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Abstract 
Endoreversible engine cycles with two adiabatic and two heat transfer branches are in-
vestigated and optimized for maximum work output. The heat transfer branches are de-
scribed as general polytropic processes which include common standard branches, like 
isotherms, isobars and isometrics, as special cases. The study considers the finite heat 
capacity of the working fluid and the finite-time character of the heat transfer processes, 
determines the optimal allocation of branch times, and derives analytic expressions for 
the maximized work output. The efficiency at maximum work is found to coincide with 
the Curzon-Ahlborn efficiency for endoreversible Carnot engines and does not depend 
on design parameters of the engine if the degree of the polytropic processes is equal in 
both heat transfer branches. 
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1.  Introduction 

After the advent of modern thermodynam-
ics at the beginning of the 19th century, when 
Sadi Carnot discovered his famous efficiency 
expression for the conversion of heat into work, 
classical equilibrium thermodynamics has estab-
lished fundamental bounds for the performance 
of reversible systems. As it became apparent that 
these reversible bounds are rarely approached in 
practice, finite-time thermodynamics was devel-
oped to account for the irreversibilities caused by 
the finite times and rates at which real systems 
operate (see for example Andresen et al. 1984, 
Bejan 1988, Sieniutycz and Salamon 1990, De 
Vos 1992, Berry et al. 1999). 

A common concept in finite-time thermo-
dynamics is the assumption of endoreversibility 
(Rubin 1979, Ondrechen et al. 1983). The as-
sumption of endorversibility helps to reduce the 
complexity of thermodynamic models by com-
posing them of reversible subsystems and confin-
ing the irreversibilities to the interactions, typi-

cally heat transfer, between these subsystems. A 
comprehensive review on the topic may be found 
in Hoffmann et al. (1997). Finite-time thermody-
namics of endoreversible systems has been ap-
plied to heat engines and has yielded far more 
realistic results than classical equilibrium ther-
modynamics. The majority of studies have ana-
lyzed endoreversible cycles with two isothermal 
heat transfer branches. Rozonoer and Tsirlin 
(1983) have proved that this kind of cycles pro-
vide the maximal efficiency at any given work 
output. 

However, there are engine cycles which 
consist of non-isothermal branches. To describe 
the state change of the working fluid during such 
a heat transfer branch one typically uses poly-
tropic processes, since common standard 
branches, such as isotherms, isometrics and iso-
bars, are just special cases of the more general 
polytropic process. A polytropic process is char-
acterised by a working fluid obeying the relation 
pVn = const  for a given polytropic degree n. 
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Such polytropic processes are standard in text-
books on classical thermodynamics (Spalding 
1973). 

Landsberg and Leff (1989) have investi-
gated engine cycles with two adiabatic branches 
and two generalised heat transfer branches, 
which can be interpreted as polytropic branches. 
They considered a quasi-static, reversible engine 
model where heat is transfered between the tem-
perature reservoir and  the working fluid even if 
the temperature differences are infinitesimally 
small. Such a description apparently neglects the 
finite rates of real heat transfer processes. Other 
authors have studied cycles for the case of given 
variable temperatures of the heat reservoirs 
(Gordon and Huleihil 1991) or finite heat capaci-
ties of the heat reservoirs: Ondrechen et al. 
(1983), Kuznetsov et al. (1985), Lee and Kim 
(1991), Yan and Chen (1997). 

In our paper we examine the case where the 
working fluid undergoes polytropic heat transfer 
processes while the temperatures of the two heat 
reservoirs remain constant. Particularly we study 
engine cycles which consist of two polytropic 
and two adiabatic branches. Note that due to the 
endo-reversibility adiabatic branches are always 
isentropic.  The polytropic degree along the two 
polytropic branches can of course be different, 
depending on the physical engine which is mod-
elled. For such cycles the power/work optimal 
temperatures as well as the optimal time alloca-
tion between the branches are determined. 

Interestingly it turns out that from a techni-
cal point a part of our analysis is similar to a 
problem which has previously been treated in a 
paper of Pathria, Nulton and Salamon. They ex-
tended their existing theory (Nulton et al. 1993) 
of finite-time heat engines to cases with non-
isothermal heat transfer branches (Pathria et al. 
1996) considering a sytem with a finite constant 
heat capacity. The similarity is due to the fact 
that along a polytropic branch the effective heat 
capacity remains finite and constant. There are, 
however, important differences between our pre-
sent paper and their study. We focus on the poly-
tropic character of the heat transfer processes 
which means that the effective constant heat ca-
pacity is not a system property, but a process 
property. Thus it can be different on the two 
polytropic branches. Our analysis starts from 
first principles, and additionally shows how to 
improve the performance of an engine by adjust-
ing both, the branch times and allocation of heat 
conductances, in an optimal manner. We finally 
discuss the influence of the polytropic degree 
and heat capacities on the performance of the 
engine. 

2.  Heat transfer in polytropic processes 

Consider a thermodynamic system as de-
picted in Figure 1 where heat is transfered be-
tween a heat reservoir at constant temperature 

 and a working fluid at variable temperature 
T. In case of a Newton-type heat-transfer law, 
the rate of heat flowing into the working fluid is 
given by a linear expression 

T0

)TK(TT),q(T 00 −=  (1) 

where K is the thermal conductance. The work-
ing fluid is assumed to have a constant heat ca-
pacity and to undergo a polytropic process, 
where pVn is constant, and exponent n is a given 
constant during the heat transfer. The polytropic 
degree n can in principle take any value between 
–∞ and +∞. Common standard processes are 
retrieved with n=1 for isothermal, n=0 for iso-
baric, n=±∞ for isometric and n=γ for isentropic 
processes. The property γ=Cp/CV is the ratio of 
the heat capacities Cp and CV of the working 
fluid at constant pressure and constant volume, 
respectively. In practice, a desired polytropic 
process can be achieved by controlling some of 
state variables, for instance the volume or the 
pressure. 

 
Figure 1.  The heat flow q from a heat res-

ervoir at constant temperature To to a working 
fluid at temperature T(t) is governed by a linear 
heat transfer law q=K(To- T(t)) 

If the working fluid is an ideal gas, the equa-
tions of state can be used to derive a relation be-
tween the heat flow q and the temperature 
change dT of the working fluid. This calculation 
is a standard textbook example (e.g. Granet 
1965, Feidt 1996) and leads to the expression 
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( T(t),Tq
C
1

dt
dT(t)

0
n

= )  (2) 

where the polytropic heat capacity is defined as 

1n
γnCC Vn −

−
=  (3) 

for a polytropic process of degree n. Cn is inde-
pendent of the fluid temperature and only de-
pends on the type of process and the heat capaci-
ties of the fluid. Substituting the heat transfer law 
(1) into equation (2) and solving the resulting 
differential equation, we find the fluid tempera-
ture 

[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=

n
100 C

tKexpTTTT(t)  (4) 

as a function of time t for a given initial fluid 
temperature T1:=T(0). The fluid temperature T(t) 
is monotonically approaching the temperature T0 
of the heat reservoir but never reaches T0. This 
implies that the heat flow q does not change sign 
during the polytropic process but is directed ei-
ther from the reservoir to the working fluid or in 
the opposite direction. 

The total amount of heat Q exchanged dur-
ing a polytropic process of duration τ is obtained 
by substituting equation (4) into the heat transfer 
law (1) and integrating over the time t from 0 to 
τ: 
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Using equation (4) it is easily verified that 
the above expression coincides with the formula 
Q=Cn(T2–T1) for the heat transfered in a reversi-
ble polytropic process where Q only depends on 
the initial temperature T1 and final temperature 
T2:=T(τ) of the fluid (Granet 1965). 

An important process variable is the change 
of the fluid entropy during the polytropic proc-
ess. After substituting equation (4) into the ex-
pression for the rate of increase of the fluid's 
entropy,  
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the total entropy change  of the working 
fluid during the process is calculated by integrat-
ing equation (6): 
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The same way as for exchanged heat allows 
one to show that the above formula is equivalent 
to the expression ( 12n TTlnC∆S )=  for the en-
tropy change of an ideal gas in a reversible poly-
tropic process (Granet 1965). 

The special case of an isothermal process is 
obtained in the limit of Cn→∞ where the equa-
tions for the heat (5) and entropy change (7) take 
the form 

( ) ( )

( ) ( .TT
T
τKτ∆S

 , TTτKτQ

10
1

isotherm

10isotherm

−=

−=

)  (8) 

Isentropicprocesses, where Cn→0, are not 
considered here since no heat is transfered during 
such a process. Moreover, adiabats are often as-
sumed to take place instantaneously. 

3.  Work Characteristic of the Engine 

The thermodynamic cycle of the endor-
eversible engine investigated in the following is 
made up of two polytropic and two isentropic 
branches, like the example depicted in Figure 2. 
The goal of this section is to derive the perform-
ance characteristic of the engine, i.e. its work 
output as a function of some independent control 
parameters. 

 
Figure 2.  TS-diagram of an engine cycle 

with two polytropic and two adiabatic branches. 
The working fluid receives heat from a heat res-
ervoir at constant temperature T0H during the 
upper polytrope and changes its temperature 
from T1H to T2H. On the lower polytrope the 
working fluid releases heat to a reservoir at con-
stant temperature T0L and changes its tempera-
ture from T1L to T2L

3.1.  Assumptions and basic relations 
The engine operates between heat reser-

voirs at constant high and low temperatures T0H 
and T0L, respectively. The suffixes H and L indi-
cate if a quantity belongs to the upper or the 
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lower polytropic heat transfer process. During 
the heat transfer processes the entire working 
fluid is in thermal contact with exactly one of the 
two heat reservoirs and the heats  and  
are transferred to the working fluid. The respec-
tive durations of the heat transfer processes are 

 and . A further assumption is that the only 
energy transfer occurs during the polytropes and 
no energy is lost by heat leaks. This is in fact the 
assumption of endoreversibility which allows to 
use simple energy conservation for the work W 
delivered by the engine during one cycle: 

HQ LQ

Hτ Lτ

LH QQW +=  (9) 

Note that the heat  is negative since heat 
flows out of the working fluid. Section 2 pro-
vides expressions for the total amounts of heat 
transfered (see equation (5)): 

LQ
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and for the final temperatures (see equation (4)): 
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of the working fluid in each of the polytropes. 
Here and in the following we are using 
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as convenient abbreviations for the exponential 
functions to shorten the notation. Note that CH 
and CL are the polytropic heat capacities within 
the respective branches. 

The heat transfer processes between the 
reservoirs and the working fluid are irreversible 
while the working fluid itself undergoes reversi-
ble processes.  The total entropy change ∆Scycle 
of the working fluid during a cycle is zero. Since 
the working fluid's entropy remains constant 
during the isentrops, we only need to consider 
the entropy changes ∆SH and ∆SL during the 
polytropes and thus have  

0∆S∆S∆S cycleLH ==+  (13) 

Substituting the entropy expression (7) for 
the appropriate branches into equation (13) and 
taking the exponential yields  
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3.2.  The case of equal heat capacities 
Equation (14) can not easily be treated ana-

lytically if CH and CL have different values since 
its transformations generally produces terms with 

rational exponents which render closed analytical 
solutions impossible. In order to continue the 
calculations we assume identical polytropic heat 
capacities 

L

!

H CC:C ==  (15) 

for both polytropes. Then equation (14) 
simplifies to 
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An important property for the 
characterisation of a heat engine is its efficiency 

HQ
W

=η  (17) 

for which physically sensible values are between 
zero and the Carnot efficiency .TT1 H0L0C −=η  

Altogether we have 5 independent 
equations, (9), (10), (16) and (17) to eliminate 
four variables – two heats and two initial 
temperatures – and derive the desired work 
characteristic. Solving equations (10) for the 
initial temperature gives  

( )H

H
H0H1 e1C

Q
TT

−
−=  (18) 

and an analogous equation for T1L. By 
substituting these expressions into equation (16), 
T1H and T1L are eliminated, and we obtain 

( ) ( )

( ) ( )

1

e1C
Q

T
e1C

Q
T

e1C
Qe

T
e1C

Qe
T

L

L
L0

H

H
H0

L

LL
L0

H

HH
H0

=

⎥
⎦

⎤
⎢
⎣

⎡
−

−⎥
⎦

⎤
⎢
⎣

⎡
−

−

⎥
⎦

⎤
⎢
⎣

⎡
−

−⎥
⎦

⎤
⎢
⎣

⎡
−

−

 (19) 

which is further simplified to 
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Combining equations (9) and (17) yields 
expressions for the heats, 

( )
η
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=
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=
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which are subsequently inserted into equation 
(20) to obtain 
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The first solution of this quadratic equation 
is a trivial one, W=0, while the second solution is 
the desired work characteristic 
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This fundamental relation is a function of 
three independent control parameters which are 
sufficient to describe all possible modes of 
operation of the investigated endoreversible 
engine. Our choice of the control parameters was 
guided by practical considerations. The 
efficiency η of the engine is certainly important. 
The design of the heat engine can be 
characterised by the heat conductances KH and 
KL of the heat exchangers, the branch times τH 
and τL, and the polytropic heat capacity C of the 
working fluid. These design parameters are 
present in the control parameters eH and eL as 
defined in equations (12).  

4.  Optimization for Maximal Work Output. 

The optimality conditions for maximum 
work output can be derived by taking the 
respective derivatives of the work characteristic 
(23). As a consequence of an appropriate choice 
of independent control parameters, the work 
characteristic (23) nicely separates into a term 
with the efficiency η and a term with the design 
parameters eL and eH. A similar factorisation of 
the work characteristic has also been found for 
the optimal endoreversible Carnot heat engine 
(Gordon 1990)). The factorisation immediately 
implies that the efficiency of the optimized heat 
engine is independent of the design parameters in 
eL and eH. 

4.1.  Efficiency at maximum work output 
The work W in equation (23) is zero for 

η=0 and η=1-T0L/T0H and positive for 
intermediate values of η. The optimality 
condition ∂W/∂η=0 for the efficiency η yields a 
quadratic equation 

( ) 011
T
T 2

L0

H0 =−η−  (24) 

which has two solutions of which one solution is 
unphysical because of the restriction η≤ηC. The 
second solution  

H0

L0

T
T

1* −=η  (25) 

is equal to the well-known Chambadal-Novikov-
Curzon-Ahlborn efficiency which originally was 
obtained for endoreversible Carnot engines by 
Chambadal (1958), Novikov (1957), and Curzon 
and Ahlborn (1975). It is quite remarkable that 

the efficiency η* at maximum work output is a 
function of the reservoir temperatures only and 
does not depend on the details of the finite-rate 
heat transfer, i.e. the branch times and the 
conductances. Most important, η* does not 
depend on the polytropic heat capacity. Neither 
the heat capacity of the working fluid nor the 
degree of the polytropic heat transfer processes 
have any influence on the efficiency of the work 
optimized, endoreversible heat engine, if the 
polytropic heat capacities are equal in both 
branches. This does not mean that the maximum 
of the work is the same for different cycles, but it 
means that if both processes of heat input and 
output are the same (cycles with two isotherms 
or two isochors etc.) then the efficiency corre-
sponding to these points of maximum work are 
the same. It is remarkable that the efficiency 
expression (25) has also been found in a study of 
quasi-static engine cycles by Landsberg and Leff 
(1989) where the finite time character of heat 
transfer was neglected. 

4.2.  Optimal allocation of branch times 
This section analyses the influence of the 

second factor in equation (23) on the work 
characteristics of the engine. The goal is to find 
optimal branch times τ*H and τ*L which yield 
maximum work output of the engine in case of a 
given total duration  

LHtot τ+τ=τ  (26) 

of the two heat transfer branches. Then a 
necessary optimality condition of the problem is 
∂W / ∂τH = 0 which leads to  
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where He′  = ∂eH/∂τH and  = ∂eLe′ L/∂τH. The 
derivatives are calculated from the definitions of 

He′  and Le′  as (12): 
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and substituted into (27) which is further 
simplified to 
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The denominators and squared terms on 
both sides of this equation are positive. Taking 
the square root results in 
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Figure 3.  Optimal fraction of the branch time τH/τtot spent on an upper polytropic branch versus the 

fraction of the conductances KH/Ktot on the upper polytrope plotted for different values of the (scaled) poly-
tropic heat capacities C/(τtotKtot) : (a) ∞ (isothermal limit), (b) 0.1, (c) 0.02 and (d) 0 (adiabatic limit) 
 

Similar relations were obtained in a 
different context by Feidt (1987, 1988). 
Unfortunately, the optimality condition (30) is a 
transcendent equation and generally has to be 
solved numerically. 

The heat conductances depend on areas of 
heat transfer surface: Ki = Ui Ai (i ∈ {H, L}). Let 
us assume that UH = UL = U and the total heat 
transfer area is restricted: AH + AL = Atot. Then 
the maximal possible heat conductance at both 
sides of the engine is Ktot= U Atot. 

Figure 3 depicts the optimal branch time 
τH/τtot versus the heat conductance KH /Ktot. The 
curves have been obtained by numerical solving 
(30) for different values of the polytropic heat 
capacity C. The results confirm the intuitive idea 
that a small heat conductance has to be 
compensated by a large branch time and vice 
versa. The curves are strictly monotonic and 
become linear in the unphysical limit of 
isentropic heat transfer branches as can bee seen 
from equation (30) by taking the limit C →0. 
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4.
h

3.  Maximal power versus polytropic 
eat capacity 

The maximum work output at a given 
polytropic heat capacity C can be obtained by 
substituting the optimal values η* from (25) and 

τ*
H from equation (30) and τ*

L = τtot - τ*
H into the 

expression (23) as 
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Let us take a closer look at the case of equal 
thermal conductances KH=KL = Ktot/2. Then it is 
clear from equation (30) that τ*

H = τtot/2 thus that 
the maximum work output (31) simplifies to 
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The limit of isothermal heat transfer is 
derived for C→∞ thus that the exponential 
function in the above equation can be replaced 
by a power series expansion, e* = 1–τtotKtot/(4 C) 
+ Ο(1/C)2 and simplifies to 

( )2L0H0
tottot

isothermal
LKHK

TT
8
K*W −

τ
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

 (33) 



 
Figure 4.  The optimal work output W* is a monotonic increasing function of the (scaled) polytropic 

heat capacity C/(τtotKtot). The dashed line corresponds to the limit of isothermal branches where C → ∞ 
 

Figure 4 shows a plot of the optimal work 
W* versus a scaled polytropic heat capacity for 
the case of equal thermal conductances. The 
graph is independent of the actual values of τtot 
and Ktot. The optimal work W* is a 
monotonically increasing function of the 
polytropic heat capacity C. The work output W* 
vanishes in the limit of adiabatic branches (C → 
0) where the heat transfer ceases. Maximum 
work output is achieved for C →∞. This findings 
are consistent with results obtained elsewhere by 
Rubin (1979), Gutkowicz-Krusin et al. (1978), 
Salamon et al. (1980), Pathria et al. (1996) where 
isothermal heat transfer branches were found to 
yield an optimal performance of endoreversible 
heat engines. Curves for unequal conductances 
qualitatively look the same as in Figure 4 and are 
obtained by numerically solving equation (30) 
and inserting the resulting  into the expression 
(31) for the optimised work output. 

*
Hτ

5.  Cycles with Arbitrary Polytropic Heat 
Capacities 

Engine cycles with arbitrary, non-equal 
polytropic heat capacities CH and CL are not 
easily treated analytically. The above analytical 
calculations have been restricted to cases where 
CH=CL because of the form of the entropy 
balance equation (14). This equation contains 
terms with rational and non-rational powers of 
the polytropic heat capacities. Even though 

analytical solutions might not be feasible one 
still can optimize the power output of the heat 
engine using a numerical scheme. 

5.1.  Numerical optimisation scheme 
The numerical optimization scheme is 

based on equation (9) for the work output,  which 
is the optimisation objective, equation (10) for 
the heat flows, and the entropy balance equation 
(13). The initial parameters of the optimisation 
problem are the temperatures of the heat 
reservoirs T0H and T0L, the sum of branch times 
τtot, the heat conductances KH, KL and the 
polytropic heat capacities CH and CL. The control 
parameters are the temperatures at the begin of 
the upper polytropic branch T1H and the upper 
branch time τH. The objective of the optimisation 
is to adjust the controls such that both the 
physical constraints (namely entropy and energy 
balance) are fulfilled and the work output of the 
engine is maximised. 

A downhill simplex method for multi-
dimensions (Press et al. (1992), pp. 408-412) and 
a root finding bisection method (Press et al. 
(1992), pp. 350-354) are employed to solve the 
optimisation problem.  

5.2.  Results of numerical solution 
Numerical optimisations of the heat engine 

are presented for the case of KH=KL=Ktot/2 and 
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temperatures of the upper and lower heat sources 
of T0H = 1200 K and T0L = 300 K, respectively, 

Figure 5 depicts the optimised work output 
versus the polytropic heat capacities. The work 
output of the optimized cycles is a monotonically 
increasing function of the (positive) value of 
both polytropic heat capacities. The scaled work 
output reaches its maximum value of W*≈ 37.5 
τtot Ktot in the limit of two isothermal branches 
where CH, CL→∞. It remains at a high level for 
CH, CL > 0.1τtotKtot and rapidly decreases if one 
of the polytropic heat capacities is below 
0.1τtotKtot. The more isothermal the heat transfer 
branches the better is the optimised work output. 

A plot of the efficiency versus the 
polytropic heat capacities is displayed in Figure 
6.  Note that compared to Figure 5 the directions 
of the CH/(τtot Ktot) and CL/(τtot Ktot) axis have 
been reversed to give a better display. Figure 6 
shows that the efficiency η* of the maximum 
work cycle is equal to the Curzon-Ahlborn 
efficiency H0L0CA TT1−=η  only if both 
polytropic heat capacities are equal. For all other 
cases the efficiency deviates from the Curzon-
Ahlborn efficiency. This finding is quite 
remarkable since the Curzon-Ahlborn efficiency 
has been reoccuring in numerous publications 
and studies of many different systems, especially 
in cases of linear heat transport laws. Our 
example shows that the Curzon-Ahlborn 
efficiency can not be used as an universal figure 
for heat engines optimised with respect to 
maximum work output although it still can serve 
as a rough estimate of the efficiency for such 
engines. The plot in Figure 5 further suggest that 
one should try to allocate the more isothermal-
like heat transfer branch to the cold reservoir in 
order to improve the efficiency of an engine. 

 
Figure 5.  Optimal scaled work output 

W/(τtotKtot) versus the scaled polytropic heat ca-
pacities CH/(τtotKtot) and CL/(τtotKtot) for the case 

of equal heat conductances KH=KL=Ktot/2 and 
T0H =1200 and TL=300 

 
Figure 6.  Deviation of the efficiency η  

from the Curzon-Ahlborn efficiency ηCA=1-
(TOL/TOH)1/2  versus the scaled polytropic heat 
capacities. All other parameters of the work op-
timized engine are the same as in Figure 5  

6.  Conclusions 

The presented finite-time analysis of 
endoreversible engines with polytropic heat 
transfer branches includes technologically 
important cycles like the Brayton cycle (two 
isobars), the Otto cycle (two isometrics) or the 
Diesel cycle (one isobar, on isometric) as special 
cases. The analysis shows how the times of the 
heat transfer processes need to be allocated to 
maximise the work output of the engine and 
confirms that the work output of the heat engine 
is improved for large values of the polytropic 
heat capacities.  

If the polytropic heat capacities are equal in 
both branches, analytic expressions for the 
maximal work output are found and the 
efficiency of the optimised engines is equal to 
the Curzon-Ahlborn efficiency  and is 
independent of material parameters and details of 
the heat transfer processes. 

CAη

The optimisation in case of unequal 
polytropic heat capacities is performed using a 
numerical scheme. The resulting efficiency 
generally diviates from the Curzon-Ahlborn 
efficiency. The efficiency of the work optimized 
engine is increased beyond the Curzon-Ahlborn 
efficiency if the polytropic heat capacity in the 
lower heat transfer branch is larger than in the 
upper branch.  

The findings of this study provide basic 
principles for the optimal design of generalised 
class of heat engines and may serve as a basis for 
models at higher levels of sophistification. 
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Nomenclature 

A  Heat transfer surface 
C  Heat capacity of the fluid during the poly-

tropic process 
Cp  Heat capacity at constant pressure 
CV  Heat capacity at constant volume 
e  Dimensionless parameter 
K  Thermal conductance 
n  Degree of the polytropic process 
p  Pressure of the fluid 
q  Heat flow 
Q  Total amount of heat transferred during 

the process 
s  The rate of increase of the fluid’s entropy 
t Time 
T(t)  Temperature of the fluid as function of 

time 
T0  Temperature of a source 
T1  Temperature of the fluid at the beginning 

of the process 
T2  Temperature of the fluid at the end  of the 

process 
V  Volume of the fluid 
W  Work output 
γ  Ratio of heat capacities 
∆S  Total change of the fluid’s entropy during 

the process 
η  Efficiency 
τ  Duration of the process 

Subscripts 
H  In contact with the hot source 
L  In contct with the cold source 
tot  Total 
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