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Abstract 

The objective of this paper is to investigate the sources of volumetric irreversibilities in 
both laminar and turbulent diffusion flames. The theoretical background of analysis 
relies on the local exergy transport equation, which allows the microscopic formulation 
of the well-known Gouy-Stodola theorem. For laminar reacting flows, the volumetric 
entropy generation rate expression includes the viscous, thermal, diffusion and chemical 
components. Their expressions show that the corresponding irreversibilities are 
uncoupled if the combustion process occurs at constant pressure. The numerical 
simulation of a methane-air combustion process shows that the thermal, chemical and 
diffusive irreversibilities represent, in order of enumeration, the predominant 
irreversibilities in the laminar diffusion reacting flows. In the case of turbulent diffusion 
flames, the viscous, thermal, diffusion and chemical mean components have to be 
expressed in accordance with the combustion model. Two combustion models are used: 
the multi-species approach based on the eddy-break formulation of mean reaction rate, 
and the assumed probability density function for a conserved scalar that relies on the 
flame sheet model. For a diffusion methane-air jet flame, the distribution of mean 
irreversibility components is presented. Taking into account the technical importance of 
diffusion flames, the analysis could serve to improve the combustion geometry and the 
flow condition. 
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1. Introduction 

In the field of power generation, the 
chemically reactive flows have a significant 
relevance. The flame sheet is the place where the 
chemical fuel exergy is transferred to thermal 
exergy of the fluid in an irreversible manner so 
that a fraction of the exergy is always destroyed. 
 At the bulk level analysis, the well-known 
Gouy-Stodola theorem establishes the liaison 
between the lost exergy and the generation of 

entropy. This method can be easily applied, but it 
hasn’t enough accuracy and it doesn’t emphasize 
the peculiarities of the exergy dissipation. 
Because of the great complexity of the chemical, 
mass and heat interactions, the continium level 
represents the only reasonable approach in the 
second law analysis of a reacting flow. This level 
of analysis was first formulated by Bejan (1983), 
who applied it in the case of laminar single-
component flows. It was also used for the single-
component turbulent flows (Sciuba, 1994), 



(Stanciu et al., 2000*) where specific dissipation 
mechanisms are generated by the fluctuating 
field (Stanciu et al., 2000).  In this paper, we 
extend this method to both laminar and turbulent 
diffusion flames.  

2. Second Law Analysis of Laminar 
Diffusion Flames 

The first step in performing the second law 
analysis is to obtain the mathematical model of 
laminar reacting flow. Based on it, the local 
exergy balance equation will be derived. This 
equation establishes the liaison between the 
volumetric entropy generation rate and the local 
dissipation of the flow exergy. In the following 
step, the general expression of the volumetric 
entropy generation rate will be put in an 
applicable form. Finally, the importance of each 
irreversibility mechanism on the exergy losses 
will be numerically investigated in the case of a 
diffusion methane-air jet flame. 

2.1  The mathematical model of diffusion 
reacting flow  

Let us consider a laminar chemically 
reacting flow of a multi-component gaseous 
mixture. For the sake of simplicity the flow 
chemistry is described by a single step reaction: 

NN2211NN

2211
A........AAA

........AA
ν ′′++ν ′′+ν ′′→ν′+

++ν′+ν′
 (R1) 

where ,  represent the stoichiometric 
coefficients of reactants and products and A

iν′ iν ′′
i 

stands for the chemical species. The 
mathematical model of the flow consists in the 
continuity (1), species (2), momentum (3) and 
energy Eqs. (4a). Their conservative forms are 
(Libby and Williams, 1993): 
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Of course the total energy e* and the total 
enthalpy h* appearing in the energy Eq. (4a) 

both include the energy of formation of the 
species involved, the kinetic energy and the 
potential energy of the flow. This equation, 
which represents the general volumetric 
formulation of first law of thermodynamics for 
multi-component systems, can take various 
forms. In low speed flows, it is customary to 
adopt the static enthalpy as the variable 
characterizing the energy content of the fluid, so 
that Eq. (4a) is replaced by: 
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Eqs. (1)-(4) must be completed with the 
definitions of diffusion velocity , heat flux 

, and viscous stress tensor . With some 
classical assumptions involving the diffusion 
phenomena and the absence of radiation, Fick’s 
law, Fourrier’s law and the Newtonian mixture 
hypothesis lead to:  
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where µV is the molecular viscosity, λV 
represents the thermal conductivity and Dim 
stands for the diffusion coefficient of i-chemical 
component in mixture. In order to close the 
system (1) - (4) the equations of state must be 
added. In these conditions we restrict our 
analysis to an ideal gas mixture for which: 
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where represents the energy of formation of 
i-specie and R

)o(
ih

M is the universal gas constant. 
Although the ideal gases mixture hypothesis 
restraints the generality of the analysis, its 
important role in the technical combustion 
processes is well - known. 

In this formulation, the mathematical model 
of reacting flows includes all the chemical 

Int.J. Applied Thermodynamics, Vol.4 (No.1) 2



components of gaseous mixture. For this reason, 
it will be named the multi-species model. It is 
valid for both diffusion and premixed flames but 
has the disadvantage of using N+4 equations, 
which may be expensive from the computational 
point of view.  

In the case of diffusion flames, the number 
of equations can be dramatically reduced using 
the Shvab-Zel’dovich approximation that allows 
the definition of mixture fraction ξ. For a single 
irreversible reaction that reads: 

PrInOF InOF →ν′+ν′+ν′  (R2) 

involving the fuel F, the oxidizer O and the inert 
specie In as reactants and the products Pr, the 
mixture fraction is defined as: 
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where β is the coupling function and the 
subscripts 1 and 2 identify the fuel and the 
oxidizer streams of the two feed system. 
Assuming a single diffusion coefficient and a 
Lewis number equal to unity for all chemical 
components (meaning D=Dim=const. and Lei=1), 
the species and the energy equations take the 
same form, so they can be replaced with that of 
mixture fraction:  
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Finally, in the Burke-Schumann approximation 
(Burke and Schumann, 1928), all the thermo-
chemical variables can be recovered from the 
mixture fraction solution: 

( ) ( )st
st

st
2,FF H

1
YY ξ−ξ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ξ−
ξ−ξ

=ξ

( ) ([ )]st
st

st
1,OO H1YY ξ−ξ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ξ

ξ−ξ
=ξ  (12a,b)  

( ) ( ) ξ−+=ξ 1,in2,in1,inin YYYY
( ) ( ) ( ) ( )ξ−ξ−ξ−=ξ inOFpr YYY1Y  (12c,d) 

( )
( ) ( ) ( )

( ) ( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

ξ≤ξξ
ξν′

+ξ

ξ≥ξξ−
ξν′

+ξ

=ξ

st2,F
pFF

F
f

st1,O
pOO

F
f

 for         Y
cM

H
T

 for  1Y
cM

H
T

T (13)  

where  is the stoichiometric value of the 
mixture fraction, and T

stξ

f represents the frozen 
mixture temperature that read: 
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In the above expressions, M represents the 
atomic mass, HF stands for the lower heating 
value of fuel and ( )xH  is the Heaviside step 
function. Subscripts F, O, in and pr denote the 
fuel, the oxidizer, the inert and the product 
species of chemical global reaction (R2) and 
subscripts 1 and 2 identify the streams of the two 
feed system. Of course, this model involves 
some approximations that alter its accuracy, but 
has the great advantage of solving only four 
partial differential equations.   

2.2  The exergy balance equation 
A bulk level analysis shows that reaction 

(R1) performs the conversion of chemical exergy 
into a thermal one. Of course, the Gouy-Stodola 
theorem establishes the liaison between the lost 
exergy and the conversion irreversibilities. 
Because of the high complexity of the processes 
occurring in the chemically reactive mixtures, 
the bulk level exergy analysis cannot emphasize 
the peculiarities of the lost exergy mechanisms. 
So the goal of this paragraph is to derive a local 
balance equation modeling the transport and the 
conversion of the exergy. 
 For a multi-component system, the balance 
equation of the entropy can be written as: 
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The above relation is multiplied with reference 
temperature which is taken equal to the 
environment temperature T0 and the result is 
subtracted from the total energy Eq. (4a). In 
order to emphasize the influence of the chemical 
reaction on the exergy transport mechanism, the 
enthalpy, entropy and internal energy of the 
gaseous mixture are split into their reference (o) 
and difference (s) parts: 
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The same decomposition is used for the 
mixture’s components. By the ideal gas 
assumption the reference entropy s(o) (T0, P0) can 
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where P0 represents the reference pressure, Xi is 
the mole fraction of considered specie and  
entropy of pure specie at P

)o(
is

o, To. Using the above 
decompositions and some algebraic 
transformations, the exergy transport equation 
reads (Stanciu et al., 2000): 
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Eq. (19) is written in the general form of a scalar 
conservation law. It shows that the variation of 
the exergy in each point of the flow is due to the 
convection and diffusion fluxes of exergy and to 
the exergy source term. The components of the 
convection flux, which is performed by the 
transport of exergy with the flow velocity, are: 
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The exergy diffusion flux appears because of the 
mass, heat and work interactions. Its components 
can be expressed as: 
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Finally, the exergy source contains both the 
volumetric production and the volumetric 
dissipation rates. The volumetric rate of chemical 
to physical exergy conversion: 
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is proportional to the chemical exergy of the 
reactants, ζch=-{∆G(o)+RMTln[Kp(T0)]}, which is 
released at a rate equal to the chemical reaction 
rate, ω. But more important for our goal is the 
volumetric rate of exergy dissipation, which has 
the expression: 
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showing that it is proportional to the volumetric 
entropy generation rate. Of course the relation 
(23) represents the local formulation of the 
Gouy-Stodola theorem.  

2.3 The entropy generation rate exp-
ression 

Eq. (19) shows that at each point of the 
flow, the exergy variation depends strongly on 

the balance between the rate of chemical exergy 
release, which increases the flow physical exergy 
and the rate of volumetric entropy generation, 
which destroys it. We focus at this time on the 
volumetric entropy generation rate that, in the 
most general case, can be expressed as (Vilcu, 
1988): 
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where µi is the chemical potential of the i-
component and A represents the mixture’s 
affinity. In the case of an ideal gas mixture, the 
chemical potential relation is (Bejan, 1988): 
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where gi is the specific free enthalpy of the i-
component. In this case, the derivatives 
(∂µi/∂xα)T can be easily calculated and the 
expression of the volumetric entropy generation 
rate (24) becomes (Stanciu et al., 2000): 
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The first term of the above relation: 
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represents the viscous part of the volumetric 
entropy generation rate. It models the flow 
irreversibilities due to the shear stress tensor. The 
following two terms: 
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model the irreversibilities due to the heat and 
mass transfer interactions. Although the diffusion 
phenomena due to the pressure and temperature 
gradients were neglected in Fick’s law (5), these 
irreversibilities are still coupled through the 
product (∂Yi/∂xα . ∂P/∂xα) which has an 
unknown sign. But neglecting the diffusion due 
to the pressure gradients, as in Eq. (5), means 
that: 

ii YdYPdP <<  

The above hypothesis has a wide validity 
because many engineering applications of 
combustion processes happen at P≈const. In this 
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case, the thermal and diffusion irreversibilities 
uncouple so that: 

( ) 0
x
T

x
T

T
S

2Q
)(

gen >
∂
∂

∂
∂λ

=
αα

Ω&  (28) 

( ) 0
x
Y

x
Y

Y
R

DS
N

1i

ii

i

i
imD

)(
gen >

∂
∂

∂
∂

ρ= ∑
= αα

Ω&  (29) 

Finally, the last term in the expression of the 
volumetric entropy generation rate: 
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model the chemical irreversibilities due to 
reaction (R1). It can be seen that this term 
depends on the chemical reaction rate, and the 
molar chemical potential µM,i of each species. 

2.4 Numerical simulation of laminar 
diffusion flame irreversibilities 

As an application of the above relations, let 
us consider the coaxial jet diffusion flame of 
methane-air laminar combustion. Burner 
geometry and boundary conditions are presented 
in Figure 1. The fuel, having the inlet velocity of 
0.5 m/s, enters into the burner through a circular 
inlet with diameter d=2 mm and the surrounding 
air meets the methane jet with an inlet velocity of 
0.05 m/s. The two coaxial jets are bounded by an 
adiabatic outer wall. 

 

Figure 1.  Burner geometry and boundary 
conditions for laminar flame calculation 

The flame chemistry is modeled by a single 
step chemical reaction like (R1) and the reacting 
flow is governed by Eq. (1-4b). The numerical 
calculation was performed with the computer 
code FLUENT 5.1.     

Distribution of the viscous part of 
volumetric entropy generation rate has very 
small values so it wasn’t plotted. Of course the 
highest dissipation rates take place near burner 
entrance region because of the inlet velocity 
difference between the two coaxial jets. A 
viscous dissipation of the same magnitude also 
occurs around the adiabatic wall of the burner 
where the non-slip boundary condition generates 
high velocity gradients. 

Figure 2a presents the distribution of the 
thermal component of volumetric entropy 
generation rate. By far this kind of dissipation is 
more important than the viscous one. The 
extremely high temperature gradients in the 
flame front proximity generate the maximal 
thermal dissipation in this area. Another place of 
significant thermal dissipation is located around 
the fuel entrance because of the heat transfer 
from the flame. As expected, the maximal values 
of thermal irreversibilities decrease along the 
front of the flame due to the cutting down of 
temperature gradients. The diffusion component 
variation of the volumetric entropy generation 
rate is presented in Figure 2b. As in previous 
cases the most important diffusion dissipations 
are located around the flame front, but their 
values are smaller than in the previous case. 
Figure 2c shows the distribution of chemical 
volumetric entropy generation rate. The highest 
values of this irreversibility component are found 
in the flame front where the most important part 
of the chemical transformations happens. It can 
also be seen that in the sites where they take 
place, the chemical irreversibilities remain the 
most significant among the flow irreversibilities. 

The distribution of the total volumetric 
entropy generation rate is presented in Figure 3. 
It is easy to point out that around the flame front, 
this distribution is identical with that of the 
chemical volumetric rate, which rules in this 
area. Along the normal direction at the front of 
the flame, the methane’s concentration 
continuously decreases and the reaction rate 
slows down. As a consequence, the chemical 
dissipation becomes smaller and smaller so that, 
in these sites, the shape of the volumetric entropy 
generation rate is formed by the thermal 
component of the irreversibilities. It is surprising 
that the diffusion part of volumetric dissipations, 
that are greater than in the case of premixed 
flame (Stanciu et al., 2000), doesn’t seriously 
affect the shape of irreversibility distribution. 

 Int.J. Applied Thermodynamics, Vol.4 (No.1) 5



Figure 2a.  Thermal irreversibility component 

 

Figure 2c Chemical irreversibility component 
 

Figure 2b. Diffusion irreversibility component 

 

Figure 3. Computed distribution of volu-
metric irreversibility for a laminar diffusion 
flame
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TABLE I.  INTEGRAL VALUES OF ENTROPY GENERATION RATES AND ENTROPY FLUX FOR 
LAMINAR FLAME 
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0.02477 

 
0.00266 

 
0.0197 

 
0.04713 

 
0.04672 

 
0.87 

 

For the sake of clarity, the smallest values of 
volumetric entropy generation rate were removed 
from Figures 2 and 3. 

Reacting flow irreversibility model, as well 
as the precision of calculation can be verified 
with the aid of the entropy transport Eq. (16). 
Taking into account that vertical boundaries are 
adiabatic and the outlet boundary is far from the 
flame front, the integral of this equation reduces 
to: 
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where ∂ΩC denotes the boundaries of 
computational domain Ω. The values of the 
entropy generation rate components on Ω and the 
entropy flux value through ∂Ω are presented in 
TABLE I. It can be seen that the error between 
the two sides of the above equation is less than 
0.9%, but more important than that, the thermal 
and chemical irreversibilities are responsible for 
about 95% of the laminar flame dissipations. 

3. Second Law Analysis of Turbulent 
Diffusion Flames 

 Although the turbulent combustion is by far 
more complex than the laminar one, the 
requested steps in deriving its second law 
analysis are the same. The differences come out 
from the turbulence and combustion closure 
models that strongly influence the averaging 
methodology of volumetric entropy generation 
rate expression. 

 3.1 The mathematical model of turbulent 
reacting flow 

There are many ways in modeling the 
turbulent reacting flows of diffusion flames. All 
of them are based on the time average of Eqs. 
(1)-(4b) at which a turbulence closure model and 
a combustion closure model must be added. The 
difference among the models consists in the 
computation of the averaged thermochemical 
flow variables as iY~ , h~  and ω~ . In this paper 
we used two distinct models: the multi-species 
approach, and the assumed probability density 
function for a conserved scalar. 

 3.1.1  The multi-species model 
This model uses the average of full reacting 

flow equations. At this moment it is widely 
accepted that Favre decomposition of all 
instantaneous properties, except density and 
pressure, provides the most convenient way for 
obtaining the averaged continuity (32), species 
(33), momentum (34) and enthalpy (35) 
equations which become: 
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For the sake of simplicity, in Eq. (35) we used 
the assumption Le=1. In the above equations: 
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α
α ∂
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=

x
h
~

Pr
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denote the mass diffusion mean vector, the 
viscous mean stress tensor and the mean heat 
flux vector, while: 

i
)V(

,i Yu ′′′′ρ−=Φ αα              βαβα ′′′′ρ−=τ uu)R(   

huq )R( ′′′′ρ−= αα&  (39a,b,c) 
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represent the corresponding Reynolds quantities. 
In order to solve the system (32)-(35), a closure 
turbulence model for expressions (39) and a 
combustion model for the mean reaction rate ω~  
must be added. 

Although it has been widely criticized, the 
turbulence closure model based on gradient 
transport techniques is very practical for 
engineering calculation.  This model relies on the 
Boussiesq hypothesis, which connects the 

Reynolds stress tensor )R(
βατ  and the mean strain 

rate tensor through the turbulent viscosity µT. 
Most often it is computed using the Prandtl-
Kolmogorov relation, accomplished by the two 
equations K-εK turbulence model, with a wall 
function treatment of the near wall region. It is 
well-known that the model fails in predicting the 
separated and swirling flows or the spreading 
rate of round jet, which are most often used in 
combustion processes. In order to improve its 
behavior, some corrections on ε equation, or 
some modifications of model constants Cµ, 
Cεand Cε2must be added, but they depend on the 
flow type. Another option is to use an improved 
formulation, like the RNG K-εK model (Fluent 
Inc.), which enhances the prediction accuracy of 
swirling flows, or the Realizable K-ε model of 
Shih (Shih et al., 1995) that clearly improves the 
spreading rate simulation of both planar and 
round jets. Using the same gradient transport 
model closure, the Reynolds mass diffusion 

vector )R(
,i αΦ  is related to the mean mass fraction 

gradient through the turbulent diffusion 
coefficient DT, and the Reynolds heat flux vector 

)R(qα  is connected to the mean enthalpy gradient 
using the turbulent heat transfer coefficient λT . 
These turbulent quantities are computed with the 
aid of turbulent Schmidt and Prandtl numbers. 
For standard and realizable K-εK models, these 
turbulent quantities are constant, (i.e. ScT =0.7 
and PrT=0.85), while for RNG K-εK model they 
vary following an algebraic relation. 

In the case of diffusion flames, the 
characteristic chemical kinetics time is much 
smaller than the turbulent mixing time so that the 
mixing always controls the combustion rate. The 
eddy break-up models are mixing controlled 
combustion techniques that determine the mean 
reaction rate ω~  as a function of mean mass 

fraction field, iY~  and the characteristic time of 
turbulence, K/ε. For this work we selected the 
well-known eddy-break formulation of 
Magnussen and Hjertager (Magnusen and 
Hjertager, 1976).  

3.1.2 Assumed probability density 
function model for a conserved 
scalar 

The above model has the great 
disadvantage of involving all the flow and 
thermo-chemical variables. In these conditions it 
needs a lot of computational time, especially for 
complex flow geometry that often requests a fine 
discretization.  At the opposite extremity is 
placed the assumed probability density function 
(PDF) approach for a conserved scalar. This 
model relies only on the averaged continuity (32) 
and momentum (34) equations at which a 
turbulence closure model must be added. For this 
paper we used the standard K-εK turbulence 
model, adapted for the round jet calculation with 
Launder’s correction (Launder et al., 1972). All 
the mean thermo-chemical properties, including 
here the averaged mass fractions and the mean 
temperature, are computed with the relation: 

( ) ( )∫ ξξξφ=φ
1

0

df
~~  (40) 

where φ(ξ) is a generic instantaneous flow 
variable whose solution results from the Burke-
Schumann approximations (12)-(13) and f(ξ) is 
the PDF of the mixture fraction. Assuming for 
PDF a clipped Gaussian distribution: 
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 (41) 

the local parameters σ , µ ,  and  are 
determined functions of mean mixture fraction 
and mixture fraction variance (Elghobashi, 
1977), (Lockwood, 1977) for which the 
corresponding averaged transport equations are 
added. 

0α 1α

3.2 The mathematical model of turbulent 
reacting flow irreversibilities 

The first step in modeling the flow 
irreversibilities is to average the instantaneous 
entropy Eq. (16) which leads to: 
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im STqs
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Y

D Ω

= α
=

⎥
⎥

⎦

⎤
+′′

∂
′′∂

ρ− ∑ &&  (42) 

It is not very easy to model the correlations 
appearing on the left hand side of the above 
equation. But as in the laminar case, with some 
simplifications imposed by the boundary 
conditions, it can be used for checking the 
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veridicality of irreversibility model as well as the 
accuracy of numerical calculations. 
 The averaged form of the instantaneous 
exergy Eq. (19) is not presented here because it 
is not used in computations. But it leads to the 
very important conclusion that: 

0ST)]ex([ )(
gen0 >=ρ∆ Ω&   (43) 

which constitutes the theoretical basis of second 
law analysis of turbulent flames. Indeed, the 
above relation shows that the destroying rate of 
Favre averaged volumetric exergy is proportional 
to the Reynolds averaged volumetric rate of 
entropy generation. In this condition, an accurate 
determination of mean entropy generation 

rate, )(
genS Ω&  becomes crucial for both the second 

law analysis of turbulent reacting flow and the 
lost exergy computation. 

Including the thermo-chemical properties 
and their gradients, the averaging procedure of 
volumetric entropy generation rate expression 
needs to take into account the mathematical 
model used for reacting flow. In the following 
sections we present the averaged expression of 
the volumetric entropy generation rate for both 
mathematical flow models used in this work. 

3.2.1 Averaging the entropy generation 
rate for the multi-species model 

The Reynolds average procedure applied to 
the instantaneous entropy generation rate 
expression (26) leads to: 
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In order to find the averaged expressions of 
volumetric entropy generation rate components 
(27)-(30), the instantaneous temperature, as well 
as the instantaneous mass fraction, are 
decomposed into their mean and fluctuating 
parts. So using the hypothesis 1T~T <<′′ , and 
dropping the serial decomposition of 

111 )T~/T1(T~T −−− ′′+=  at the first term, the 
following expression for volumetric viscous part 
of entropy generation rate is obtained: 
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 (45) 

The first term of the above expression models the 
viscous irreversibilities of mean motion field due 
to the gradients of averaged velocity. It is the 
homologue of the term modeling the laminar 
viscous irreversibilities because it is generated by 

the same mechanism. The following term, 
containing the dissipation rate 

( ) ρ∂′′∂τ=ε αββα x/u)V(
K  of turbulent kinetic 

energy ρ′′′′ρ= ααuuK 2
1  models the proper 

viscous irreversibilities generated by the flow 
turbulence. Continuing the averaging procedure 
and dropping the serial decompositions of 

222 )T~/T1(T~T −−− ′′+=  and  
at the first term, the following two components 
of volumetric entropy generation rate (44) can be 
expressed as: 
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where: 

ρ∂′′∂∂∂ρρλ=ε ααθ )x/T)(x/T()c/( pV  

represents the dissipation rate of fluctuating 

temperature variance ρ′′ρ=θ
2

2
1 TK  and: 

)x/Y)(x/Y(D iiim
)i(

ααψ ∂∂∂∂=ε  

is the dissipation rate of fluctuating i-component 

mass fraction variance ρ′′ρ=ψ
2

i2
1)i( YK . As in 

the previous case, the first terms of the right hand 
side of Eqs. (46) and (47) model the mean 
motion field irreversibilities, while the second 
terms take into account the mean dissipations of 
fluctuating field. For instance, the mean chemical 
source term is modeled as: 

( ) ( )∑
=

Ω µν ′′−ν′ω
≅

N

1i
i,MiiCH

)(
gen

~
T~
~

S&  (48) 

where the mean chemical potential is simply 
computed as ( )ii,Mi,Mi,M X~,p,T~sT~h

~~ −=µ  

Correlating the irreversibility model and the 
mathematical formulation of diffusive reacting 
flow, it can be seen that only the mean motion 
irreversibilities, denoted by subscript M, and the 
turbulent viscous one, identified by subscript VT 
can be computed. For both thermal turbulent and 
diffusion turbulent irreversibilities, the 
mathematical formulation of reacting flow does 
not give any information, because its procedures 
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in computing λT and DT rely on the classical PrT 
and ScT determinations, which either are 
assumed as constants or are computed with some 
algebraic relations. In this case, the equilibrium 
turbulence feature can be invoked for which the 
production and the dissipation terms appearing in 
Kθ and equations are equal. This leads to:)i(Kψ

( )
αα
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The above approximations may be removed if 
the transport equations of Kθ and  are added 
at the mathematical reacting flow model. Then, 
the dissipation rates appearing in their source 
terms could be computed as 

and , 
avoiding the use of additional transport equations 
for ε

)i(Kψ

θθθ ε=ε K)K/(C K
)i(

K
)i()i( K)K/(C ψψψ ε=ε

θand . )i(
ψε

Being capable of separating for the first 
three irreversibility components the mean motion 
part from the turbulent part, the model reveals 
almost all the structure of flame dissipations. 
Even if it may be less accurate in predicting the 
mean flow properties, this model is useful for 
studying the influence of turbulence on flame 
dissipations.  

3.2.2  Averaging the entropy generation 
rate for assumed probability density function 
model of a conserved scalar 

As in the previous case, averaging the 
instantaneous entropy generation rate expression 
(26), the relation (44) is recovered. As in the 
previous case, the viscous component of 
volumetric entropy generation rate is computed 
with relation (45), because the mean motion field 
of the flow has the same model. The differences 
between the models appear for the following 
components of volumetric irreversibilities. So, 
extending the PDF function of conserved scalar 
(41) to the thermal and diffusion volumetric 
components of the entropy generation rate, and 
averaging their instantaneous expressions (28) 
and (29), it results in (Isvoranu, 1999), (Isvoranu 
et al., 2000): 
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where χ~ is the mean scalar dissipation rate of the 
mixture fraction, defined as: 
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Based on the Burke-Schumann chemical model 
(12)-(13), we can now describe all instantaneous 
mass fractions and instantaneous temperature 
derivatives as follows: 
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Utilizing the conserved scalar model, the 
chemical component of the volumetric entropy 
generation rate (30) can be put in the following 
form (Isvoranu, 1999), (Isvoranu et al., 2000): 
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For a single step irreversible reaction (R2), the 
second derivatives of the mass fractions 
appearing in the above relation can be expressed 
as function of stoichiometric coefficients only, 
for example, fuel second derivative: 
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where δ represents the Dirac function. Using this 
relation, the chemical entropy source term (56) 
becomes: 
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where the subscript st denotes the stoichiometric 
conditions. 

Unfortunately, the expressions (51), (52) 
and (58) include both the mean motion and the 
turbulent parts of volumetric irreversibility 
components because this model doesn’t have the 
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ability to separate them. But the assumed PDF 
approach gives more realistic results in 
simulating the reacting flow properties than the 
multi-species model so it is widely used in 
diffusion flame simulations. Combining the 
conclusions revealed by the two models, some 
important conclusions concerning the 
irreversibility structure of flame dissipations may 
be obtained. 

3.3 Numerical simulation of turbulent 
diffusion flame irreversibilities 

As an application, let us consider the 
combustion occurring in a Delft piloted diffusion 
flame burner that was designed to yield a stable 
axial-symmetric turbulent non-premixed flame of 
methane burning in a co-flowing air stream. The 
fuel jet exit has an inner diameter of 6 mm and 
the fuel pipe is about 1 m long, sufficient to 
establish a fully developed turbulent flow at the 
nozzle. Two air streams are involved. The 
primary air is issued from an annulus around the 
fuel nozzle with an inner diameter of 15 mm and 
an outer diameter of 45 mm. The bulk velocity of 
the primary air is of 4 m/s while for the methane 
/nitrogen mixture we have 20 m/s. Figure 4 
shows a cross section through the burner. The 
annular air is surrounded by a low speed co-
flowing air stream of about 0.4 m./s, just 
sufficient to avoid external recirculation zone. A 
throat, yielding low turbulence levels at the 
entrance of the combustion chamber and 
reasonably flat velocity profile, issues this 
secondary air, which is kept at room temperature 
(295 K). The burner is 58 cm in diameter and 
150 cm in length to allow major simplifications 
for boundary conditions and a geometrical point 
of view, which is axial-symmetric flow and 
homogenous Neumann outlet conditions.  

 
Figure 4.  Delft burner geometry (Peeters, 1995) 

3.3.1 Flame irreversibility simulation 
with multi-species model 

For multi-species model, the numerical 
simulation of diffusion flame was performed 
with the computer code FLUENT 5.1. The flame 
chemistry was described by a single step 
irreversible reaction, like (R1) and for turbulence 
models both RNG K-ε and Realizable K-ε 
formulation were selected, which led to similar 
results. In both cases, the accuracy of the 
numerical solution was improved by adapting the 
mapped grid, used for this simulation in 
accordance with the mean temperature gradient. 

The agreement between the numerical 
solution and the experimental data is acceptable 
for both turbulence models. For example, at 
y=0.05 m and y=0.15 m high from the burner the 
computed radial temperature distribution is 
reasonable, but at y=0.25 m its simulated 
distribution exceeds the experimental data with 
over 200 K.  This happens because the spreading 
rate of fuel jet is over-predicted so that the jet 
penetration is lower than in the real case. 
Besides, it cannot be forgotten that eddy-break 
up models relate the mean reaction rate to the 
turbulent time scale, which is K/ε. It seems that 
in the middle of the flame this approach leads to 
higher values of mean reaction rate than the real 
one. 

As previously emphasized, the 
irreversibility model relying on the multi-species 
approach is generally capable of distinguishing    
between the characteristic mean motion 
dissipations and those induced by turbulence. 
The distributions of all irreversibility 
components are presented in Figure 5. We note 
that the thermal turbulent and the diffusion 
turbulent components were computed with the 
expressions (49)-(50) and the clarity of 
representations was improved by removing the 
smallest values of volumetric entropy generation 
rate components. In order to compare the 
influence of fluctuating field on volumetric 
dissipations, the mean motion and the turbulent 
parts of viscous, thermal and diffusion 
irreversibilities are plotted together in the same 
figure. The common feature of all irreversibility 
components is that their maximal values occur in 
the near burner regions and, due to the 
convection processes, decrease along the front of 
the flame. On the other hand, it can be seen that 
the turbulent parts of flame irreversibilities 
always exceed the corresponding mean motion 
ones. There are also some peculiar features of 
each irreversibility component. For example, as 
shown in Figure 5a, the viscous mean motion 
and viscous turbulent irreversibilities are higher 
near the burner rim where a small recirculation 
zone appears. The difference between these 
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distributions occurs on the fuel side and at the 
mixing plane where the fuel-oxidizer interactions 
strongly affect the production and the dissipation 
of turbulent kinetic energy. The mean motion 
and turbulent parts of thermal irreversibility, of 
which distributions are plotted in Figure 5b, act 
in both fuel and oxidizer sides because of the 
heat transfer, unfolding from the front of the 
flame to the methane jet and primary air stream. 
From Figure 5c it can be seen that, as in the 
previous case, the mean and turbulent parts of 
diffusion irreversibility have similar 
distributions, but their action takes place in the 
mixing plane between the expanding fuel jet and 
the primary air stream. Special attention must be 
paid for the chemical component of flame 
irreversibility of which distribution is displayed 
in Figure 5d. Of course, the chemical 
irreversibilities are concentrated in a thin region 
bordering the front of the flame, but their higher 
values lie from the burner rim until the middle of 
the flame. In this condition the spatial domain 

seriously affected by this kind of dissipation is 
greater than in previous cases. 

Now having determined the volumetric 
components of entropy generation rate, we can 
proceed to verify both the accuracy of numerical 
simulation and the veridicality of the 
irreversibility model. As in the laminar case, this 
goal can be achieved by checking the closing 
precision of the entropy transport Eq. (42).  
Theoretically, this verification may be applied at 
the local level for each control volume, as well as 
at global level for the entire flow domain. Due to 
the complex task of modeling the correlations 
revealed by Eq. (42), we restrict the verification 
only at the global level. Taking into account the 
flow boundary conditions, for the steady state 
adiabatic systems the entropy Eq. (42) becomes: 
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Figure 5a.  Viscous mean motion and viscous turbulent volumetric irreversibilities 
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Figure 5b. Thermal mean motion and thermal turbulent volumetric irreversibilities 

 

Figure 5c. Diffusion mean motion and diffusion turbulent volumetric irreversibilities 
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The left hand side of the above equation 
represents the mean entropy convection flux 
passing through boundaries and the right hand 
side stands for the mean entropy generation rate 
in the entire volume of the thermodynamic 
system. TABLE II presents the results of 
integration and the closing error of the entropy 
Eq. (59) for the two turbulence models used in 
this paper. It can be observed that the two 
turbulence models give similar results 
concerning both the entropy generation rate 
values and the closing error of the entropy Eq. 
(59), which is about of 6.5%. The most important 
conclusion revealed by this table is that the 
thermal turbulent and the chemical 
irreversibilities are responsible for 38% and 57% 
respectively, of the flame dissipation, while the 
diffusion irreversibilities destroy only 4% of the 
exergy. The relative importance of chemical 
dissipation could be a little over estimated 
because the eddy break-up model of Magnusen 
and Hjertager (1976) gives higher values for the 
mean reaction rate. On the other hand, these 
results may change in the case of recirculation 
and swirling diffusion flames, where the viscous 
and diffusion irreversibilities could increase. 

 
Figure 5d.  Chemical mean motion 

volumetric irreversibility 

3.3.2 Flame irreversibility simulation 
with assumed PDF approach for a 
conserved scalar 

In this case the discretization of transport 
equations was carried out in a finite volume 
approach on a non-staggered, 50x50 nodes, non-
uniform grid, following a semi-implicit 
numerical scheme. More details can be found in 
the work of Ferziger and Peric (Ferziger and 
Peric, 1995). Due to Launder’s correction in the 
εK equation, the agreement between the 
numerical simulation and the experimental data 
(Isvoranu et al., 2000) is by far better than in the 
case of the multi-species model. 

The distribution of irreversibility 
components does not differ very much from the 
previous case. Taking into account the model 
cannot make the separation between the mean 
motion part and the turbulent part of each 
irreversibility component; all the viscous, 
thermal and diffusion distributions of flame 
irreversibility have the carriage of corresponding 
turbulent irreversibilities that was previously 
presented. Some differences appear in the 
distribution of thermal and chemical 
irreversibility components, but they do not 
seriously alter the general aspect of variation. For 
this reason, the distributions of irreversibility 
components are not presented here, but under the 

form of ratios )S/()S( )(
genK

)(
gen

ΩΩ && , where subscript 

K stands for V, Q, D and CH can be found in 
(Isvoranu et al., 2000). Figure 6 displays only 
the spatial contours of volumetric entropy 

generation rate )(
genS Ω& . It can be seen that the 

viscous irreversibilities border the spatial domain 
where the dissipations occur. In this domain, the 
relative importance of each mechanism is the 
changing function of the considered position. 
This importance can be estimated combining the 
results revealed by Figures 5 and 6. For example, 
in the fuel side at y=0.4m high from the burner, 
about 75% of the total dissipation is due to the 
thermal irreversibilities (including the mean 
motion part with 1.5% and the turbulent part 
with 98.5%) and about 25% belong to the 
diffusion irreversibilities (mean motion part with 
0.4% and 99.6% for the turbulent part). On the 
primary air side, the diffusion irreversibilities 
have a contribution of 5% to the total dissipation, 
the viscous ones only 2% and the thermal 
irreversibilities are responsible for the rest - 93%. 
As in the previous example, the turbulent parts of 
irreversibility components make the rule.
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TABLE II.  INTEGRAL VALUES OF ENTROPY GENERATION RATES AND ENTROPY FLUX FOR 
TURBULENT FLAME (MULTI-SPECIES MODEL) 
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Error 
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K-εK

 
8.1 x10-6

 
0.0011 

 
0.456 

 
28.499 

 
0.0283 

 
2.896 

 
41.967 

 
73.847 

 
69.397 

 
6.4 

Realiz.  
K-εK

 

 
8.9x10-6

 
0.0019 

 
0.508 

 
31.752 

 
0.0304 

 
3.0486 

 
39.824 

 
75.16 

 
70.792 

 
6.1 

 
 

Finally, the closing error of the entropy 
equation was computed. For the entropy flux, the 
Favre averaged specific entropy was determined 
with the same assumed PDF expression (41), 
because of its dependence mainly on mixture 
fraction. The result of flux integration (the left 
hand side of the entropy equation) was 92.04 
W/K while the integration of volumetric entropy 
generation (the right hand side of the entropy 
equation) led to 77.2 W/K. As in the previous 
model, considering the entropy convection flux 
as a reference value, the relative error was about 
16%. Comparing these values with those of 
TABLE II, the results show that the mean 
entropy flux is over-predicted. The main cause is 
probably the average procedure of specific 
entropy or the simplicity of the turbulence 
closure model. 

 

Figure 6.  Distribution of )]S[(log )(
gen10

Ω&  
computed with assumed PDF approach for a 
conserved scalar 

4. Conclusion 

 In this paper we have investigated the 
irreversibility sources in both laminar and 
turbulent diffusion flames. The theoretical 
background of this investigation is done by the 
local balance equation of exergy (19), which 
relates the volumetric rate of exergy dissipations 
to the volumetric rate of entropy generation. This 
is nothing other than the local formulation of the 
well-known Gouy-Stodola theorem, linking it to 
the general concept of exergy dissipations from 
the second law formulation. It becomes obvious 
that one could wish these dissipations were the 
smallest possible, but in order to do this it is 
imperative to know what generates them and 
which is their structure and magnitude.  

The second law analysis of laminar 
diffusion flame represents the first step in 
understanding the basic mechanism of 
dissipations in non-premixed combustion. The 
volumetric rate expression of entropy generation 
(26) shows that the viscous, thermal, diffusion 
and chemical components of the irreversibilities 
uncouple only under the hypothesis 
|dP/P|<<|dYi/Yi|, which is valid for most of the 
engineering combustion applications. As an 
illustrative application, we performed a 
numerical entropy generation analysis for a 
laminar diffusion flame of co-flowing methane-
air jets. The results point out that all the 
irreversibility components reach their maximum 
values at the flame front and, more importantly, 
only the thermal and chemical irreversibilities 
have significant contributions in the laminar 
reacting flow dissipations.  

Most important for engineering applications 
are the turbulent diffusion flames. By its 
fluctuating field, the turbulence gives rise to new 
kind of irreversibilities, increasing the flame 
exergy dissipation. Although the multi-species 
approach does not prove great accuracy in 
simulating the reacting flow, it is able to separate 
the mean motion irreversibilities, which are the 
homologues of those ruling the laminar flame, 
from the proper irreversibilities of turbulence. 

 Int.J. Applied Thermodynamics, Vol.4 (No.1) 15



The numerical simulation of a turbulent co-
flowing methane-air flame shows that the 
turbulent viscous, thermal and diffusion 
irreversibilities are considerably greater than 
those generated in the mean motion field. But as 
shown in TABLE II, among them, the thermal 
turbulent irreversibility, in addition to the mean 
chemical one dominate the exergy dissipation 
process occurring in the diffusion flames. 
Making the distinction between mean and 
fluctuating dissipations, this model emphasizes 
the two opposite effects of turbulence on 
combustion. On one side, the turbulence strongly 
augments the mixing and the reaction rate, 
allowing the flame stabilization at higher 
velocity than in laminar case, on the other side, it 
dramatically increases the dissipations.  

The assumed PDF approach for a conserved 
scalar is more precise in describing the mean 
flow properties, so that its joint irreversibility 
model is more accurate in simulating the flame 
irreversibility distributions. Unfortunately, these 
distributions include both the mean motion and 
the turbulent parts of irreversibility components 
because the model does not have the ability to 
separate them. But it is known from the previous 
approach that the turbulent parts of 
irreversibilities prevail on the mean motion ones, 
and more importantly that the thermal turbulent 
components play a very important role in 
dissipations of flame exergy. 

The knowledge of irreversibility component 
distributions, revealed by the two models 
presented in this work, can represent a powerful 
tool in order to alter some geometrical, inlet or 
boundary conditions, so that the global entropy 
generation rate, in other words the exergy loss, 
diminishes. Practically, this means to optimize 
the thermodynamic process which, in our case 
for example, would be reflected in obtaining the 
same maximum temperature but with a smaller 
entropy generation. 

In spite of the differences, the two 
irreversibility models developed in this paper 
have a strong resemblance because each of them 
involves the dissipation rates of some fluctuating 
properties variance. We were able to set forth 
that these dissipations should be commonly 
related to the volumetric entropy generation rate 
so they get the theoretical foundation of the 
Second Law Analysis. Becoming strongly related 
to a physical meaning, all the dissipation rates 
appearing in the volumetric entropy generation 
rate expression, but the scalar dissipation rate 
with priority, did not remain mathematical 
artifices anymore. 

The final remark deals with the necessity 
that any numerical discretization scheme or 
chemical mechanism should be investigated on 

its consistency and robustness based on this 
Second Law approach, so that they do not 
produce locally a negative source of entropy. In 
addition, it can be emphasized that the precision 
of any numerical solution can be checked, by 
verifying the closing error of entropy transport 
equation. 

Nomenclature 

A Chemical affinity 
Ak Chemical specie 
cp Specific heat at constant pressure 
D      Single diffusion coefficient 
Dim Diffusion coefficient of i-specie in 

gaseous mixture 
e Specific internal energy 
ex Specific exergy 
f  Probability density function 
g Specific free enthalpy 
G Free enthalpy 
h Specific enthalpy 
HF Lower heating value 
H(x) Heaviside step function 
K  Turbulent kinetic energy 

θK  Fluctuating temperature variance 
)i(Kψ  Fluctuating mass fraction variance 

 of i-component 
Kp Equilibrium constant 
Le Lewis number 
M Molar mass 
N Number of mixture’s species 
P Pressure 
Ri Specific mass constant of ideal gas 
RM Universal constant of ideal gas 
s Specific entropy 
Sc Schmidt number    

genS&  Entropy generation rate 
T Thermodynamic temperature 
uα Velocity component 

αq&  Heat flux component in α direction 
Xi Molar fraction 
Yi Mass fraction 

Greek symbols 

α Spatial direction of system coordinate 
β Coupling function 
δ Dirac function 
δαβ Kronecker symbol 
∆ Dissipation term in conservative form 

of a transport equation 
CΩ∂  Boundaries of computational domain 

Kε  Dissipation rate of turbulent kinetic 
energy 
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θε  Dissipation rate of fluctuating 
temperature variance 

)i(
ψε  Dissipation rate of fluctuating mass 

fraction variance of i-component 
)i(

αΦ  Diffusion flux component of i-specie in 
α direction 

)i(
αϑ  Diffusion velocity component of i-

specie in α direction 
ν Stoichiometric coefficient 
µ Viscosity 
µi Chemical potential of i- specie 
µM,i Molar chemical potential of i-specie 
Π  Production term in the conservative 

form of a transport equation 
ρ Density 
ξ Mixture fraction 
χ  Scalar dissipation rate   

stχ  Stoichiometric scalar dissipation rate 

chζ  Chemical exergy 
τβα Stress tensor 
τ Time 
ω Reaction rate 

CΩ  Computational domain 

Subscripts 

.M Mean 

.T Turbulent part 
CH Chemical part 
D. Diffusion 
F Fuel 
M Molar quantities 
O Oxydant 
Q. Thermal 
T Turbulent 
V Viscous 
in inert 

Superscripts 
ϕ  Reynolds mean part of ϕ 
ϕ~  Favre mean part of ϕ 
ϕ ′′  Favre fluctuating part of ϕ 
Ω Volumetric 
V Viscous part 
R Reynolds part 
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