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Abstract 

In this paper, a complex thermal plant is analyzed. The plant under analysis is basically 
made up of four gas-fueled engines with heat recovery. Each engine can drive, 
simultaneously, an electric generator and the compressor of a heat-pump/chiller. The 
plant is interconnected to the electric utility grid, both to receive additional power and to 
deliver excess power. In addition, each heat-pump/chiller can be driven electrically, 
using the electric generator as a motor. For any given amount of power and heat 
required by the users, a large number of operating conditions are possible. So, the 
problem arises of selecting, at any given time, the operational mode that involves the 
lowest instantaneous cost of operating the system. This cost can be regarded as the 
objective function to be minimized in a typical constrained optimization problem. In the 
paper, after a short description of the plant, this problem is dealt with. Some examples 
of the results provided by the optimization algorithm are presented and commented on. 
The economic savings achievable through an optimized operation are highlighted too. 
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1. Introduction 

When operating a complex thermal plant, 
it can be very important to define, for any 
possible load condition, the operational mode 
that minimizes the overall economic cost of the 
energy delivered by the system. In general, for 
complex and flexible plants, many different 
configurations are available to fulfill a given set 
of energy demands. Therefore, the problem 
arises in selecting, at any given time, the 
operational mode that implies the lowest 
instantaneous cost of operating the system. This 
can be regarded as a typical thermoeconomic 
optimization problem. The operation cost 
represents the objective function; the constraints 
are given, in general, by energy and entropy 
balance equations and by relations that express 
all of the technical conditions that must be 
fulfilled so that all devices operate correctly 

(El-Sayed et al., 1970; Frangopoulos, 1983, 
1980a and 1980b). From the point of view of 
thermodynamics, the analysis of a thermal 
system can be performed in terms of properties 
relevant to first-law analysis (energy) and/or 
second-law analysis (exergy). Since in this 
specific case in point no cost accounting is 
required for any physical flow but those 
purchased or sold at prices fixed by the market, 
the choice between first- and second-law based 
variables is not significant. Therefore, a first-
law approach has been followed here, due to its 
simplicity. However, it is useful to remember 
that in other problems, such as product costing, 
this choice would be more important 
(Tsatsaronis, 1987; Bejan et al., 1996). In this 
paper, the optimization problem described 
above is analyzed with reference to a real and 
very interesting plant built to supply electricity 
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and thermal energy to the new campus of the 
University of Naples, Italy.  

2. Plant Description and Main Assump-
tions 

The plant under study was designed to 
serve a new complex of buildings of the 
Federico II University of Naples recently built 
in Monte Sant'Angelo, Naples, Italy. The 
overall built volume is about 400,000 m3, 
distributed among 8 buildings. The peak energy 
loads were estimated as follows: 
- maximum electric load: about 3.5 MW; 
- maximum heating load (winter): about 7.5 
MW; 
- maximum refrigerating load (summer): about 
8.0 MW 

A simplified schematic representation of 
the plant designed to meet these loads is shown 
in Figure 1. All energy flow rates of interest are 
shown too, with the exception of those dissipated 
and lost to the environment. Some of the energy 
flows shown in Figure 1 can assume a direction 
opposite to that indicated; in this case, they will 
be assigned a negative value. Four gas-fueled 
reciprocating engines (1(i), i = 1 to 4), with heat 
recovery from jacket water and oil (low-
temperature thermal energy) and from exhaust 
gases (medium temperature thermal energy), 
constitute the heart of the system. A synchronous 
electric generator (3(i), i = 1 to 4) and the 
compressor of a vapor-compression heat-
pump/chiller (9(i), i = 1 to 4) are coupled on the 
shaft of each engine. Thus, at any time, the 
mechanical work supplied by an engine, E1,2(i), 
can be distributed between the electric generator 
and the compressor in variable and 
complementary rates, depending on the amount 
of heat and power required by the users and the 
operation strategy selected for the system. 
However, in one case (i = 4), the vapor-
compression system can operate as a chiller only. 
In Figure 1, to save space, only one of the four 
groups, each consisting of gas engine, heat pump 
and electric generator, is shown. The same is 
done for the auxiliary boilers, 11(1) and 11(2). 
The plant is interconnected to the electric utility 
grid, in order to buy additional power (E5,0 < 0) 
or to deliver excess power (E5,0 >0) whenever it 
is necessary. When the cost of purchasing 
electric energy from the utility grid is low, due to 
the time-dependency of electric power rates, 
each heat-pump/chiller can be driven electrically, 
using the electric generator as a synchronous 
motor (E3,4(i) < 0 and E3,9(i) > 0). In this case, the 
corresponding engine will be shut down and 
disconnected at 2(i) from the electric generator 
and compressor. Therefore, the fictitious point 4 
can be either a junction point and/or a brunching 
point, depending on the actual direction of the 

flow E4,5. In the cooling season, a single-stage 
absorption chiller, device 14 in Figure 1, can be 
fed by medium temperature thermal energy 
obtained from auxiliary boilers and/or high 
temperature thermal energy recovered from the 
engines. In addition, an electrically driven chiller 
(unit 7) is available too. The characteristics of 
the plant are summarized in TABLE I. It should 
be noted that the system is described at a rather 
high "aggregation level", that is, with a low level 
of resolution: many subsystems, which could be 
regarded as single components in a more detailed 
representation, are grouped here into a unique set 
of devices. Similarly, at this level of resolution, 
many operational variables that affect the 
performance of the system, for example, the 
temperature at which heated or refrigerated water 
are supplied, will not be taken into account. This 
is due to the lack of information available at the 
moment to model and simulate the performance 
of the plant. In fact, it would be clearly useless to 
develop a complex and detailed model when 
little data is available to evaluate the model. For 
this reason, the statement and the solution of the 
optimization problem, more than the detailed 
simulation of the plant, are the focus of the 
following. At this first level, the performance 
curves provided for each component by the 
manufacturer are sufficient in order to 
approximately describe the behavior of the plant 
at various load conditions. As soon as more data 
are available about the real performance of the 
plant, a more detailed model will be developed. 
Then it will be possible to up-grade the present 
study introducing into the problem all of the 
variables that actually affect the performance of 
the system, with no significant complications to 
the calculations and the approach used here. The 
most important assumptions on which our 
analysis is based are summarized below. For 
brevity, only configurations related to the 
heating season are considered. 
-  All devices operate under steady-state 

conditions. 
-  The performance of each engine is described in 

terms of thermomechanical efficiency (ηm, 
ratio of mechanical work to primary energy 
input, Eq. (1)) and thermal efficiency (ηt, ratio 
of thermal energy recovered to primary energy 
input, Eq. (2). These efficiencies are 
considered to depend only on the percentage 
load of the engine, F1(i), which is the ratio of the 
actual mechanical work flow rate E1,2(i) to the 
maximum value of 480 kW, given by the 
partial-load performance curves (Eqs. (3) to 
(5)). A minimum value of 50% is assumed as 
the lower limit for the percentage load of each 
engine, when it is turned on (Eq. (6)). For i = 1 
to 4, Eqs. (1) to (6) are written as: 
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List of devices 

1(i)  = Gas-Fueled Reciprocating Engine, i = 1 to 4 

3(i)  = Electric Generator / Motor, i = 1 to 4 

7  = Electric Vapor Compression Chiller 

9(i) = Vapor Compression Heat Pump / Chiller,  

    i = 1 to 4 (i = 4 => Chiller Only) 

11(j) = Gas-Fueled Auxiliary Boiler, j = 1 to 2 

14 = Absorption Chiller 

List of main energy flow rates (winter) 

E0,1 , E0,11 = primary energy (natural gas) 

E1,2 , E2,3 , E2,9 , E3,9 = mechanical energy 

E3,4 , E4,5, E5,6 , E5,0 , E6,0 = electrical energy 

E9,10 = thermal energy from the heat pumps 

E1,10, E1,12 = thermal energy from heat recovery (low and medium temperature) 

E11,12 = thermal energy from the auxiliary boilers 

E12,13 , E13,10 , E10,0 = thermal energy 

 Device 
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Fictitious junction point 
 
Energy Flow Rates, Winter 
 
Energy Flow Rates, Summer
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TABLE I.  MAIN COMPONENTS OF THE MONTE SANT'ANGELO THERMAL PLANT. 

Device Number 
of units 

Main Characteristics 

Reciprocating Gas  4 - max mechanical output = 480 kW 
Engine  - max thermal output = 600 kW 
  - nominal thermomechanical efficiency = 0.378 
Synchronous Electric 
Gen./Motor 

4 - max electric output = 448 kW 
- max mechanical output = 400 kW 

Vapor compression 
heat-pump/chiller  

 
3 

- winter: air to water heat pump 
-summer: water to water chiller 

(gas-engine driven   - max thermal output (7 °C) = 1380 kW  
or electric driven)  - max work input (7 °C) = 382 kW 
  - max refr. output (32 °C) = 2050 kW 
  - max work input (32 °C) = 395 kW 
Vapor comp. chiller 1 - water to water 
(gas-engine driven  - max refr. output (32 °C) = 2050 kW 
or electric driven)  - max work input (32 °C) = 395 kW 
Electric vapor  1 - water to water 
Comp. chiller  - max refr. output (32 °C) = 2030 kW 
  - max electric input (32 °C) = 450 kW 
Single-stage  1 - max. refr. output (32 °C) = 650 kW 
absorption chiller  - max. thermal input (water at 110 °C) = 1110 kW 
Gas fueled aux.  2 - max thermal output = 2300 kW 
boiler  - nominal efficiency = 0.90 

 

ηm,1(i) = E1,2(i) / E0,1(i) (1) 

ηt,1(i) = (E1,10(i) + E1,12(i))/ E0,1(i) (2) 

0 ≤ F1(i) = E1,2(i) / 480 ≤ 1.0 (3) 

ηm,1(i) = 0.255 + 0.211 × F1(i) - 0.088 × F1(i) 
2 (4) 

ηt,1(i) = 0.626 - 0.208 × F1(i) + 0.48 × F1(i) 
2 (5) 

F1(i) >0 ⇒ 0.50 ≤ F1(i) ≤ 1.0 (6) 

 -The performance of each vapor-compression 
heat pump is described in terms of its maximum 
thermal output, E*9,10(i), and the corresponding 
maximum mechanical work required by the 
compressor, E*2,9(i), both considered as 
depending on the outdoor temperature, Tout (Eqs. 
(7), (7b) and (8)). 

However, it is assumed that the actual 
thermal output E9,10(i) depends on the mechanical 
work flow rate provided by the engine, E2,9(i), or 
by the electric motor, E3,9(i), given by the partial-
load performance curve (Eq. (11)) for these 
devices. A minimum value of 58% is assumed as 
the lower limit for the percentage heat-pump 
load, F9(i) (Eq. (12)). Thus, for i = 1 to 3, we 
have that: 

Tout < 7.0 °C ⇒ E*9,10(i) = 838.67 + 58.25× Tout + 
72.63 × Tout

 2  (7) 

Tout ≥ 7.0 °C ⇒ E*9,10(i) = 929.49 + 70.04 ×Tout  - 
0.826 × Tout

 2  (7b) 

E*2,9(i) = E*3,9(i) = 296.22 +15.31 × Tout + 0.436 × 
Tout 

2 (8) 

E2,9(i) > 0 ⇒ E3,9(i) = 0  (9) 

E3,9(i) > 0  ⇒ E2,9(i) = 0 (9b) 

E2,9(i)  > 0  ⇒ 0 ≤  F9(i) = (E2,9(i) / E*2,9(i))  ≤ 1.0
      (10) 

E3,9(i)  > 0 ⇒ 0 ≤ F9(i) = (E3,9(i) / E*3,9(i) ) ≤ 1.0  
 (10b) 

E9,10(i) = (-1.034 + 2.773 × F9(i) - 0.7429 × F9(i)
 2) 

× E*9,10(i)  (11) 

F9(i) > 0 ⇒ 0.58 ≤ F9(i) ≤ 1.0 (12) 

-When a heat pump is driven electrically using 
the electric generator as a synchronous motor 
(E3,4(i) < 0 and E3,9(i) > 0), the corresponding 
engine is shut down and disconnected from its 
coupling with the electric motor and 
compressor. So, for i = 1 to 3, we have that: 

E3,9(i) > 0  ⇒ E3,4(i) < 0 and E1,2(i) = 0 (13) 

-The performance of each auxiliary boiler is 
described in terms of first-law efficiency, η11(j), 
which depends on the amount of thermal 
energy actually supplied with respect to the 
maximum of 2300 kW, given by the partial-
load performance curve of the boilers. A 
minimum value of 30% is assumed as the 
lower limit for the percentage load of each 
boiler when in operation. Thus, for j = 1 to 2: 



η11(j) = E11,12(j) / E0,11(j) (14) 

0 ≤ F11(j) = (E11,12(j) / 2300) ≤ 1.0 (15) 

E11,12(j) > 0 ⇒ 0.30 ≤ F11(j) ≤ 1.0 (16) 

η11(j) = (0.0951 + 1.525×F11(j) - 0.6249 × F11(j) 2) 
× 0.90 (17) 

-For any branching or junction point a balance 
equation can be written such that for point 2(i), 
for i = 1 to 3: 

E1,2(i) = E2,3(i) + E2,9(i) ⇔ 0 ≤ Z2,3(i) = (E2,3(i)/E1,2(i)) 
≤ 1.0 (18) 
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 point 4:  = EE3,4(i)
i=
∑

1

4
4,5  (19) 

point 5: E4,5 = E5,0 + E5,6 (20) 

point 6 (winter): E5,6 = E6,0 (21) 

point 10:  = E∑
=

+
4

1i
9,10(i)1,10(i)13,10 )E + (EE 10,0   

 (22) 

point 12:  = E∑ ∑
=

4

1i

2

1= j
11,12(j)1,12(i) E + E 12,13  (23) 

point 13 (winter): E12,13 = E13,10  (24) 

-Unit 9(4) can only operate as a chiller. 
Therefore, in the heating season, it is: 

Z2,3(4) = E2,3(4) /E1,2(4) > 0 ⇒ Z2,3(4) = 1.0  (25) 

-A constant overall electrical/mechanical 
efficiency of 0.95 is assumed for each electric 
generator/motor. Thus, for i = 1 to 4, we have 
that: 

E3,4(i) = 0.95 × E2,3(i) (26) 

-The electric consumption of all auxiliary 
devices is included in the consumption of its 
corresponding principal equipment. 
-Additional electric energy can be purchased 
from the utility grid at a known unit price, cE, ϑ, 
that includes taxes and depends on the time, ϑ, 
at which it is purchased and the time-
dependent structure of national electric-power 
rates. According to these rates’ structure, the 
hours of a year are divided into four categories, 
varying from ϑ = H1 (peak-load hours) to ϑ = 
H4 (minimum-load hours). If the power 
required is greater than the maximum value 
fixed by contract, E*E, ϑ, at time ϑ, an 
economic penalty, CP, must be added to the 
cost of the electricity. This penalty depends on 
ϑ and is given in Eq. (28). In addition, it is 

assumed that the additional power required 
from the grid must not exceed the value fixed 
by contract by more than 25%, provided that 
this is possible through a proper selection of 
plant configuration. This hypothesis is in 
agreement with the rules of the national 
electric utility. Finally, a tax for consumption 
of self-produced electric energy, tE,SC, must be 
considered. Therefore, the overall cost, CE, of 
purchasing the electric energy (E6,0 - E5,0) from 
the utility grid and internally consuming the 
remaining part E5,0, is as follows: 

(E6,0-E5,0) ≥ 0 and E5,0 ≥ 0 ⇒ CE = cE, ϑ×(E6,0 - 
E5,0)+ tE,SC×E5,0+CP  (27) 

(E6,0-E5,0) ≥ 0 and E5,0 < 0  ⇒  CE = cE, ϑ × (E6,0   
- E5,0) + CP (27b) 

where (E6,0 - E5,0) > E*E, ϑ ⇒ CP = 3 × cP, ϑ × 
(E6,0 - E5,0) (28) 

and (E6,0 - E5,0) ≤ E*E, ϑ ⇒ CP = 0 (28b) 

-When the electric power supplied by the 
system is greater than that required by the 
users, including possible electricity 
consumption by the heat pumps, the power in 
excess can be sold to the public utility at a 
price, pE, ϑ, depending on the time ϑ at which it 
is delivered to the grid. In this case, the 
corresponding cost may become negative, that 
is, it may represent an income, i.e.: 

(E6,0 - E5,0) < 0  ⇒  CE = pE, ϑ × (E6,0 - E5,0) +  
tE,SC × E6,0 (29) 

-A fixed unit cost, cG, is assumed for natural 
gas. This cost does not include unit taxes, tG. 
The latter must consequently be added to cG for 
every kJ of gas consumed, with the exception 
of 2.4 kJ of gas for each kJ of electric energy 
produced by the plant, which are tax free, 
according to a national law for the promotion 
of gas-fired cogeneration power plants. 
Therefore, the overall cost due to gas 
consumption is: 

CG=cG×( ∑ ∑
=

4

1i

2

1= j
0,11(j)0,1(i) E+E )+tG×[

-2.4×E∑ ∑
=

4

1i

2

1= j
0,11(j)0,1(i) E+E 4,5]  (30) 

-The following control variables are used to 
minimize, at each given time, the cost of 
operating the system. In other words, they are 
assumed as the independent decision variables 
in the optimization problem to be solved: 
* percentage load of each engine, F1(i); 
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*  distribution factors at the branching 
point 2(i), defined as:  

Z2,3(i) = E2,3(i) /E1,2(i) (31) 

* percentage load of each heat pump 
when electrically driven, F9(i); 
* percentage load of each auxiliary boiler, 
F11(j). 
When the corresponding gas engine drives a 
heat pump, its load factor F9(i) is not 
independent of Z2,3(i), so it can be regarded as a 
dependent variable. 

3. Optimal Operating Modes 

3.1 Statement of the optimization 
problem  

As stated above, our aim is to minimize the 
instantaneous cost of operating the plant with 
respect to the following independent decision 
variables: 
- F1(i), i = 1 to 4; 
- Z2,3(i), i = 1 to 4; 
- F9(i), i = 1 to 3, when E3,9(i) > 0 (heat pump 
electrically driven); 
- F11(j), j = 1 to 2. 

All these quantities vary in the range from 0 to 
1.0, subject to the limitations stated above. 
Referring to the heating season only, the energy 
needs of the whole complex at a given time will 
be characterized by just two values: 
- the overall power load, E6,0, not including the 
possible power required to electrically drive 
some of the heat pumps; 
- the overall thermal load, E10,0. 
The values of these two variables are obviously 
assigned externally. Therefore, they represent 
two fixed parameters in the optimization. Thus, 
the optimization problem consists of minimizing 
the following objective function for given values 
of E6,0, E10,0, ϑ  and Tout: 

minimize OF = CG + CE = f(E6,0, E10,0, Tout, ϑ, X)  

 (32) 
with respect to: 

X = [F1(1), ...F1(4), Z2,3(1), ...Z2,3(4), F9(1), ... F9(3), 
F1,1(1), F1,1(2)]  (33) 

subject to a set of equality and inequality 
constraints. 
X is the vector of the independent variables. CG 
and CE are the overall instantaneous costs of 
purchasing gas and electricity, respectively, as 
defined in Eqs. (27) to (30). The constraints are 

represented by all the equations and logical 
expressions numbered from 1 to 31. 

3.2  Solving algorithm  

Due to the strong non-linearity of the 
objective function and the constraints, the 
problem cannot be solved analytically. 
Therefore, a heuristic combinatorial method, 
with adaptive range reduction, has been 
selected as the simplest solution algorithm in 
spite of its low rate of convergence (Reklaitis et 
al. 1983, Kuester et al. 1973). In a first step, a 
randomized selection of values of the 
independent variables is generated. In this 
phase, dividing its range of variation using a 
step size of 0.10 discretizes each independent 
variable. This search attempts to differentiate 
the types of configurations able to lead to an 
optimum operating mode. Four different groups 
of configurations are defined: in the first one, 
all heat pumps in operation are driven by a gas 
engine, while in the last one a maximum of 
three heat pumps can be driven electrically. 
Each configuration that is not compatible with 
the energy flows to be supplied and/or with a 
constraint, is rejected. Once the most promising 
group of configurations has been selected, it is 
further investigated in the second step, with a 
step’s size of 0.05. Here, starting from the best 
point selected in the first phase, each variable is 
optimized by random search, holding the others 
fixed. When the last variable has been 
optimized, the second step re-starts from the 
new base point, until the termination criterion is 
met, namely, insufficient improvement in the 
value of the objective function. All tests 
conducted to evaluate the optimization 
algorithm described above have confirmed that 
it is sufficient to individuate the global 
optimum, in spite of the rather simplified 
approach used. Discretization of the 
independent variables with steps smaller than 
0.05 is possible but not of real interest. In fact, 
even if the plant were supplied with a 
sophisticated control system, it would not 
plausibly be possible, to adjust the values of 
these variables with sensitivities better than 
5%. In all tests conducted on a PC with a 333 
MHz processor, time for convergence has 
ranged from a minimum of 10 s to a maximum 
of 20 s. 

3.3  Numerical example 

An example of the results obtained for 
various values of the parameters is provided in 
Figures 2 to 5. Data used for the calculations 
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are summarized in TABLE II. In Figures 2 to 
4, the optimal values of all independent 
variables are shown for given values of E10,0, 
E6,0, Tout, and for each value of ϑ. The values 
assumed by the boiler-related variables are not 
shown, for brevity. Labels 1 to 4 refer to the 
value of index i in the independent variables 
F1(i), Z2,3(i) and F9(i). Starting with Figure 2, it 
should be noted how the optimal operating 
mode varies while passing from peak and high-
load hours (H1 and H2, respectively) to 
medium and minimum-load hours (H3 and H4, 
respectively). In H1 and H2, three gas engines 
operate at full load (F1(i) = 1.0, i = 2 to 4), and 
all of them are fully devoted to the production 
of electric energy (Z2,3(i) = 1.0, i = 2 to 4). A 
part of the power produced is used by heat 
pump 9(1), which is driven electrically (F9(1) = 
0.90). In H3, the production of electricity is not 
advantageous; so two engines are shut down, 
and the others are used to drive their heat 
pumps. Finally, in H4, only engine 1(4) is 
operating, at 50% load, and the electric power 
supplied is used to cover part of the power load 
due to the operation of three heat pumps. 
Similar comments may be made at Figures 3 
and 4 in which greater heating loads are 
assumed, while the value assumed for the 
power load is the same as before (1000 kW). 
Comparing the results of Figures 2, 3 and 4, 
one can observe how, in H1 and H2, the 
fraction of mechanical work devoted to the heat 
pumps increases with the need for heat. For the 
same reason, in H3, one more heat pump - with 
respect to the case shown in Figure 2 - is 
turned on when E10,0 is equal to 5000 and 7000 
kW. For E10,0 = 5000 kW, the additional heat 
pump is operated electrically, whereas, in the 
case of Figure 4, the operation using a gas 
engine is preferred, resulting in a greater 
availability of thermal energy due to heat 

recovery. The same can be said about the 
minimum-load hours, H4. In Figure 5, the 
minimum values of the objective function are 
shown as a function of the heating load, for 
fixed values of the power load and outdoor 
temperature. In the same figure, these values 
are compared with the economic cost calculated 
for a conventional thermal plant, with electric 
energy supplied by the utility grid. As shown in 
Figure 5, economic savings ranging from 40 to 
50% can be achieved. 

It is very important to analyze the 
sensitivity of the objective function to the 
values of all the variables of influence. A very 
small sensitivity would make the solution of the 
optimization problem not very important. In 
contrast, a too-high sensitivity would lead to 
the impossibility of reaching, at any time, the 
optimum plant configuration due to the limited 
accuracy achievable in measurements of all the 
physical variables of influence. In regard to this 
problem, more than 50 cases have been 
investigated, varying the parameters of the 
problem, taking into account for each case five 
configurations in addition to the optimal one. 
The difference in the values of OF ranged from 
2 to more than 50%. The lowest values are 
always observed when the cost of operating the 
plant is low (ϑ = H3 and ϑ = H4). Thus, it can 
be concluded that interesting economic savings 
are achievable with an optimized operation. 
Nonetheless, a slight sensitivity was found with 
respect to the uncertainty of the independent as 
well as the dependent variables. For example, a 
maximum error of 1% was evaluated for the 
optimum value of the objective function for a 
5% error in the value of a control variable, 
holding the others fixed, and a 5% error for a 
10% difference in the efficiency of all the 
engines or heat pumps. 

TABLE II.  DATA FOR THE NUMERICAL EXAMPLE 

 ϑ =H1 ϑ =H2  ϑ =H3  ϑ =H4  
Cost of electric energy, tax included, cE, ϑ (Euro/GJ) 30.3 24.6 18.6 15.0 
Cost of excess power, cP, ϑ (Euro/GJ) 9.1 4.5 1.7 0.44 
Price of electric energy sold to grid, pE, ϑ (Euro/GJ) 14.3 14.3 14.3 6.7 
Tax for internal consumpt. of el. energy, tE,SC (Euro/GJ) 3.4 3.4 3.4 3.4 
Max. power available by contract, E*E, ϑ (kW) 1300 1600 1600 1600 
Cost of natural gas (not including taxes), cG (Euro/GJ) 5.74 5.74 5.74 5.74 
Tax on natural gas consumption, tG  (Euro/GJ) 4.3 4.3 4.3 4.3 
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Figure 2.  Optimal configuration for E6,0 =1000 kW, E10,0 =3000 kW, Tout =7 °C. 
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Figure 3.  Optimal configuration for E6,0 = 1000 kW, E10,0 = 5000 kW, Tout = 7 °C. 
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Figure 4. Optimal configuration for E6,0= 1000 kW, E10,0 = 7000 kW, Tout = 7 °C. 

20

40

60

80

100

120

140

160

3000 4000 5000 6000 7000

Optimized Cogeneration System

Conventional Reference System

O
ve

ra
ll 

O
pe

ra
ti

ng
 C

os
t 

(1
0^

-3
  C

/s
)

Total Heating Load (kW)

H1 H2 H3 H4

 
Figure 5. Minimum value of the operating cost (objective function) and corresponding values for a 

conventional reference system (electric utility grid and gas boilers). E6,0 = 1000 kW, Tout = 7 °C. 
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4. Conclusions 

With reference to a thermal plant recently 
built in Naples, Italy, attention has been paid to 
the problem of defining, for any load condition, 
the operational mode that minimizes the 
economic cost of operating the system. The 
focus of the work presented was the 
optimization problem rather than the detailed 
modeling of the plant. A low-level model of the 
plant, based on the nominal performance curves 
of each component, has been used as a first 
approach. With reference to the heating season, 
some numerical examples have been presented. 
The economic savings achievable through an 
appropriate selection of operating configuration 
have been highlighted. A more complex model 
of the plant will be developed in the future, as 
soon as a monitoring and control system will be 
available, permitting an accurate validation of 
the model itself. The design of such a system is 
presently in progress. In addition to plant-
related information needed to develop a high-
level simulation model, the monitoring system 
will also allow an evaluation of how the energy 
requirements vary during a whole year (load 
profiles). It will then be possible to perform 
analyses and optimizations on a yearly base. 
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Nomenclature 

C = economic cost (Euro/s) 
c = unit cost (Euro/kJ) 
Ej,k(i) = energy flow rate (kW) 
Fk(i) = load factor for unit k(i) 
H1 = peak-load hours  
H2 = high-load hours  
H3 = medium-load hours  
H4 = minimum-load hours  
OF = objective function (Euro/s) 
p =unit price for energy sale (Euro/kJ) 
Tout = outdoor temperature (°C) 
t = unit tax (Euro/kJ) 
X = vector of independent variables 
Zj,k(i) = distribution factor 
η = first-law efficiency 
ϑ = time-related variable 

Superscripts 
* = maximum value 

Further symbols (used as subscripts) 
0 = external environment 
E = electric energy 
G = natural gas 
j(i) = referred to unit j(i) 
m = mechanical 
P = penalty for power in excess 
SC = self-consumed electric energy 
t = thermal 
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