbers z of the mutation op-
erator (Eq. {2}). Depending on the information 
only positive or negative z-values are allowed. 
This limits the search space and therefore re-
duces computing time. 

4. Results 

A workable design for the cogeneration 
system under consideration has to be developed 
first. Here, the same values of the decision vari-
ables as in (Bejan et al., 1996) have been chosen: 

ΠC = 10.0, ηsC = ηsT = 0.86, 
Tair = 850 K, Tgas = 1520 K. 

Evaluating the objective function, the total 
annual costs amount 28.06 million $/a. To mini-
mize the total costs a (1,50)-ES has been applied. 
To find the optimum of this simple problem the 
conventional ES requires about 20 generations as 
shown in Figure 3. The cost-optimal case calcu-
lated by the ES reduces the total annual costs to 
25.5 million $/a. The corresponding values of the 
decision variables are: 

ΠC = 6.417, ηsC = 0.821, 
ηsT = 0.856, Tair = 919.10 K, 
 Tgas = 1469.89 K. 

The dotted line in Figure 3 represents the 
progression of the total annual costs versus the 
number of generations required for optimization 
aided by an exergy analysis as described above. 
Compared with the continuous line, which repre-
sents the conventional ES, the new methodology 
obviously leads faster to the optimum until the 
sixth generation is reached. As optimization pro-
ceeds, the value of the objective function deterio-
rates. Apparently, this is caused by the underly-
ing assumptions made for the isolated optimiza-
tion of the system components. Close to the op-
timum these assumptions mislead the optimizer, 
as the simplified evaluation of optimum exer-
getic efficiencies can only guide to a point, 
which is adjacent to the optimum. Otherwise the 
reference points would be identical with the real 
optimum exergetic efficiencies. As a conse-
quence, the exergy analysis has to be switched 
off, if the offspring get worse. Hereupon, a con-
ventional optimization technique can be used 
starting from the last best result in order to de-
termine the optimum exactly. 

TABLE I.  VALUES OF THE DECISION VARIABLES FOR THE EXERGY-AIDED OPTIMIZATION. 

Gen. ΠC ηsC ηsT Tair / K Tgas / K 
Total Annual Costs 
in Million $/a 

0 10.000 0.860 0.860 850.000 1520.000 28.060 

1 9.292 0.843 0.848 850.658 1497.202 26.606 

2 8.599 0.834 0.853 860.726 1468.520 26.000 

3 7.639 0.831 0.854 880.144 1464.224 25.723 

4 7.620 0.829 0.857 877.145 1455.076 25.707 

5 7.216 0.825 0.862 875.067 1465.254 25.695 

6 7.195 0.816 0.865 895.937 1462.432 25.569 
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Figure 3.  Evolution of the total annual cost during the optimization

TABLE I summarizes the values of the de-
cision variables of the best offspring for the first 
six generations. A closer inspection of the tem-
peratures, which are guided by the exergy analy-
sis, shows, that their direction changes during the 
optimization process. The temperature Tgas, for 
example, is led to decrease until a value is at-
tained nearby the optimum value. Henceforth the 
direction obtained by the exergy analysis alter-
nates and, consequently, the value of Tgas re-
mains in a small interval around the optimum. 
The same can be observed, too, for the following 
generations which are not reported in TABLE I. 
The isentropic efficiency of the compressor is 
changed as well in a proposed direction leading 
to the correct value in the first six generations. If 
a value occurs which is lower than the optimum 
value, however, the variable is still forced to de-
crease. Obviously, the simplified assumptions 
mislead the optimizer nearby the optimum in this 
case. The misled isentropic efficiency of the 
compressor is mainly responsible for the increase 
of the total annual costs as indicated by the dot-
ted line in Figure 3. 

5. Conclusions 

The methodology presented in this paper 
uses the information of an exergo-economic 
analysis to find the global economic optimum of 
an energy process without any interaction be-
tween engineer and optimization algorithm dur-
ing the optimization. Some preparations have to 
be made for the algorithm described in section 
3.4, whereby special care should be applied to 
the choice of the key design variables. A remark 
should be made to the fact, that no prediction can 
be made to optimize the pressure ratio. The total 
costs are affected significantly by the tempera-

ture Tgas and the compressor’s isentropic effi-
ciency, but the impact of the pressure ratio is not 
negligible as well. The pressure ratio is mutated 
by the ES itself, whereas the mutation of the 
other decision variables is aided by the exergo-
economic analysis. It has further to be empha-
sized that a prescription should not be made for 
each decision variable, as this could restrict the 
search space too much and therefore may limit 
the capability of the ES. This applies especially 
to complex processes. A notable reduction in 
computing time has been achieved for this par-
ticular case of a cogeneration system. The opti-
mizer is led to a point which is adjacent to the 
real optimum in the early steps. This does not 
necessarily imply general validity. Further inves-
tigations of other thermal systems, which are 
more complex than the CGAM problem, are re-
quired to analyze the capabilities of this method-
ology. 

Nomenclature 

C&  cost rate ($/a) 

c cost per unit of exergy ($/MJ) 

E&  exergy flow rate (MJ/a) or (MW) 
F objective function ($/a) 
I investment cost ($) 
p pressure (MPa) 
r relative cost difference 
T temperature (K) 
x decision variable 
B, n constants of cost function 
z random number 

Greek symbols 

δ step size 

ηs isentropic efficiency 
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κ capital factor (1/a) 

λ number of offspring 

µ number of parents 

ζ exergetic efficiency 

Π = p2/p1 pressure ratio 

Subscripts 

C compressor 
F fuel 
P product 
T turbine 
k component k 

Superscripts 

O offspring 
opt optimum 
P parents 
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