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Abstract  

The mathematical basis of the general theory is Bellman's dynamic programming (DP) 
and associated maximum principles. Our original contribution develops a generalized 
theory for multistage discrete processes in which time intervals can reside in the model 
nonlinearly and can be constrained. The new theory removes the requirement of the 

free intervals θn, yet preserves the most powerful features of the continuous theory of 
Pontryagin in the discrete context. Applications deal with dynamic optimization of 
diverse energy and chemical systems in which a minimum of entropy generation is the 
criterion of performance; from this basic criterion reasonable partial criteria are 
derived. It is possible to handle optimality conditions for complex systems with state 
dependent coefficients, and thus to generalize analytical solutions obtained in linear 
cases to nonlinear situations. Correspondence is shown with basic theoretical 
mechanics and classical Hamilton-Jacobi theory when the number of stages approaches 
an infinity.  

Key words: optimization, constrained energy systems, discrete control, Hamiltonian 
theories  
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1. Introduction 

In this paper two Hamiltonian theories are 
analyzed which are ideally suited for 
optimization of single-stage and multistage 

energy systems such as: thermal machines, solar 
collectors, multi-gap (or tandem) solar cells, 

heating and drying unit operations, solid handling 
systems and chemical reactors. The optimization 
criteria the theories may handle can be arbitrary; 

in particular they can be constructed on the basis 
of exergy or economic balance. The first theory is 
a relatively little known discrete theory with a 

constant Hamiltonian (Sieniutycz, 1991), and the 
second one is the new theory which is a quasi-
Hamiltonian generalization of the former. The 

new theory, which is presented in the last section 
of the paper, synthesizes the two known 
optimization theories: the traditional (Katz's-

Fan's) multistage theory (Fan and Wang, 1964), 

where the Hamiltonian is not that of Pontryagin 

(Pontryagin, 1982), and the first theory based on 
the Pontryagin's like Hamiltonian whose model 

admits only free residence time intervals, θn 
(Sieniutycz, 1991). The new theory removes the 

requirement of the free intervals θn, yet it 
transfers the most powerful features of the well-

known continuous theory of Pontryagin to the 
realm of discrete processes.  

To formulate the new theory, a class of 
multistage optimal processes linear with respect 
to a constrained residence time interval (or a state 

variable interval) is derived from an arbitrary set 
of difference constraints. Next, with the help of 
dynamic programming method (Bellman, 1957; 

Aris, 1964; Findeisen et. al., 1980), the necessary 
conditions of optimality are determined in a form 
which contains a discrete Hamilton-Jacobi 
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equation, the optimal control condition and 
discrete canonical equations. It is then shown that 

in discrete non-autonomous systems with 

unconstrained time intervals, θn, an enlarged, 

Pontryagin-like Hamiltonian nH
~

 emerges, which 
vanishes along the optimal discrete path. In 

processes with constrained θn, the constancy of 
nH

~
, could still be attained by inclusion of the 

Lagrange multiplier of the time constraint, λ; yet 

in terms of nH
~

 the canonical equations are 

modified by presence of λ-dependent terms. 
From a physical standpoint, the constancy 

condition nH
~

= 0 for free optimal θn is a sort of 
tenergy conservation condition as applied to 
optimal discrete systems.  

Applications can be illustrated with the 

optimization of multistage heat-pump-assisted 
heating operations and with drying operations 
which may use solar energy. Applications with 

thermal machines involve an extension of the 
classical problem of minimal work to multistage 
operations with finite heat transfer area. Benefits 

resulting from power and versatility of both 
theories when they are applied to optimization of 

diverse energy systems are explicit. A more 
detailed account of applications can be found in 
the forthcoming book (Berry et. al., 2000) and a 

monograph (Sieniutycz, 2000).  

2. Continuous Optimization Problem 

To derive necessary optimality conditions, 

dynamic programming (DP) is applied to both 
continuous and discrete processes. A discrete 
approach to sequential systems allows one to pass 

from DP results to a nontraditional discrete 
maximum principle which is another powerful 

computational tool.  

Here is an outline of our methodology. We 
search for a maximum of a Bolza functional S, 

with a gauging function G, subject to differential 

constraints for the state vector x 

),t,(f
dt

xd i ux=  (1) 

The control  u = (u1, u2, ...ur) is constrained i.e., 

u∈U where U is the admissible set in the control 
space. We define an optimal performance 

function V(xi, ti, xf, tf) as max S, i..e 
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Bellman`s optimality then yields the so-called 
HJB equation (Hamilton-Jacobi-Bellman 

equation; (Sieniutycz, 1991; Findeisen et. al., 
1980) 
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appears in a HJB equation for V. To solve the 
variational problem of max S we can solve the 

HJB equation in terms of u to obtain u(p, t, x). 

When we substitute this function into Eq. (3) the 
Hamilton-Jacobi equation for V follows 

0)
x

V
,t,(H

t

V

i

=
∂

∂
−+

∂

∂
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This form refers to variations of final states and 

times.  

3. Optimization of Discrete Processes 

Our first main purpose is to develop a 
discrete analogy with Eqs. (1) - (5) which would 
allow description of real multistage processes 

with small number of finite stages, whereas our 
second purpose is to exploit this analogy to 
construct discrete computational algorithms that 

would numerically solve continuous problems at 
the limit of very large number of stages, N. Thus 

we consider the discrete Bolza functional SN 

)t,(G)t,(G
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The maximum for SN of Eq. (6) is subject to 

constraints resulting from difference equations 

      .),t,(fxx nnnn
i

1n
i

n
i

θ=− −
ux  (7) 

The discrete optimization problem can be stated 
as that of maximizing S for n = N when the initial 

point (x0, t0) is fixed. In optimization it is 
essential to recognize the role of the necessary 

optimality condition for free intervals of time, θn, 
which yields a vanishing "enlarged Hamiltonian” 

and the role of generalization of Bellman's 
recurrence equation to the so-called stage 
criterion. The latter enables one to include 

variations of end states and times, thus yielding 
simultaneously the discrete characteristics and the 

conditions for an optimal control.  

A definition of the optimal performance 
function V states this function in the form 
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where k
0f
~
is the gauged profit intensity, a discrete 

analog of that in Eq. (4). The stage criterion 
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where Pn = G0 - G(xn, tn) + Vn, is applied to 

determine the set of necessary optimality 

conditions including those with respect to xn and 

time tn. This realizes passage to the algorithm of 
discrete maximum principle and related canonical 
equations.

 
Equation (9) yields all relevant 

information: it leads to HJB equations, definition 
of H, state adjoints and canonical set. Bellman's 
equation follows in a 'forward' from the criterion 

(9) for the fixed final state and time. Thus, 

starting with V0 = 0 the sequence V1,...Vn...VN 
can be obtained by a recurrence procedure 

searching for extremum controls un and θn at the 

constant coordinates (xn, tn). This leads to the 
condition: 
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which is a discrete HJB equation (Sieniutycz, 

1991; Berry et. al., 2000). It represents a 

maximum principle with respect to un for the 
'Hamiltonian', the expression in braces of the 
above equation. Equation (10) states that the 

necessary condition for the maximum of SN with 

respect to the control sequence {un} is that for 

the Hamiltonian. When the optimal control un is 
evaluated from Eq. (10) and substituted into it, 

the result becomes the discrete Hamilton-Jacobi 
equation 

0tPxP
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which is nonlinear in terms of the derivatives 

∂Pn-1/∂xn-1.  It is written for the extremum Hn-1. 
In the limiting case of an infinitesimal sequence 

of θn, this equation goes over into the Hamilton-
Jacobi equation of a continuous process.  

Let us now fix controls un and θn in Eq. (9) 
and differentiate its expression in braces to 

determine the stationarity conditions with respect 

to the final state and time. We obtain an optimal 

difference set canonical with respect to two sorts 

of equations, one defining the changes of state 

and one the related changes of the adjoint 

variables. Using the phase-space Hamiltonian of 

energy type 
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the algorithm of the discrete maximum principle 

follows in the form 
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 (n=1,...N; i=1,...s and l =1,...r.). For more details, 

see ref. (Sieniutycz, 1991; Berry et. al., 2000; 
Sieniutycz, 2000). Quite importantly, Eq. (15) 
does not follow (as in the continuous version) 

from the canonical equations for xi and zi, but it 

represents an independent extremum condition 

associated with the optimal choice of θn. In 

autonomous systems, Hn = Hn-1, i.e., the 
Hamiltonian is constant along an optimal discrete 
path.  

4. Some Computational Aspects 

Two most effective computational approaches are 

non-traditional. The primary idea is to solve some 

underlying equations such as the stage criterion 

equation (9) or its maximum principle equations 

(12) - (16), rather than related HJB equation (10) 

or Hamilton-Jacobi equation (11). This is 

because the solving methods for the preferred 

equations are those most efficient. The control 

theory approach used here differs from the 

traditional approach in which Hamilton-Jacobi 

equations are solved. Both continuous and 

discrete control processes are treated in the 

framework of the common discrete formalism. In 

the continuous case prior discretizing of the 

process differential equations is required. Eq. (9) 

is solved numerically in the form 
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where the symbol 
n~x  denotes the enlarged 

vector (xn, tn) and the tilde over D
n
 refers to the 

gauged cost including the effect of the state 

function G. The gauged profit 
nD

~
= 

n
0f
~

θn is a 
discrete counterpart of the continuous profit (4). 

Now we outline the second basic numerical 

method. It applies the discrete maximum 

principle with the energy-type Hamiltonian. The 

necessary extremum conditions are discrete 

canonical equations. For numerical applications 

they are written in a form of algebraic equations 

which should be solved with a computer. Typical 

optimization problems lead to two-point 

boundary conditions. Due to the strong analogy 

with the Pontryagin's algorithm, procedures 

which deal with two-point boundary values and 

control improvement are identical with those 

applied in the standard continuous algorithm. 

Methods of trajectory improvement in the state 

space, and gradient methods in the control space 

are effective. Quite generally, an approach 

transforms the discrete maximum principle into a 

final set  

0)t,,,(F nn1nn
1 =−

zxx  (18a) 

and 

0)t,,,(F nn1nn
2 =−

zzx  (18b) 

From this set the state and adjoints before n-th 

stage, xn-1 and zn-1, and all other quantities are 
determined, thus the computer may pass to the 

stage n-1. This is a backward procedure, 
necessary in the case of complex dependence of 

the rate functions on the state xn. See ref. 
(Sieniutycz, 2000) for more information.   

5. Examples of Applications 

We now present a review of applications of the 
theory in multiphase systems. We begin with a 

process in which work is produced by multistage 
thermal machines operating between a fluid and a 
bath, a sequence of 'endoreversible' engines. In an 

analytical multistage problem one maximizes the 
work criterion 
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The task is to achieve an extension which could 
take into account the variability of thermal and 

transfer coefficients (such as the specific heat 
capacity c or the overall heat transfer coefficient 

α' contained in χ) and to include mass transfer. 
This is important because only numerical 

solutions are possible for complex profits nD
~
or  

n
0f
~
. Therefore, instead of maximizing extensions 

of Eq. (19) analytically, a computer generates 

tables of optimal controls and optimal costs 
through direct extremizing procedure contained 
in the recurrence equation 
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where h = H serves as the Lagrange multiplier of 
time constraint. The X-free truncation of this 
equation serves to generate numerical solutions 

for pure heat transfer when both transfer 
coefficients vary along the process path and an 
analytical solution cannot be obtained. The 

classical thermodynamic work is recovered in the 

reversible limit ( ∞⇒τ f ). The reversible work 

represents an exact evaluation of the maximum 

work for infinite size systems only, or for systems 
with excellent transfer conditions. Clearly, 
reversible thermostatic limits are too low to be 

realistic, and the finite-time limits are more useful 
in practical evaluations. 

We now consider another group, the separation 

processes of drying and adsorption. They do not 
generate mechanical energy although they may 
yield valuable products. They  often run in 

cascades of ideally mixed fluidized beds. They 
are example of processes described by highly 

nonlinear state equations (sigmoidal equilibrium 
curves which don't approach straight lines even in 
limiting cases). Their performance index is an 

exergy cost which may be written as 

n
N

1n

n
g

n
g

n
g

n ]h)X,T(eb[S θ+−≡ ∑
=

(21) 

where bg is the specific exergy of a drying gas, 

and e is the economic value of the exergy unit. 
The h part of (21) represents the investment 

costs. To optimize this process, Belman's 
equation such as Eq. (20) can be solved. 
However, in this case we use the discrete 

maximum principle, Eqs. (12)-(16), and the 
numerical solution is obtained for optimal 
controls, optimal trajectories and optimal costs. 

The solutions apply to drying of sugar, porous 
sorbents and T-sensitive biological materials. 
These are dried relatively quickly, but otherwise 

their final T cannot be too high. The results show 
that the design of expensive apparatus should be 
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associated with intense optimal processes, to 
assure short process duration.  

Now we shall deal with relaxation processes 
in which state variables are linked by 

conservation laws for the energy, mass and 
momentum. This requires an approach which 
applies Lagrange multipliers to handle dependent 

rates. The system contains two phases δ and γ 
which relax to the mutual equilibrium, due to the 

internal heat and mass transfer between 
subsystems. In view of state-dependent 

dissipation, instead of solving a HJB equation we 
solve a recurrence equation for the minimum of 
entropy production  

nnnnn
0

n',n,nv

nn )',,x(l{min)(S θµ=
µθ

σ vx
 

)}.v(S nnn1n θ−+ −
σ x  (22) 

where l0
n
 is the thermodynamic Lagrangian, the 

sum of the rate-dependent and state-dependent 
dissipation functions plus a term with the 

Lagrange multiplier µµµµ' as an extra control that 
handles the conservation law constraint. The 

superiority of Eq. (22) over a traditional 
variational formulation follows from arbitrary 

dependence of resistance functions on the state x. 

The production of the entropy obtained should be 

subtracted from a fixed final entropy Sf to get the 
actual entropy of the system. 

Now we pass to a problem of least 

resistivity for heat rays in inhomogeneous 
systems. When the thermal gradient is prescribed, 

the flow of thermal energy can be described in 
terms of 'heat rays', or paths of energy flow in 

direction of the gradient of T-1. Their deviation 
from straight lines results from variable thermal 
conductivity. The heat rays trace paths satisfying 

the principle of minimum of entropy production 
which assures the minimum resistivity of the 

path. The shape of heat rays is an optimal control 
problem for minimum of the resistance integral  

dx)u1)(x(A)S(
2

2t

1t

0 +ρ=− ∫  (23) 

subject to the control u = dy/dx. A0 is the 

constant area of projection of the heat flux tube 
crossectional area on the surface of constant 

resistivity. The principal function R(xi, yi, xf, yf), 
defined as the minimum of the integral (23), 

satisfies a HJB equation in which the maximum 
condition yields an optimal control in the form of 
the tangent law of bending for a thermal ray, 

ρ(x)dy/dx = constant.  The solution to this HJB 
can always be broken down to quadratures. 

However, if the resistivity ρ(x) is too complex, 
the integrals cannot be evaluated analytically. 

Hence the role of the discrete approach which 
solves numerically the recurrence equation  

n2n1
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where θn = xn - xn-1. This does not have an 

analytical solution for an arbitrary ρ(xn), thus the 

sequence Rn is generated numerically. For 
N ∞→ the numerical solution to Eq. (24) 

automatically accomplishes the numerical 
integration. 

Our last example deals with chemical waves 
rotating in porous membranes where propagation 
of concentration fronts as (bio)chemical waves 

satisfies the principle of minimum time. The DP 
approach leads to a HJB equation and its 

characteristic set for chemical waves. Usually 
'geodesic' constraints due to an obstacle influence 
the state changes and the entering (leaving) 

conditions of a ray as a tangentiality condition for 
rays that begin to slide over the boundary of an 
obstacle. When a function describing the velocity 

of wave propagation c is known, a HJB equation 
can be formulated. For a constrained problem of 
minimum time in 3D systems, a HJB equation is 

2222',v,u vu1

u)v,u,(c

y
vu1

)v,u,(c

x
max{

++∂

γ∂
+

++∂

γ∂

µ

xx

0))(1(

vu1

v)v,u,(c

z

γ }
22

=φµ′+−
++∂

∂
+ x

x
 (25) 

where u = dy/dx, v=dz/dx,  and γ is the unknown 
function which describes the shortest transition 

time. The constraint φ(x)=0 was built in, 
operative when the ray slides over the surface of 

an obstacle; the related Lagrange multiplier is µ. 
The multipliers of ∂ γ/∂x, ∂ γ/∂y and ∂ γ/∂z in Eq. 
(25) represent the rates dx/dt, dy/dt and dz/dt that 

satisfy identically the constraint (dx/dt)2+ 

(dy/dt)2 + (dz/dt)2= c2(x,u,v). The numerical 

solution can be found by a DP equation for the 

minimum time γn = Σθn  
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Equation (26) makes possible numerical 

generation of the function γ(x, y, z) for the case 
of constrained wave motions in confined regions 

and in complex media. Experiments confirming 
the theory are available. Our examples show that 
highly nonlinear systems can be treated. 

6. Outline of Generalized Theory for 
Arbitrary Discrete Processes 

Here we briefly show how the theory can be 

generalized so that it can handle constrained 
intervals of time and arbitrary state 

transformations in which there is originally no 
control which appears linearly in the optimization 
model. When optimizing general discrete 

processes we deal most commonly with state 
transformations consistent with the backward 
algorithm of dynamic programming. In this case 

the original constraints are in the form of s+2 
transformations  

),(Tx n1nn
k

n
k

ux
−=  (27) 

where k= 0, 1,...s, s+1, the 0-th state variable is 
the profit coordinate and s+1-th state variable is 

accepted as a time-like coordinate. As long as the 
coordinate xs+1 is the usual time t, the state 

vector x used here includes the space-time vector 

x~ . Assuming that changes of the profit 

coordinate x0 on the right hand sides of 

transformations (1) can only be additive, i.e. that 

n
0T  has the structure 1-n

0x + g
0
(

1-n~x , un) and the 

remaining 
n
k
T  does not contain 1n

0x
− , we can 

deal as before with the optimal functions Vn = 

maxSn and Pn = Vn + G0 - Gn. In these functions 

our present vector xn marks solely coordinates of 
the space-time, without the profit coordinate x

0
. 

Equation (27) represents, in fact, a common 

description in which each state output n
kx is 

expressed in terms of all state inputs xn-1 and all 

controls un. To be able to use these expressions 

in the forward DP algorithm we first invert them 

to gain transformations nkl (x
n, un) in which each 

state input 
1n

k
x −

is expressed in terms of all state 

outputs xn and controls un.  With inverted 
transformations at our disposal we consider 

constraints in the form of s+2 transformations 
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By introducing the s+2 functions gk(x
n, un) 

defined as follows 

),(lx),(g nnn
k

n
k

nn
k

uxux −≡  (29) 

the inverted transformations (28) take the form of 

difference equations 

),(gxx nn
k
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n
k
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where k= 0, 1...s+1.  

Now we introduce the interval of the time-

like variable either as ≡θn tn - tn-1 (whenever 

xs+1 t≡ ) or as the quantity defined by an 

equation 

n1n
1s

n
1s xx θ=− −

++  (31) 

Note that the function gs+1 ≡ gt in Eq. (30) 
constraints intervals of time; they must satisfy Eq. 
(30) for k = s+1. We also define functions of 
relative rates 
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Clearly, fs+1 ≡ 1. Applying these definitions in 
Eq. (30), we recover the basic difference model 
(7) as the substructure of the following s+ 2 
equations of state 

,),(gxx nnn
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 (k= 0, 1...s+1 and fs+1 ≡ 1), However, in this 

model the controls (un, θn) should not only 

satisfy the standard constraint un∈U but also one 

extra constraint 

0),(g nn
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which limits the time intervals. Later we consider 
a generalization of Eq. (34) in which the 

inequality constraint θn - gs+1 ≤  0 replaces the 
original equation (34).  

In the present notation, the discrete Bolza 

criterion SN, Eq. (6), has the form 
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This quantity should attain a maximum subject 
the above set of constraints. As the profit 
generation intensity is independent of the 

coordinate x0, the latter does not appear in Eqs. 

(32), (34) and (35).  
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The presence of the constraint (34) changes 
the form of the effective profit intensity which 

has to be applied in the stage criterion when 
deriving a canonical set from this criterion. A 

modified profit function 
n
0f
~
λ  which adjoints 

constraint (34) to the original function 
n
0f
~
 by a 

Lagrange multiplier λ be used in the stage 
criterion of the DP type. In the present case the 
stage criterion has the form 
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Dealing with this criterion we define state 
adjoints in the manner consistent with the 

Hamiltonian (12) 
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 (k = 1...s, s+1). Here, however, we shall use the 

enlarged Hamiltonian (including the time adjoint) 
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From Eq. (36), the necessary condition for 

maximum of SN with respect to intervals θn is 
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and that with respect to controls un is 
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Equation (39) implies that for stationary and 

positive intervals θn, Eq. (31), and active 
constraint (34) the enlarged Hamiltonian is not 

constant as in the free-θ theory but satisfies the 
condition 

0),z,(H
~ nn1nn1n =λ+−− ux  (41) 

Equation (40) shows that interior optimal 

controls un satisfy the condition 
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which becomes the local maximum condition for  
1nH

~ −
(and sometimes Hn-1) only in case of 

unconstrained θn.  Equation (41) shows that the 
negative value of the Lagrange multiplier for the 

active local constraint (34) equals the value of the 
enlarged Hamiltonian function.  

Now we perform variation of state and time 
coordinates in the stage criterion (36). Splitting 

the effect of space and time and using condition 
(41) we get a 'quasicanonical' set of optimality 
conditions 
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and 
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where k = 1...s. The above set is purposely 
written in the form suitable to comprise both the 

present theory of constrained θn and that of free 

θn described at the beginning. For the former the 

identification θn = gs+1 should be made on the 
left hand sides of Eqs. (43)-(47). For the latter, 

constraint (34) is absent or the corresponding 

inequality θn - gs+1 ≤  0 is inactive, in which 

cases λn = 0 and θn is free; then the basic 
algorithm, derived at the beginning, is recovered. 

In this case the enlarged Hamiltonian 
1nH

~ −
 

vanishes and the set (43)-(47) becomes canonical. 
With the general model (43)-(47) we can treat 

optimization of arbitrary discrete processes. 

Examples of applications for systems in which θn 

are free (the case when 1-nH
~

=0) are known 

(Sieniutycz, 1991; Berry et. al., 2000; Sieniutycz, 
2000).  Examples of application for  systems with 

locally-constrained θn will be reported.  

6. Conclusions 

We have synthesized powerful mathematical 
approaches to dynamic optimization of nonlinear 
active and inactive sequential energy systems. 

Applications which deal with diverse energy and 
chemical systems lead to optimal performance 
functions, optimal trajectories and optimal 

controls that are found in terms of end states, 
process duration and number of stages, N. The 
canonical and quasicanonical structure of 

equations describing optimal processes is shown. 
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The new, most general,  theory synthesizes the 
two known optimization theories: the traditional 

multistage theory, where the Hamiltonian is not 
that of Pontryagin, and the first theory based on 

the Pontryagin's like Hamiltonian whose model 
admits only unconstrained residence time 

intervals, θn. The new theory removes the 

requirement of the free intervals θn, yet it 
preserves the most powerful features of the 
continuous theory of Pontryagin in the discrete 

context. Our approach makes it possible to 
determine optimality conditions for complex 
systems with state dependent coefficients, and 

thus to generalize analytical solutions obtained in 
linear cases to nonlinear situations. Optimal 

performance functions that describe extremal 
values of optimization criteria are found in terms 
of end states, process duration and number of 

stages, N. Alternatively, Legendre transforms of 
original functions with respect to the time t are 
generated; then the optimal functions are found in 

terms of end states, a Hamiltonian and N. With 
the help of our theory, general limits for energy 
consumption (production) are found for finite 

durations; they bound the consumption of the 
classical work potential (exergy) in a given finite 
time.  

As pointed out earlier, one of main goals of 
this work is a discrete analogy with the 

continuous theory which would allow description 
of real multistage processes with small number of 
finite stages. As pointed out by the referee of this 

paper, in relation to that goal, it is known that 
even the simplest of the discrete (fixed N) 
problems are rife with local optima, thus the mere 

stating of necessary optimality conditions, such 
as the Hamiltonian-based canonical and 
quasicanonical sets may be insufficient. In this 

regard it is worth stressing that, as opposed to the 
Hamiltonian-based algorithms, the stage criterion 

(36) constitutes quite generally also the locally-
sufficient optimality condition. This is, in fact, 
the criterion, that is capable of yielding a 

computational scheme for a computable 
suboptimal solution whose deviation from 
optimality is small and can be estimated in terms 

of N.  A related issue is that, in the case of free 

θn, the difficulties associated with local optima 
are reduced due to vanishing second order terms 
in Taylor expansions of optimal performance 

functions. For this issue, see Refs. (Findeisen et. 
al., 1980) and (Berry et. al., 2000) which also 
discuss the convergence conditions for discrete 

solutions to achieve the continuous limit. 

Optimal-performance-based choice of time 
intervals, which involves global or integral 

criteria, may be compared with the group of 
special-purpose integration methods for OD 

equations called collectively the structure-
preserving integrators (also called mechanical or 

geometric integrators). In these methods local 
discretizing structure may be established without 

explicit recourse to an optimization criterion 
although it has to preserve exactly a number of 

important properties known for OD equations. 
Examples are symplectic integrators for 
Hamiltonian OD equations, volume-preserving 

integrators for divergence-free OD equations, 
time-reversing symmetries preserving integrators, 
and integrators preserving the structure of 

gradient and Lyapunov systems (McLachlan et. 
al., 1999; McLachlan and Quispel, 1998). 
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Nomenclature 

A available energy (exergy) 
A, a cumulative and local heat exchange 

area, respectively 
av specific area of heat exchange (per 

unit volume) 

bg specific exergy of  controlling gas  

c specific heat at the constant 

pressure 
D
n
 profit at stage n 
nD

~
 gauged profit at stage n 

e economic value of the exergy 
F cross-sectional area of the system 

f0 profit intensity 

n
0f  profit at stage n 

n
0f
~
 gauged profit intensity  

f = (f1...fs) vector of process rates 

fn rate vector at stage n 

G(x, t) gauging function depending on 

state x and time t 
g conductance 

H(x, u, z, t) standard Hamiltonian function of a 

continuous process 

Hn-1(xn, un, zn-1, tn) Hamiltonian function of 

a discrete process at stage n 

 H 
n-1 
( x n ,  t n ,  u n ,   z n-1 ,  z t 

n-1 ,  t n ) enlarged Hamil-

tonian at stage n 
h numerical Hamiltonian, Lagrange 

multiplier of time constraint 
n
0l = -

n
0f  process Lagrangian at stage n 

l distance variable in an exchanger 
N total number of stages  
n current stage number  

P = Gi-G+V effective optimal profit function 

with gauging term 

Pn optimal gauged profit at n-th stage  

R universal gas constant 
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R total resistance of a thermal path 

Rn(x, t) optimal cost function at stage n 
n
*R  (xn, h) modified optimal cost  

S thermodynamic entropy 

SN performance index, optimization 
criterion for N-stage process 

s number of coordinates 

Sσ integral entropy production 

Tn(xn, un) state transformation function  
T temperature of key phase 

Te temperature of reservoir  

Tn temperature of flux from stage n 
n
gT  temperature of gas phase at stage n 

t holdup time 

U admissible control set 

u = (u1,u2,..ur) control vector  

n~u  enlarged control vector at stage n 

un, vn rates of change as controls  
V ≡maxS optimal performance function of 

profit type 

Vn(x, t) optimal profit function at n-th stage 

of the process 
X concentration, gas humidity 

n
gX  absolute humidity of gas at stage n 

x = (x1, x2, ...xi...xs) state vector of a general 

process 
x, y, z Cartesian coordinates 

x~  enlarged state vector with the last 

coordinate xs+1 ≡ t 
x0 performance coordinate 

zn adjoint vector of a general process 

1n
iz
−
= - ∂Pn-1/∂ 1n

i
x −

 adjoint variable for 

coordinate n
ix  

Greek symbols 

∇  nabla operator 

θn free interval of an independent 
variable or time interval at stage n 

Λ generalized Lagrangian 

µµµµ' ≡  vector of  Lagrange multipliers  

ρ thermal resistance  

σ entropy production of unit volume 

ϒ passage time for a chemical wawe 

τ nondimensional time 

φa(x, t) constraining function 

Subscripts 

i i-th state variable; 

σ dissipative quantity 
0 zero-th variable, profit, reference 

state 

* transformed or modified quantity 

Superscripts 

e environment 

f final state 
i, initial state; 

k or n number of k-th or n-th stage 

q~  enlarged quantity q 

References 

Sieniutycz, S., 1991, Optimization in process 

engineering, 2-nd edn. Wydawnictwa Naukowo 
Techniczne: Warszawa. 

Fan L. T., Wang C. S., 1964, The discrete 
maximum principle, a study of multistage system 

optimization. New York:  Wiley. 

Pontryagin, L. S., Boltyanski V. A.,  Gamkrelidze 

R. V., Mischenko E. F., 1982, The mathematical 
theory of optimal processes. New York: 
Interscience. 

Bellman, R.E., 1957, Dynamic programming. 

Princeton: Princeton University Press. 

Aris, R., 1964, Discrete dynamic programming. 

New York: Blaisdell. 

Findeisen, W., Szymanowski J., Wierzbicki, A., 
1980, Theory and computational methods of 
optimization. Warszawa: Panstwowe 

Wydawnictwa Naukowe. 

Berry R. S., Kazakov V.A., Sieniutycz S., Szwast 
Z., Tsirlin A. M., 2000, Thermodynamic 
optimization of finite time processes. Chichester:  

Wiley. 

Sieniutycz S., 2000, Hamilton-Jacobi-Bellman 
framework for optimal control in multistage 
energy systems, Physics Reports 326, Issue 4, 

March 2000, pp. 165-258. Amsterdam: Elsevier. 

McLachlan R. I., Quispel G.R.W., Robidoux N., 

1999, Geometric integration using discrete 
gradients, Phil. Trans. R. Soc. Lond. A 357 1021-

1045 

McLachlan R. I., Quispel, G.R.W., 1998, 

Generating functions for dynamical systems with 
symmetries, integrals and differential invariants, 
Physica D 112 (1998) 298-309, and references 

therein. 
 

 
 
 

 
 

 

 
 

 

 


