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Abstract 

This paper describes the conceptual development and the prototype implementation of 
an Expert System that deals with the prognosis and diagnosis of a significant subset of 
the operative faults of a cogeneration power plant. The expert system receives both raw 
and organised real-time information on the “instantaneous” (actually, averaged over 60-
seconds intervals) plant operating conditions from a non-intelligent “plant interface” 
consisting of a standard plant data acquisition system and of a specific plant simulation 
software. This solution was adopted in view of possible future applications to industrial 
plants, where a low number of intrusive sensors is desirable: in this case, the simulator 
provides the missing data.  
The Inference Engine operates on the basis of a set of pre-defined rules that seek 
possible “faults chains” expressed as combinations of a pre-assigned number of 
continuously calculated performance indicators, like the air filter output pressure drop, 
the relative compressor, combustion and turbine efficiency decay with respect to their 
respective nameplate values, the compressor enthalpy gain and surge conditions, the 
pollutants concentration in flue gases, the relative pressure losses in both the primary 
and secondary water circuit, the TTD of the Heat Recovery Boiler, etc.: the complete 
list includes 29 indices. The rules establish whether a component’s behaviour is 
degraded by examining both the individual indicators and all of their relevant 
combinations. A graphic window displays a series of icons, one for each indicator, with 
a refresh rate of one real-time minute. The Expert System enables the user to determine 
in detail the instantaneous performance conditions. If performance deterioration is 
detected, it sends a message to the operator and provides some decision support via a 
customised graphic interface.  
The structure of the code is Object Oriented, and each component as well as each flux 
are represented as the instance of a class. Both the reasoning and the controlling actions 
are taken in the same O-O environment.  
The present paper presents the organization of an ES whose prototype version has been 
nicknamed PROMISE, from the Italian acronym for PROgnostic and Intelligent 
Monitoring Expert System, defines its goals and discusses both the results of the tests 
conducted so far and the implications for future applied research in this field. 

Key words: Unmanned Intelligent Process Management, Expert System, diagnosis, 
cogeneration 

 
1.  Introduction 

It is perhaps not unnecessary to begin this 
paper by recalling that the process of designing, 
constructing and operating energy conversion 
systems is a very complex task. If all three steps 

are properly implemented, the plant delivers the 
desired final form of energy in the prescribed 
amount, operates within the admissible emission 
limits and performs efficiently at the budgeted 
cost. If any part of this process breaks down, the 
plant fails to deliver these benefits. The monetary 
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losses originated by such failures are important, 
but even more important is the resource 
destruction that results in the end (because the 
reduced productivity must be “made up” by 
some alternative generation system, so that the 
“resource effectiveness” of the process is 
decreased). In view of this, design-and-
optimisation methods have been developed that 
take into due account variable load conditions 
(Frangopoulos 1990, Munoz and Spakovsky 
2000), availability losses due to scheduled and 
unscheduled maintenance (Frangopoulos 1990) 
and performance degradation due to wear and 
fouling of the equipment (Zaleta-Aguilar et al., 
2001,). When we consider field conditions, 
though, we find that the physical operation of the 
plant is still largely non-automated, in the sense 
that all non-routine control activities are 
performed solely by human operators. The “self-
diagnosis” enacted by current control systems is 
very rudimentary, and in fact they are 
intentionally so designed that the “intelligence” 
in their responses be zero, because the design 
philosophy is that a control system must act fast, 
safely and deterministically, always guided by a 
“linear” logic protocol to avoid possible 
misinterpretations on the part of the human plant 
operator. This does not mean that such control 
systems are technologically primitive: on the 
contrary, they usually conjugate the high 
reliability of fully integrated electronic chips with 
custom-designed mechanical/electrical sensors 
and actuators, and are capable of “reading” the 
instantaneous state of the process and of actively 
operating to keep this state in line with the pre-
set operating point. The starting point of our 
research is that we ought to go beyond the idea 
of “leaving all logically non-linear decisions to 
the human operator”, and extend to this field 
some of the well-proven methods of Artificial 
Intelligence.  

The aim of a “Process Management 
Protocol” is that of maximising instantaneous 
power output, burning less fuel, emitting less 
pollutants, etc., which can be synthetically 
described as constraining the plant to always 
maintain a state corresponding to the “best” 
operating point over a wider range of conditions. 
To facilitate the practical conduction of the plant, 
these protocols are also requested to be capable 
of self-diagnosing their own failures and to 
provide data to support manual process 
diagnoses.  

Intelligent Process Management Tools 
(IPMTs) have been conceived to go two (or 
three) steps further: they are capable of 
generating an intelligent diagnosis of the present 
state of the plant (and therefore are sometimes 
called “Health Monitoring Systems”), but must 

also enact a prognostic action, making intelligent 
estimates of the future state of the plant under the 
foreseen boundary conditions. Finally, they can 
use design, operation and load-scheduling data, 
together with other relevant external information 
(like for instance local weather forecasts or 
projected operating load curves of similar plants 
in the same “fleet”) to provide human operators 
with very valuable information about the 
“optimal” operating curve of the plant in some 
future period T. The practical implementation of 
IPMTs will no doubt require some modifications 
in present design procedures, especially for what 
sizing and physical assembly of equipment are 
concerned. It has been estimated (Melli 2001) 
that by the year 2010, Energy Systems design 
tools will contain hypertext guides to provide 
designers with information in the early phases of 
the design process, sharing both physical and 
logical data with other databases, including 
“older” (i.e., present at the time of this writing!) 
ones. Such tools will include robust analysis 
capabilities for the modelling of the operation of 
the plant to be designed, including control 
system malfunctions and equipment degradation 
and failure. A limited set of analytic tools that 
autonomously analyse design performance is in 
fact presently available (Papalambros and Wilde 
1988). A survey of the existing advanced design 
tools (Privette 1997) shows that the trend is 
clearly that of implementing “Design 
Environments” that are fully integrated with 
CAD systems, that possess analytic capabilities 
to predict thermal performance and mechanical 
and auxiliary systems integrity and safety, and 
can elaborate “raw” data to generate output that 
can be shared with IPMTs.  

Further development of such Design 
Environments is hoped to support all aspects of 
design and provide rapid analysis, design 
suggestions, unambiguous real-time data 
interpretation, and automatic generation of all 
design documents. The IPMTs, on their part, will 
include start-up support, normal operation 
control and diagnosis, maintenance scheduling, 
and extended prognostics.  

The present paper describes the conceptual 
development and the actual field implementation 
of a Diagnostic and Prognostic tool been 
specifically designed for a gas turbine based 
cogeneration system. 

2.  The “Icaro” Cogeneration Plant of Enea-
Casaccia 

The system for which the Expert 
Diagnostic/Prognostic tool was developed is an 
experimental facility on the grounds of the 
ENEA Laboratories of Casaccia, near Roma, 
Italy, and consists of a gas turbine-based 



cogeneration plant called ICARO (Figure 1). 
The turbogas is a GE-Nuovo Pignone PTG-2 
turbogas set with 2 MW of nameplate power, and 

the heat recovery boiler HRB (manufactured by 
CEFLA) feeds the centralised heating system of 
the compound. 

Figure 1.  ICARO power plant layout 
 
The thermal load is 5 MW without afterburner 
and 7 MW with afterburner. The process 
presently operates on natural gas. In the year 
1999/2000, ICARO generated slightly over 4.5 
electrical GWh and recovered a total of about 30 
thermal GJ (Gülen et al., 2000), with a design 
electrical efficiency of 0.36. The actual first- and 
second Law efficiencies of the cogeneration unit, 
averaged over a 12-months period, amounted to: 
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where Qrec is the recovered thermal energy and E 
indicates an exergy flux. In 2), the exergetic 
content of the fuel has been assumed to be equal 
to its lower heating value (45000 kJ/kg), while 
the exergy of the recovered heat has been 
computed using an exergetic factor α =1-
(To/Trec), with To = 288 K and Trec = 416 K. 
ICARO performed satisfactorily for almost two 
years, under a wide range of operating 
conditions, indicating that both the monitoring 
and the control systems were working properly. 

3.  Design Specifications for the Expert System  

The specific objective of our research 
project was that of realising an Expert System 
endowed with both Diagnostics and Prognostic 
capabilities. Though the specifications called for 
an immediate application on the ENEA-ICARO 
cogeneration plant, we decided from the very 
beginning to place this project in a broader 
perspective: our work then is in fact a first step 
towards the implementation of a general IPMT.  

The usual design goal of any type of 
equipment is the minimisation of the resource 
“consumed” to generate the “product” (material 
or immaterial) for which the plant is being 
designed. Restricting our considerations to 
energy conversion processes, we define a plant 
availability factor  

−=
yeartheinhoursofnumbertotal

fullequivalenttotal
PF  

yeartheinhoursofnumbertotal
yearainhoursoperatingload

 

It is apparent that no energy conversion 
plant can operate with a PF equal to 1, due to 
three orders of reasons: 
a) Plant shutdowns due to scheduled 

maintenance; 
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b) Plant shutdowns due to unscheduled 
maintenance; 

c) Plant shutdowns due to sudden failures. 
Notice that we separately account here for 

events of type “b”, that imply the replacement of 
a component for which an early failure has been 
prognosed, and events of type “c”, in which the 
replacement is done after the failure has forced a 
plant shutdown.  
a) Plant shutdowns due to scheduled 

maintenance 
These are usually related to design 

problems. In recent years, the MTBF of TG 
plants has been increased to over 20000 hours 
(for large heavy duty plants, see Anonymous 
Staff Writer 1994), with some critical 
components reaching the 100000 hours.  
b) Plant shutdowns due to unscheduled 

maintenance 
Improvements in this area are mainly due to 

systematic application of maintenance-
scheduling techniques (early replacement, on-
line monitoring) that call for an anticipated 
replacement of sensitive equipment performed 
during scheduled maintenance interventions. 
Design procedures have also brought an 
improvement by taking into account possible 
failures and introducing redundancies, or 
modifying the configuration of critically 
sensitive components. As a result, failures due to 
“wear” of a component have been substantially 
reduced. 
c) Plant shutdowns due to sudden failures. 

This is the type of failures of our concern. 
Strictly speaking, “sudden catastrophic failures” 
rarely happen as such, and when they do, they 
are obviously by definition unforeseeable. But 
extensive field studies have conclusively shown 
that most of the failures we call “sudden” are in 
reality caused by a series of phenomena “local” 
to a component that lead to a small but detectable 
deterioration of its performance. Our efforts may 
thus be redirected to the early detection of these 
“performance degradation”-warning signals. The 
method we propose is indeed an exact 
transposition to the Artificial Intelligence domain 
of the activities performed at present by use of 
“human intelligence”:  a sufficient number of 
critical points of the process are monitored in 
real time, and a specific series of performance 
decay indicators are computed. As soon as one of 
these creeping faults is detected, the operator, 
together with the designer and the plant manager, 
decides whether to execute an immediate 
shutdown to fix the fault, or to wait until the next 
scheduled maintenance intervention. 

4.  The Logic of the Diagnostic/Prognostic System 

4.1.  The knowledge base (KB) 
The KB of the Expert System was designed 

so that it would be exactly and completely 
representative of the universe of information and 
rules within which the human operator (“HO”) 
performs. Its logical format is though somewhat 
distant from its human counterpart, because it is 
known from the theory of Artificial Intelligence 
(Melli 2001, Papalambros and Wilde 1988) that a 
proper “systematisation” (or logical “pre-
conditioning”) is mandatory in the construction 
of a KB. Such a systematisation is performed 
during the Knowledge Acquisition phase and is 
aimed at making the resulting KB as logically 
and accessible as possible. Many of the rules on 
which HO base their decisions are composite or 
fuzzy rules, and therefore this manipulation in 
the early phases of the acquisition is inevitable. 
The following seven meta-principles were 
adopted here (list adapted from Biagetti et al., 
2002): 
a) The number of possible failures is finite, 

and each failure depends at least on a 
specific “fault signature”, i.e., on a unique 
combination of the values of some relevant 
process parameters; 

b) There are no “sudden” failures: a “failure” 
may be logically described as a process of 
migration of the operative point of the 
process towards a specific “fault attractor” 
represented by the corresponding signature; 

c) Each one of these migrations takes place 
over a characteristic time period that is a 
function both of the failing component and 
of the type of failure; 

d) Failure signatures may be non-local, in the 
sense that some of the measurable 
quantities in points of the plant physically 
“far” from the component which is 
experiencing a failure event may display 
abnormal effects as a consequence of that 
failure: in these cases we say that the 
measurables (and the respective indicators) 
are correlated; 

e) A convenient representation of the 
operating point of the process may be based 
on a set of dimensionless indicators, each 
defined as the ratio between the actual 
value of a relevant measurable quantity 
(temperature, pressure, stress level, 
frequency, etc.) and the dynamic design 
value of the same measurable; 

f) Any “failure event” is described by at least 
one chain of well-defined physical causes. 
Only in this sense failures are logically 
deterministic events; 
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g) All failure chains are by force fuzzy. There 
are two reasons that justify this rather 
strong statement. First, the causes are 
necessary but not sufficient for the failure 
to happen in practice (e.g., for a first-row 
statoric blade to fail under thermal fatigue, 
it is necessary that the impinging gas 
temperature exceeds a given limit, but it is 
not true that for a gas temperature slightly 
above this limit the failure is certain). 
Second, even the necessity is by force 
vague (the blade failure may happen even if 
the gas temperature is decidedly lower than 
the design limit); 

h) Some of the above defined causal chains 
may be concurrent: the same failure may 
thus be caused by each one of two (or 
more) chains, or by a certain combination 
of them. 

4.1.1.  Knowledge acquisition and 
classification 

This phase was lengthy and difficult. A 
large number of basic engineering data, not 
provided by the Plant Designer and by the Plant 
Constructor, were necessarily substituted by 
reasonable assumptions.  There was though 
absolutely no problem in the acquisition and 
systematisation of the plant operative log: we 
had complete access to 6 months of full operative 
data, both raw and pre-filtered by the existing 
control system. 

After some initial problems, the custom-
made Process Simulator became an irreplaceable 
source of process data for our experiments. It 
must be stressed that the simulator does not 
“replace” the experimentally acquired data, but 
rather complements them, within the limits of its 
own simulation capabilities. 

The Acquisition/Classification phase 
considered three main sources: 
• For Process Engineering and Mechanical 

Plant Engineering, direct interviews to 
Domain Experts, both internal and external 
to our Research Group; 

• For the definition of the Fault Signatures, 
an accurate study of the relevant technical 
literature; 

• For the actual implementation and the 
organisation of the ES, we followed a 
methodology already defined, refined and 
calibrated in our own previous works 
(Papalambros and Wilde 1988).  
To conveniently classify the acquired 

Knowledge, we followed a “bottom-up” method, 
starting from the specific failure and trying to 
establish a general inductive diagnostic 
procedure. At the risk of oversimplification, it 

can be said that the Health Monitoring proceeds 
according to the following three steps:  
a) Identification of a sufficient number of 

proper performance indicators that can fully 
identify the operating point of the plant 
(Section 4.1.4); 

b) Definition of the fundamental criteria to use 
in the identification of both “sudden“ and 
“creeping” faults (Sections 4.1.4.1 and 
4.1.4.2); 

c) Definition of a complete procedure of fault 
Diagnostics and Prognostics (Sections 4.3 e 
4.4). 

4.1.2.  Knowledge formalisation 
A large database exists on TG monitoring. 

There are international standards (ASME, ISO) 
that define, both for design and contractual 
purposes, the number and type of the 
measurables and the data acquisition procedures. 
We approached the problem though with a 
different angle: we are not interested in detecting 
whether the system is operating within the 
contractually defined “design” or “off-design” 
modes, but in monitoring whether the system’s 
operating point is defined by a signature that 
corresponds to a “correct” or “allowed” state or 
to an “anomalous” or “failure” state. Therefore, 
we must include in our analysis a larger number 
of measurables than those defined -for instance- 
by standard test protocols. There are several 
“lists of measurables” in the technical literature 
(Forsyth and Delaney, 2000, Melli, 2001, Ozgur 
et. al., 2000), and we considered them as one of 
the possible expert sources from which to derive 
our knowledge. Other sources were the systems 
Designer, the Plant Operator, and 
Turbomachinery Experts (Biagetti et al., 2002). 
For contingent reasons, which seem to be of 
rather general character, see (Sriram, 1997), the 
Knowledge Acquisition phase of the project was 
plagued by inconsistencies, logistic problems and 
scarce co-operation on the part of some of the 
Domain Experts, but in the end the formalisation 
of the acquired knowledge was performed as 
described here below. 

4.1.3.  Definition of the rreference conditions 
To construct “performance indicators” that 

measure the derangement from “standard 
operative conditions”, it is necessary to 
accurately and completely define such reference 
conditions. The Plant Operating Manual and the 
Design Specifications provided by the Designer 
and by the Constructor define only a very limited 
set of operating points. We must perforce recur 
to some form of  “logical extrapolation” based on 
an intelligent comparison between the measured 
data and a set of proper theoretical operating 



curves.  If a general “performance function”, 
f(xi), were known, we could use it to describe the 
instantaneous performance of the plant as a 
function of a certain number N of process 
parameters that we call “measurables”: xi (x = p, 
T, m, w etc.; i=1,2…N). Consequently, the 
variation in the performance of the plant 
corresponding to any variation of any subset of 
the measurables would also be immediately 
computable: 
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The problem is that, obviously, the explicit 
form of f is known only for ideal and extremely 
simplified processes, of no practical relevance. 
But in the specific case of a cogeneration plant, 
we are only interested in the electrical (P) and 
the thermal (Q) power outputs. Therefore, an 
empirical approximation to f valid for our 
purposes may be experimentally determined by 
computing the sensitivity of P and Q to 
variations of the process parameters:  
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etc. 
On the basis of a field measurement 

campaign, we can thus re-construct by 
interpolation the response of the plant to 
variations of the operative conditions. It is 
possible to enhance the usefulness of this 
computational process, and to reduce its cost in 
terms of resource intensity, by considering as 
“experimental data” also the results of a properly 
calibrated plant simulator. For ICARO, a 
dynamic simulator was available Biagetti et al. 
(2002) and we treated its output as an equivalent 
source of knowledge to the plant log-sheets, thus 
substantially expanding our database. On the 
basis of the above, we can now describe the 
acquisition phase of the Expert System: 
a) From the plant log-sheets or from the plant 

simulator PROMISE computes the discrete 
partial differentials: 
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where g is an interpolating polynomial and j 
= 1…N.  Recall that we are not interested in 
the exact form of the performance function 
f, but only to its two “components” fP = f1 
and fQ = f2; 

b) PROMISE constructs then a "discrete total 
differential" of f with respect to all relevant 
process parameters: 
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The approximation expressed by equation 9 
is improved if we increase the number N of 
measurables "xi" and decrease the scanned 
experimental interval for each ∆xi. In practical 
applications, one must consider that both the 
conceptual complexity (the interpretation of the 
results) and the computational intensity increase 
as N/∆xi. In the end, we decided to use a limited 
number of indicators (29), and to impose 
relatively small bounds to the variations of each 
indicator: this is clearly a compromise between 
accuracy and computational effort, and is 
strongly application dependent. 

4.1.4.  The proposed indicators and the 
failure detection criteria 

TABLE I contains the list of the faults that 
were included in this version of the ES. The list 
(which constitutes a part of the Knowledge Base) 
was constructed by trial-and-error, working in 
close cooperation with the Plant Manager. 

TABLE II reports a list of the indicators, 
each one defined as a function of process 
measurables: the suffixes refer to the numbering 
of Figure 1. 

Finally, TABLE III lists the adopted 
“failure detection criteria”. The list has been 
compiled on the basis of a proper combination of 
expert advice, experimental evidence and 
analysis of computational results. TABLE III 
represents thus already a meta-level knowledge: 
in fact, it is a simple task to derive from its 
entries an operative flow chart for the Inference 
Engine of the Expert System. Notice that all 
measurables listed in both TABLE II and III are 
based on “primary” quantities, already monitored 
by the existing PLC-based control system. 

The detection of “sudden failures” and of 
“creeping failures” seems to require different 
search strategies: we found though a meta-level 
“logical similarity” between the two operations, 
and could therefore implement a very efficient 
modular procedure (this is an example of a 
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logical embedding procedure, see (Privette 
1997)). 

4.1.4.1.  “Sudden” failures 
In this case, the meta-rule is 

straightforward: if one Fault Signature is detected 

(third column of TABLE III), a message is 
immediately sent to the Operator, together with an 
appropriate warning message and some 
suggestions on the corrective strategy. Notice that 
the Fault Signature 

TABLE I.  LIST OF POSSIBLE FAULTS INCLUDED IN THE KNOWLEDGE BASE 
COMPONENT POSSIBLE FAULT(S) COMPONENT POSSIBLE FAULT(S) 

Filter Mass leaks 
Fouling 

Secondary Heat 
Exchanger 

Fouling 

Compressor Stall 
Choking 
Fouling 

Excessive exit temperature 
Malfunctioning 

Primary Loop Fouling 

Primary 
Combustion 

Chamber 

Fouling 
Excessive pressure losses 
CH4- or H2O valve failure 

Secondary Loop Fouling 

Primary Fuel 
Injector 

Fouling 
Failure 

Main Pump Cavitation 
Malfunctioning 

By-pass Stack Secondary combustion reactions 
Fouling 

Mass leaks 

Heat Recovery 
Boiler 

Fouling 

Boiler Stack Secondary combustion reactions 
Fouling 

Mass leaks 

Main Shaft Near-critical vibration 
frequencies 

Turbine Fouling 
Choking 

Excessive inlet temperature 

Afterburner CH4 injector fouling 

Primary Heat 
Exchanger 

Fouling   

TABLE II.  THE PROPOSED INDICATORS 
AIR FILTER I1 = (p1-p2)/(p1-p2)d
COMPRESSOR I2 = cp23 (T3-T2)/[cp23 (T3-T2)]d
 I3 = ηC/(ηC)d
 I4 = βC/(βC)d = p3/p3d
 I5=  m3/(m3)d
COMBUSTION CHAMBER I6 = ∆pcc/∆(pcc)d = (p3-p4)/(p3-p4)d
 I7 = m8/(m8)d
FUEL INJECTOR I8 = m7/(m7)d
BY-PASS STACK I9 = (xNOX,6)/(xNOX,6)d

 I10 = (xCO,6)/(xCO,6)d
 I11 = (T5-T6)/(T5-T6)d
BOILER MAIN STACK I12 = (xNOX,12)/(xNOX,12)d

 I13 = (xCO,12)/(xCO,12)d
 I14 = (T11-T12)/(T11-T12)d
TURBINE             I15 = ηT/(ηT)d

 I16 = T4/(T4)d
 I17 = m4/(m4)d
ELECTRICAL GENERATOR I18 = ωt/ (ωt)d
AFTERBURNER I19 = (T10-T9)/(T10-T9)d
 I20 = m13/(m13)d
H2O/H2O HEAT EXCHANGER, shell side I21 = (p16-p17)/(p16-p17)d
 I22 = U (T16-T17)/[U (T16-T17)]d
H2O/H2O HEAT EXCHANGER, tube side I23 = U (T23-T22)/[U (T23-T22)]d



 Int.J. Applied Thermodynamics, Vol.5 (No.2) 92

PRIMARY HYDRAULIC LOOP I24 = (p20-p15)/(p20-p15)d
SECONDARY HYDRAULIC LOOP I25 = (p21-p22)/(p21-p22)d
MAIN PUMP I26 = m19/(m19)d
 I27 = (p19-p18)/(p19-p18)d
HEAT RECOVERY BOILER I28 = U (T10-T11)/[U (T10-T11)]d
SHAFT (VIBRATIONS) I29 = |rms(ai)/rms(ai,)d| 

LEGEND FOR TABLE II 
Pressure P Angular velocity (rad/s) ω 
Temperature T Efficiency η 
Mass flow rate M Compression ratio β 
Molar concentration  X Design Conditions ( )d

Heat Exchange Coefficient U Specific Heat cp

Vibration amplitude A Root Mean Square Norm rms 

TABLE III.  FAILURE DETECTION CRITERIA 
(For the interpretation of the attributes “high” and “low”, see Section 4.2 here below) 

COMPONENT TYPE OF FAILURE FAULT SIGNATURE 

Filter Fouling I1 high∪m2 low 

Compressor Fouling (I3 low∪I4 low)∩(I3 low∪I2 high) 

Compressor Malfunctioning I2 high∪Clomp high 

Compressor Choking (I4 low∪I5 high) ∩ (I4 low∪T3 low) 

Compressor Excessive T3 I2 high 

Compressor Stall I4 low∪I5 low 

Combustion Chamber Fouling I6 high 

Combustion Chamber CH4/H2O Valve 
Malfunctioning 

(I7 high∪I8 constant) ∩ (I7 constant∪I8 high) 

CH4 Injector Fouling I8 low 
Electrical Generator Unbalance I18 ≠ 1 

By-pass Stack Emissions I9 > 1 ∪ I10 > 1 
By-pass Stack Heat Losses I11 high 

Boiler Stack Emissions I12 > 1 ∪ I13 > 1 

Boiler Stack Heat Losses I14 high 

Turbine Excessive T4 I16 high 

Turbine Fouling (I15 low∪T5 high) ∩( I15 low∪p5 high)

Turbine Choking I17 high∪p4 high 

Afterburner Fouling I19 low∪I20 low 

Afterburner Losses I19 low 

Primary Heat 
Exchanger 

Fouling I21 high∪I22 low 

Primary Heat 
Exchanger 

Mass leakage I21 high 

Secondary Heat 
Exchanger 

Fouling I23 low 

Primary Loop Fouling I24 high 

Secondary Loop Fouling I25 high 



Main Pump Cavitation I26 low∪I27 low 

Main Pump Malfunctioning (I26 high∪I27 low) ∩(I26 low∪I27 high) 

Heat Recovery Boiler Fouling I28 low 

Shaft (Vibrations) Unbalance, Wear I29,i ≠ 1 

 
is “interpreted” in a fuzzy sense (Section 4.2 
below): a “fault signature” is assumed to exist 
not when the values of the indicators are exactly 
within their pre-assigned respective deterministic 
fault ranges, but when there is a (fuzzy) 
likeliness that they are in that range. 

4.1.4.2.  Creeping failures 
We talk of a “creeping fault” when the 

instantaneous signature Sj is not yet within the 
failure range, but its values show an unequivocal 
tendency to approach that range. In other words, 
if a single indicator varies in time in such a way 
that at a time to+τ in the future its value will 
exceed its threshold value, then PROMISE 
assumes that there is some fuzzy likeliness that at 
time to+τ a fault event will be realised (the same 
applies for a chain consisting of more than one 
indicator). In mathematical terms, if for a certain 

Sj, dt
dS j  appears to be “abnormally growing" 

with respect to a limit value, then a warning is 
displayed. Obviously, we need a higher-level 
knowledge to establish both the limit-value of 
the signature and the “excessive” value of its 
time derivative: in both cases, we again adopt a 
fuzzy approach. 

4.2.  Fuzzy fault detection criteria 
A Diagnostic system cannot operate solely 

in a binary mode: its warning signals cannot be 
based on a rigid threshold value beyond which a 
fault is certain, and below which a fault has zero 
probability. This is a clear case of “vagueness”: 
we need to instruct our ES to consider that a fault 
may happen “somewhat below” the threshold, 
and may not happen “somewhat above” it. Fuzzy 
Logic is a very powerful technique capable of 
dealing with cases in which vague knowledge 
constitutes a substantial portion of the available 
knowledge. There are two considerations that 
constitute a necessary premise to the fuzzy 
procedure we are going to discuss in this Section: 
1) As odd as it may seem, Fault Chains are not 

exactly represented by strict causal 
propositions, like <”IF event a AND event 
b...AND event n” THEN “Fault K = true”>: 
the final event of interest (the fault) has an 
aleatory character that cannot be captured 
by a purely deterministic description and 
cannot be conveniently expressed simply by 
probability theory. An “absolutely certain 

fault event” does not exist a priori, but 
neither does its logical opposite, the 
“absolute certainty of the absence of a fault 
event”. Both come obviously into existence 
when they happen at a certain time t, and 
have therefore an a posteriori probability 
value of either (1, 0) OR (0, 1) respectively: 
but our method has to be able to predict a 
fault before it happens, and from a purely 
probabilistic formulation, the fault 
probability is equal to zero until it suddenly 
“jumps” to one. Fuzzy Logic solves this 
problem by assigning a likelihood to the 
event “fault K = true”, or, to put it into AI 
terms, by assigning non-binary truth-values 
to it. Thus, we say that, in a certain range of 
values taken by indicator Ij, the likelihood 
of “fault K = true” is low (not necessarily 
equal to zero), and that in another range the 
likelihood is high (not necessarily equal to 
one). These considerations are quantified 
by the technique described here below. 

2) Fuzzy truth-values have nothing to do with 
probability. A “fuzzily unlikely” fault may 
well happen, reaching a probability equal to 
1 while its fuzzy truth-value is still below -
say- 0.2. The opposite is true as well: a 
fuzzily likely fault (high fuzzy truth-value) 
may never happen, and maintains a zero 
probability forever.  
With reference to Figure 2, Fuzzy Logic 
assigns a likelihood to the event “fault K = 
true” that grows (in this case, linearly) from 
Ij = 0.95 to Ij = 1.05. This means that the 
higher Ij, the higher is the likelihood of a 
fault event to be realised. At the same time 
and in the same interval of values for Ij, 
there is a decreasing likelihood that the 
fault be NOT realised: the final truth value 
of Fault K is a linear combination (in this 
simple case, the sum) of the two truth 
values for the given measured value of 
indicator j. If the fault signature consists of 
more than one indicator, proper fuzzy 
algebra rules (Sriram 1997) dictate how to 
correctly combine the individual truth-
values to reach a joint (or global) truth-
value for the composite signature. Notice 
that: 

a) The curves expressing the likelihood are 
not necessarily linear: actually, S-shaped 
curves (Figure 3) give better results; 
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b) In the limit case of an extremely steep S-
shaped curve, we recover the binary logic 
formulation (Fault K either TRUE or 
FALSE) 

c) The method is the exact translation of the 
mental process that expert operators follow 
when assessing the “danger” that a fault 
actually may happen. 

4.3.  The diagnostic mode 
This Section describes in detail the 

procedure employed by PROMISE when in 
Diagnostic Mode. The sequel of the operations, 
which also constitutes the code logical flow chart 
(Figure 4), clearly mimics the behaviour of a 
human operator: 
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Figure 2.  Fuzzy truth-values in a critical interval 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  S-shaped curves 
 
a) The ES compares the instantaneously 

measured data with their respective 
“expected values”. The code must be 
exactly instructed on how often to execute 
this comparison (the user must specify a 
desired time interval for the scanning) and 
must have some way of knowing the 
expected value for each indicator: this is 
where a Process Simulator is needed; 

b) If the k-th measurable (or indicator) is 
outside of the specified tolerance range 

with respect to its own expected value, 
PROMISE activates a procedure to check 
the component to which the measurable k is 
directly related; 

c) PROMISE controls whether the detected 
event appears in one of the Fault Signatures 
contained in its KB, or whether the event 
may displace the operating point in such a 
way that at least one of these signatures 
becomes active. To do this, the ES monitors 
a certain number of related relevant 
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low true 

0.5 true 
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parameters Mj, to check whether they are in 
a “dangerous” range and whether their 
gradients are “excessive” with respect to 
their expected values (also contained in the 
KB); 

d) If no possible Fault Chain (Figures 5,6,7) is 
detected, PROMISE informs the human 
operator of the anomalous behaviour of the 
k-th measurable, keeps monitoring the 

relevant component closely for a pre-
assigned period of time, and takes no 
further action; 

e) Otherwise, PROMISE decides what 
remedial action must be undertaken 
(choosing from a list contained in its KB), 
and whether it is possible to wait until the 
next scheduled maintenance intervention. 

 
 
 
 
 
 
 
 

PROMISE 

Compares the measured data with their corresponding “expected values” 

Fault Detection Unit, FDU

Figure 4.  Diagnostic Mode 
 

FILTER 
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Figure 5.  Filter Fault Chain 
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Figure 6.  Turbine Fault Chain 
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Figure 7.  Main Pump Fault Chain 

 
4.4.  The prognostic mode 
The Prognostic activity is performed in 

accordance to a paradigm that is very similar to 
that employed for the Diagnostic mode, thanks to 
the logical embedding strategy adopted in the 
construction of the Expert System. The steps 
taken by PROMISE (Figure 8) are the following: 
f) The ES compares each one of the 

instantaneously measured gradients with its 
corresponding “expected value”. The 
frequency of this operation (how often this 
comparison must be performed) is specified 
by the user; the expected value for the 
gradient of each indicator usually requires 
on-line use of a suitable Process Simulator; 

g) PROMISE projects the value of each 
measurable to time t+∆t, using a proper 
multi-point extrapolation over the last two 
or three time steps. If the k-th projection 
falls outside of its tolerance range at t+∆t, 
PROMISE activates a procedure to check 

the component to which the measurable k is 
directly related; 

h) The ES controls whether the foreseen 
variation leads, within a specified 
“incubation time”, to one of the known 
Fault Signatures (the exact extension of this 
incubation period is prescribed in the KB, 
and is different for different components). 
The code at this point classifies the event 
“trend of the k-th measurable” (or indicator) 
as either “dangerous and possibly related to 
an excessive performance derangement 
trend”, or “indifferent”. In practice, the 
code checks other additional M relevant 
parameters (or indicators) to verify whether 
their values and those of their gradients are 
similar to any of the known fault signatures; 

i) If no Fault Signature is detected, PROMISE 
informs the human operator of the 
anomalous behaviour of the k-th 
measurable, keeps monitoring the relevant 

I27
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yes 

no
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component closely for a pre-assigned 
period of time, and takes no further action;   

j) Otherwise, PROMISE decides what 
remedial action must be undertaken 
(choosing from a list contained in its KB), 
and whether it is possible to wait until the 
next scheduled maintenance intervention.  
It is important to remark that the results of 

each prognostic step are used by the ES to ”re-
assess” its diagnostics at the successive time 

step. The idea is that, if the trend displayed by a 
certain indicator Ik is “ safe”, then the fuzzy 
likelihood of a sudden fault is decreased by a 
heuristic factor depending on that trend. This 
criterion is obviously entirely heuristic, has no 
theoretical justification, and its implementation 
requires some prior knowledge of the probability 
statistics of each fault chain: but its application 
produced encouraging results for all cases 
examined here. 

 
 
 
 
 
 
 
 
 
 
 

PROMISE

Projects the value of each measurable to time t+∆t 

FDU 

Figure 8.  Prognostic Mode 
 

4.5  Training and calibration 
PROMISE was field-tested on the very same 
plant for which it was designed. This testing 
started with a series of calibration runs, in each 
one of which the value of one or more indicators 
were varied manually, so that the ES would 
“read” a time-series of “measured data” which 
we knew would lead to a failure in one or more 
components. The code performed satisfactorily, 
always diagnosing the correct fault, never 
misdiagnosing, and correctly predicting even 
related failures that had not been specified in 
advance. When artificial time-sequences that 
would indicate a slow derangement of one or 
more measurables from their nominal values 
were inserted, PROMISE always predicted the 
correct “creeping fault”, thus performing its 
prognostics correctly. Once the code had been 
thus satisfactorily calibrated, three fault 
conditions were chosen and the respective “logs” 
were submitted to the ES: 
A) Gradual and abnormal increase of the Air 

Filter pressure drop. The increase amounted 
to 30% of the nominal value within two 
successive days (48 hours) with a linear 
behaviour (“ramp”). 

B) Gradual and abnormal increase of the gas 
temperature at Combustion Chamber outlet. 
The increase amounted to about 10% of the 
nominal value within ten minutes, again 
with a linear ramp. 

C) Gradual and abnormal decrease of the Main 
Pump flow rate. The decrease amounted to 
30% of the nominal value within ten 

minutes. A linear behaviour was again 
specified. 
For all of these “faults” there were no 

experimental data: the “artificial” process log 
was created using the Plant Simulator. The 
results are presented in Biagetti et al., 2002 and 
can be synthetically described as follows: 
Fault A) Expected action: starting from nominal 

conditions, the prognosis of “filter fouling” 
ought to be activated as soon as the 
measured value in input reaches 105% of 
the design value. 
Actual action: during the first 2 minutes of 
the run, both diagnosis and prognosis of the 
filter were active. Starting from the third 
minute, PROMISE calculates the 
indicators’ trend using the previous values. 
After 480 minutes the prognosis was 
interrupted, and a “Filter Fouling” warning 
message was activated. 

Fault B) Expected action: starting from nominal 
condition, the prognosis of “turbine 
excessive inlet temperature” ought to be 
activated as soon as the measured value in 
input reaches 105% of the design value. 
Actual action: during the first 2 minutes of 
the run, both diagnosis and prognosis of the 
turbine were active. Starting from the third 
minute, the indicators’ trends were 
computed. After 5 minutes the prognosis 
was interrupted, and a “Turbine Excessive 
Temperature” warning message was 
activated. 
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Fault C) Expected action: starting from nominal 
condition, either the prognosis of “main 
pump cavitation” or that of “primary loop 
fouling” ought to be activated (because 
PROMISE also has access to additional 
information that allows it to distinguish 
between the two failures) as soon as the 
measured value in input decreases below 
70% of the design value. 
Actual action: during the first 2 minutes of 
the run, both diagnosis and prognosis of the 
turbine were active. Starting from the third 
minute, the indicators’ trends were 
computed. After 12 minutes the prognosis 
was interrupted, and a “Main Pump 
Cavitation” warning message was activated.  

4.6.  The next step 
In its present version, PROMISE is not 

capable of planning a restoring intervention, i.e., 
to suggest a list of actions to take to re-establish 
correct plant behaviour. Such a task is very 
complex, represents a higher-level activity, and 
would need a separate ES for its implementation 
(Biagetti et al., 2002).  

Future developments include: 
1. The implementation of a remote monitoring 

and diagnostic system, i.e., of a system with 
the ability to readily access operating data, 
transmit them to a central location, perform 
diagnostic evaluation automatically or 
semi-automatically, report on the operating 
conditions of a component and  offer 
recommendations for attaining a better 
overall performance. This could be 
achieved by an off-site monitor (CLIENT 
supervisor) detecting anomalous conditions 
and communicating the relevant data to on 
on-site monitor (SERVER) that  performs 
the diagnostic and prognostic actions 
(Figure 9).  

2. The addition of a “secondary” KB to 
improve data quality and precision. 

3. The direct connection of the ES with the 
actual data acquisition system. 

4.7.  A note on shell-dependency 
The original version of PROMISE (Biagetti 

et al., 2002) has been implemented under the 
G2® shell, and it is currently available only in 
this format. To extend its portability, a second 
version of the code, implemented in ACCESS® 
will be soon made available. As all AI codes, 
PROMISE has an intrinsically limited 
portability, and its syntactical structure (its 
source-code) is strongly dependent on the 
environment within which it has been developed. 
In fact, the graphical interface is at present hard-
linked to (and only available under) the G2 shell, 
but this fact, though perhaps annoying, is 
inessential, as the appearance of the screen 
displays can be in principle reproduced under 
any commercial operative system. 

5.  Conclusions 

When we undertook the development of a 
Diagnostic & Prognostic tool for Plant Intelligent 
Health Monitoring, we had four goals in sight: 
1. To acquire a sufficient amount of 

Knowledge (in the Design-, Operation- and 
Plant Management Domain) to compile a 
list of design-, operation- and management 
rules an Artificial Plant Manager could use 
to control the plant under a broad operative 
range; 

2. To classify the acquired knowledge, 
possibly clustering it in separate but 
interrelated knowledge areas; 

3. To implement, test and train a prototype ES 
working under the rules defined above; 

4. To field test an α-version of such an ES on 
a proper set of actual plant data. 
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Figure 9.  Remote monitoring system 
 

All goals have been achieved. Though 
satisfactory, these results must be considered as 
preliminary. The Knowledge imparted to the 
code is, in fact, quite elementary, and most, if not 
all, of the complications related to signal 
acquisition and processing have been by-passed 
by proper choice of the operative situations the 
code has been called to work on. No data 
analysis has been included: all data have been 
assumed to be exact, congruent, statistically 
relevant and independent, and physically relevant 
(no aliasing etc.). A real Intelligent Health 
Monitor must possess some capability to screen 
the data and perform a preliminary data 
congruency analysis. This is at present negated 
by the very structure of our ES: it is likely that an 
independent Expert System must be specifically 
implemented for this task, and that its “filtered” 
data must then be analysed by PROMISE. To 
this extent, new (logically and hierarchically 
different) knowledge must be acquired, classified 
and imparted to the Expert Assistant. This is a 
lengthy and complex task, which requires a 
substantial investment of resources for its 
completion. 
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