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Abstract 
This contribution to the TADEUS series focuses on the features with which a diagnosis 
algorithm must comply in order to be applicable as part of a monitoring system running 
on a power plant, where robustness, ergonomics for the final user, and calculation speed 
play an important role. Some third-party approaches reported to be applied in industry 
are reviewed. These approaches rely mainly on the use of a simulator. Taking into 
account the drawbacks of these methods, a more advantageous algorithm is proposed 
and illustrated through its application to the TADEUS problem.  
The proposed algorithm starts from the two plant data sets to be compared, but is 
reworked to a coherent representation of the plant graph. As diagnosis can be 
understood informally but abstractly as "sharing the difference in an indicator among 
the various differences in the degrees of freedom", both known in advance, the 
algorithm makes use of all the implicit constraints of the graph to obtain a relationship 
between dependent and independent variables that in turn yield the sensitivity of the 
indicator to the degrees of freedom. 
In short, compared to conventional methods, the need for a fine-tuned model is 
removed, the solution is achieved without the need of time-expensive iterative 
processes, and it is exhaustive in the sense that every malfunction is taken into account. 
Keywords: thermoeconomic diagnosis, real-time monitoring, malfunctions. 

 
1.  Introduction 

Surviving in a liberalized market induces 
one to make use of all the available information 
which allows one to win a competitive position. 
In electricity generation, power plant monitoring 
has become very relevant nowadays, a fact which 
is revealed by the emergence of many companies 
as well as software specifically dedicated to this 
issue. Even the ASME has published a guide for 
implementing power plant performance 
monitoring (ASME, 1993). 

Improvement in efficiency is the usual 
target of a monitoring plan (see Figure 1) or, said 
differently, the detection of deviations in 
efficiency and the assessment of the causes of 
such deviations. A shift of some 3% can be 

noticed by operators so that the target of a 
monitoring system should be to respond to a 
much smaller variation in the range of 0.25% to 
0.5% (Gay and MacFarland, 1999). Below this 
limit, instrumentation uncertainty and the 
increasing complexity of second order 
relationships between plant components make 
the necessary efforts useless. 

The result of a diagnosis process should 
give specific recommendations for operational 
changes, maintenance actions, and component 
modifications or redesign or even replacement. 
Even though, an on-line monitoring and 
diagnosis system yields an enormous quantity of 
information, an effective system must convert it 
to an adequate format for the corresponding 
decision-making level (ASME, 1993). 
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Figure 1. Diagnosis problem scheme 
 

 Plant operators need data in real time 
relative to the parameters over which they 
have control 

 The results analyst requires historical data 
both raw as well as parameters of operation 

 Maintenance engineers need information in 
order to settle on the priorities in their 
planning 

 Finally, top management must be provided 
with information that consists of tendencies, 
monthly records, percentage of cost reduc-
tion, and fulfillment of the improvement 
objectives. 

 A state-of-the-art operational diagnosis 
process requires or forms part of an on-line 
monitoring system that feeds it with 
validated and coherent data. Also, it is 
necessary to establish a reference with which 
to compare. The reference state is not unique 
but depends on the scope and use of the 
diagnosis itself: 

 In acceptance tests, the reference will be the 
design guaranteed by the supplier, adapted 
to the environmental conditions of the day of 
the test. 

 In later performance tests, the acceptance 
test can be chosen as the reference or a 
simulator tuned to reproduce it. 

 For a performance test after a programmed 
shutdown for inspection and repairs, the last 

performance test previous to the shutdown 
will be taken as the reference. 

 In the case of evaluating part load operation, 
a previous performance test shall be 
considered as the optimum or a simulator 
with off-design prediction ability. 
As a result of the comparison, the following 

is determined: 
 Deviations in a set of relevant parameters, 

chosen a priori, which  characterize  the  
operation of each component and the whole 
plant, such as outlet gas turbine temperature, 
condenser pressure, pressure upstream of the 
steam turbine regulation valves, or the 
isentropic efficiencies of turbo-machinery. 

 Deviations in defined industrial targets: 
specific product cost, specific consumption, 
production. 
In fact, the problem of diagnosis could be 

described as: determine how much a deviation in 
cost is responsible for each deviation in an 
operational parameter. A purely qualitative 
approach that relies solely on locating the last 
cause of degradation will not be quantifiable in 
economic terms and, thus, not allow one to 
establish an economic optimum if the 
degradation can be corrected by means of 
maintenance actions. 

The parameters on which the diagnosis is 
based should be root causes (causa finalis) in 
some sense. It is clear that a degradation of heat 
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transfer, for instance, only happens by means of 
some physical or chemical process such as a tube 
obstruction or surface fouling, but only direct 
inspection, and not field instruments, can 
precisely determine what is happening. 
Therefore, it is advisable to limit the search to 
root causes that result from  
 Phenomena that are distinguishable with 

existing field instrumentation. 
 The level of detail used to model the 

physical processes present (macroscopic 
thermodynamic models as opposed to 
"microscopic" fluid models, which are much 
more complex to implement and validate) 

 The level of decision making: a warning as 
to the cost of a generic degradation can be 
enough to launch a deeper analysis into 
determining the root cause via a specific 
measurement campaign or onerous instru-
mentation. 

2.  State of the Art of Monitoring Systems 

Acceptance tests of a plant or a component, 
where the owner and the supplier face and 
contrast contractual specifications and reality are 
one of the most usual situations, which is 
implicitly a diagnosis. The method consists of a 
set of curves that correct by some percentage the 
contractual parameters on the design heat 
balance (typically specific consumption and 
power) as a result of positive or negative 
deviations of operational or environmental 
variables. Each modification in a parameter 
modifies by a certain amount the value of the 
contractual parameter, the sum of all of them 
supposedly being the correction to be applied: 
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For some hints on manufacturers’ 
correction curves applied to gas turbines (see 
Maghon et al., 1993). 

If this method is considered as diagnosis, it 
can be stated that it relies on the experience of 
the manufacturer, usually proprietary and not to 
be disclosed, on only environmental deviations 
and not deviations in component efficiencies, 
and on the fact that it is intrinsically 
approximated, i.e. there is no guarantee that the 
sum of deviations equals the total deviation. 
Some improvements can be made. 

In the quest for generality, Saravanamuttoo 
(Saravanamuttoo, 1979; Saravanamuttoo and 
MacIsaac, 1983) proposes a method for the 
diagnosis of gas turbines based on the generic 
behavior of a family of turbines, i.e. based on 
their characteristic parameters relative to the 
design point (flow coefficient, pressure ratio, 
temperature ratio, angular speed). The diagnosis 

obtained is fairly qualitative, and it is outlined in 
"fault matrices" in which symptoms are cross-
checked with the problems that might have 
generated them so that when observing a certain 
situation, the most suitable combination within 
the matrix is obtained. It is necessary to 
previously try all the malfunctions in order to 
anticipate them within the matrix. However 
concurrency of symptoms on malfunctions is not 
solved. 

The requirement for greater accuracy 
requires models that precisely reproduce the 
behavior of the plant for the different scenarios 
and with changing boundary conditions. A 
physical model is implemented in a simulator 
that calculates from an input data set the 
expected state of the plant within the possible 
operating range. This state is corrected from the 
standard to the actual conditions (environmental, 
operational set points). The remaining difference 
with the actual performance must altogether be 
due to degradation in the equipment. In order to 
be able to separate the effect of each degradation, 
it is necessary to pre-calculate the sensitivity to 
each malfunction. For a deeper discussion on 
how to classify and reduce the malfunction 
causes (see Valero et al., 2002c). 

This methodology is useful for analyses 
without tight requirements of response time, 
given the fairly high computational resources 
required. In order to implement methods based 
on simulators to real-time monitoring systems, 
the use of sensitivity coefficients maps of the 
specific consumption to the relevant operational, 
environmental, and equipment parameters has 
been adopted. These maps are elaborated to 
cover the whole operating range on a one-by-one 
basis or with more complex strategies. However, 
when several simultaneous deviations occur, 
accuracy cannot be guaranteed. There is not only 
the restriction of computing capacity, but a sound 
method based on a simulator must in addition 
foresee 
 Tuning the models to the real behavior 
 Arranging a fast method of readjustment of 

the model to be applied after a shutdown of 
inspection and repair or if important drifts 
arise (long term degradation, for instance, of 
the turbine between overhauls). 
Griffin et al. (Griffin and Elmasri, 1997; 

Griffin et al., 1999) report an optimization 
method for a CHP plant that uses maps for the 
various blocks that build the facility. In turn, 
Boyce et al. (1994) propose a similar approach 
based on a matrix of sensitivity coefficients used 
to infer deviations in a combined cycle. 

Pre-simulated data covering the whole 
operating range is stored in a database from 



which the required results are obtained by 
interpolation. Therefore, this set of stored 
simulations is a kind of blind transfer function 
between the input data to the model and the 
results. The case reported in Griffin and Elmasri 
(1997) required almost a thousand simulations to 
generate the data base. This approach seems 
suitable for systems with very modular elements 
or a high level of aggregation so that the 
interrelations between the elements are kept to 
the minimum. The commercial software 
available has traditionally adopted this approach 
(see Dormer, 1999; Gay and MacFarland, 1999; 
Griffin and Elmasri, 1997; and Lopez, 1995) for 
an overview of some proprietary solutions and 
applications). Moreover, the applications 
reported not only lack completeness with respect 
to the malfunction causes, but some of them are 
actually far from being actual root causes. Stack 
temperature, for instance, is more a consequence 
of firing temperature and heat exchanger 
effectiveness. The same can be said of condenser 
backpressure, which depends largely on both 
tube fouling and ambient temperature. In 
contrast, the algorithm presented in this paper 
encourages a rigorous selection of the diagnosis 
variables harmonized with end-user ways of 
thinking. 

Generally speaking, the approach based on 
simulators suffers from a high computational 
cost and the need for fine tuning the model. The 
diagnosis algorithm proposed in the following 
section embeds a good part of the physics of the 
plant, but it does not need to add the 
parameterizations of the individual components. 
On the contrary, the description of the 
components is based on indicators of general 
definition and, therefore, guarantees fast 
portability from one plant to another. On the 
other hand, the great advantage of the simulator 
approaches is that their degrees of freedom are 
necessarily independent of each other, whereas 
in the diagnosis algorithm presented below, some 
relationships between variables called in-
dependent can exist, but are constraints that 
simply have been consciously eliminated for ease 
of implementation or interpretation. 

3. Concept of the Algorithm and Mathema-
tical Formulation 

Starting from a discretization of the plant 
into processes (components, nodes of the graph) 
linked by material or energy flows (streams, 
edges of the graph), every stream is completely 
characterized by its extensive (mass flow, power) 
and several intensive properties, whereas the 
behavior of the component is defined by means 
of certain parameters: typically efficiencies, 
pressure or energy losses, flow coefficients, etc. 

Assume that there is a calculation method, 
different from the diagnosis, that generates a set 
of coherent thermodynamic states for all the 
streams. By coherence we understand that the 
balance of matter, energy, and entropy are 
fulfilled on the graph. Such a method of 
calculation can be a simulator or, of more 
interest for existing power plants, a "performance 
test code" that solves the mass and energy 
balances from field instrumentation. 

The input data for the diagnosis is, 
therefore, two sets of streams of which normally 
one is the reference. From both sets of streams, 
the indicators to be diagnosed (efficiency, heat 
rate, power produced) and the parameters of the 
components can be calculated directly. 
Therefore, variations between operation and the 
reference are known in advance. 

All the aforementioned variables 
(properties of the streams and parameters of 
components) can be classified as dependent or 
independent variables. Typically the 
environmental conditions, set points, and 
component parameters are independent. 

As to the indicator to be diagnosed, it 
corresponds to an analytical formula where some 
dependent variables may appear. The goal of the 
algorithm is to relate variations of the dependent 
variables to variations of the independent ones 
by means of the constraints that must be 
satisfied: mass and energy1 balances, control 
strategy (it limits or determines the value of 
variables), and component parameters. 

The component parameters are variables 
which follow a universal definition in terms of 
the inlet and the outlet. They can also be 
calculated independently of this definition by 
means of functions or correlations based on the 
internal characteristics of the component 
(dimensions, materials, geometry). In order to 
illustrate this abstraction, which will be further 
evoked, consider the heat transfer coefficient U 
of a heat exchanger defined as 

 
ml

QU = 
A ∆T⋅

 (2) 

where Q is the heat transfer, A the surface, and 
ml  the log mean temperature difference. 

However, U can also be obtained as a function of 
a series of heat resistances which depend on the 
kind of exchanger, its precise geometry, and a set 
of transport fluid properties, i.e.  

∆T

                                                 
1 Exergy can be used alternatively, depending on if 
either the power loss or the exergy destruction is the 
independent variable. This election is not fundamental   
for the algorithm, since the starting data is coherent 
with both the First and Second Laws. The selection 
really depends on the quantities the final user prefers 
to see as results. 
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( ) ( )i i i w e e e

1U = 
R Re , Pr + R + R Re , Pr

 (3) 

where Ri, Rw and Re are the heat resistances for 
the inner, wall, and outer heat transfer 
phenomena, all of which are generally functions 
of the geometry, the material, and the Reynolds 
and Prandtl numbers of the fluids. 

With these concepts in place, a diagnosis 
algorithm can be defined. Thus, a given variation 
in the plant indicator f(x) is expressed by 

  (4) 1 0∆f = f ( ) f ( )−1x x
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0

This variation is due to the individual 
variations in the set x determining the process. 
The target of the diagnosis is to find values that 
verify 

  (5) 
( )

( )

causas
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n

f i
i=1

n
*
f,i i

i=1

∆f = I ∆x , 

     = k ∆x⋅

∑

∑

0 1

0 1
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That is, to find the set of impact factors 
kcost,i that approximately match the variation in 
the indicator. Such an indicator is represented by 
the analytic expression  

  (6) f( ) = f( )dep indepx x , x

Expanding this expression for f(x) with a 
Taylor series for small deviations around the 
reference conditions and neglecting second order 
terms, the following expression for the variation 
is obtained: 

 

indepvar
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f                             + ∆x
x

∂ ∂
≈ ⋅ ⋅

∂ ∂

∂
⋅

∂

∑ ∑

∑

indep,i

(7) 

Now, let *
f,i ik = f x∂ ∂ , the impact factor for 

the variation in operating parameter i, and let 
equation (7) be arranged in matrix form as  

  (8) ∆
∆f = ∆  = 

∆
⎡

⋅ ⋅ ⎢
⎣ ⎦

indep*T *T
f f

dep

x
k x k

x
⎤
⎥

Since the set of ndep constraints g(x) = 0 
must be fulfilled, this information will be 
integrated with equation (8) to convert dep  into 
a function of indep . Also, neglecting higher 
order terms, this set of constraints is expanded in 
a Taylor series to yield 

∆x
∆x

 ∆⋅0
0

x
g(x) = g(x ) + J(x) x  (9) 

Vector x1 as well as x0 satisfy the set of 
constraints, because both must be solutions of 

g(x) = 0 in order to be coherent sets of streams. 
Hence, equation (9) is simplified to 

 ∆⋅0xJ(x) x = 0  (10) 

The system of equations obtained is 
( )dep varn  × n  in size and must be completed to be 

solved: 

 
∆

=
∆∆

⎡ ⎤⎡ ⎤ ⎡
⋅ ⎢ ⎥⎢ ⎥ ⎢

⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

0 indepx

indepdep

x 0J(x)
xxU 0

⎤
⎥

→

 (11) 

Once the matrix is inverted, the desired 
relationships are ready to be substituted in 
equation (7) in order to get the variation in the 
indicator in terms of the dependent variables 
only, i.e. 

  (12) 
∆

 = 
∆∆

   = ∆

⎡ ⎤ ⎡ ⎤⎡ ⎤
⋅⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦
→ ⋅

indep

indepdep

dep indep

x 00 U
xx M N

x N x

The method described above is 
approximate, since only first order terms in the 
series expansion are considered. The method 
would be exact if both the variation in the 
indicator as well as the constraints were 
homogenous functions of first order, i.e. linear. 
The equations in thermal systems are generally, 
however, not linear. Thus, the study of the 
sources of numerical inaccuracy and its 
propagation should be covered in a specific 
study. 

Now, based on the method described above, 
the operational parameters on which the 
diagnosis relies are the independent variables of 
the system of constraints g(x) = 0, which will be 
called “free diagnosis variables”. Although these 
variables are independent with respect to the 
system of constraints developed, it can happen 
that some are not in reality independent since the 
constraints that bind them have purposely been 
omitted.  

For instance, consider a heat exchanger in 
which there has been a deviation in the heat 
transfer coefficient. If the operating point has 
varied with a diminution in mass flow, a 
decrease of the heat transfer coefficient is to be 
expected. However, if the free diagnosis variable 
is the heat transfer coefficient, an induced 
malfunction would be indistinguishable from an 
intrinsic one. Solving this dilemma requires 
introducing simple models that include these 
dependencies on the operating point (for 
example, defining a base heat transfer coefficient 
and a correction factor for mass flow). For 
further considerations on the classification of 
malfunctions refer to Toffolo and Lazzaretto 
(2002). 



In any case, a compromise between 
simplicity and the proliferation of models must 
be made. The limit as to an advisable level of 
modeling is guided by  
 The level of aggregation of the physical 

processes: it is advisable to keep com-
ponents equivalent to processes. 

 The level of instrumentation: diagnosis is to 
be based on phenomena observable with the 
field instrumentation 

 The level of modeling of the degradation: 
the more complex the models are, the greater 
the number of adjustment factors required. 

 The level of decision making: information 
on the cost of the generic degradation of a 
piece of equipment can be important enough 
to launch a further analysis that determines 
the root causes. 
Further discussion of the concept of the 

algorithm described above as well as details of 
its implementation can be found in Correas 
(2001). The method has been successfully 
applied to a commercial scale IGCC as reported 
in García-Peña (2000) and García-Peña, Correas, 
and Millán (2001). In the first paper, the scope, 
specifications, and user interfaces of the 
monitoring and diagnosis system are presented, 
whereas in the second, some real working cases 
have been implemented in order to gain a better 
understanding of its functioning. The algorithm 
was also installed recently in a coal power plant, 
but results have not as of yet been published. 

4.  Application to the Tadeus Problem 

The aim of the TADEUS project is to create 
a common background for scientists and 
technicians interested in applying thermo-
economics to the diagnosis of energy systems. In 
fact, TADEUS stands for an acronym of 
Thermoeconomic Approach to the Diagnosis of 
Energy Utilities and Systems. As a basis for 
common discussion, a working case has been 
defined in the framework of this project, called 
the TADEUS problem: a combined cycle 
composed of two gas turbines and one steam 
turbine, where several scenarios are completely 
determined. See Valero et al. (2004, 2002a) for a 
description of the working case, Valero et al. 
(2002b) for a deeper insight on the expected 
malfunctions and the classical Thermoeconomic 
approach, and Valero et al. (2002c) for a 
complete thermodynamic description of 
reference as well as operating cases. 
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The power plant indicator chosen to be 
diagnosed is the global efficiency, namely, 

 
( )

GTA GTB ST

NG, GTA NG, GTB NG

W + W  + W
η = 

m + m LHV⋅
 (13) 

where the subscripts GTA, GTB, ST and NG 
correspond to gas turbine A, gas turbine B, steam 
turbine, and natural gas. Obviously, the Lower 
Heating Value (LHV) of the natural gas is an 
independent variable, which is assumed to be a 
boundary condition. In addition, the power of 
each of the two gas turbines is considered as an 
independent variable2, while the power of the 
steam turbine and the natural gas consumed are 
dependent on the thermodynamic condition of 
the whole system. 

The power plant graph consists of 37 
components (nodes), including the "universe", 
and 79 streams (edges). This yields 215 variables 
just for the streams: 79 extensive (mass flows or 
powers), 67 temperatures and corresponding 
pressures, 5 steam qualities, and 33 gas 
compositions. 

Input data for the streams are the mass 
flows, pressures, and temperatures contained in 
the tables in Valero et al. (2002b). Enthalpies, 
entropies and the rest of the thermodynamic 
properties have been calculated by NASA 
polynomials (JANAF tables) with the reference 
at ambient conditions for gases and the NBS 
(National Bureau of Standards) formulation for 
water. Minor discrepancies with the tabulated 
properties in Valero et al. (2002b) may arise. 

These input data yield a difference in global 
efficiency between reference and operating 
conditions amounting to 

  (14) 
1 0∆η = ∆η ∆η  = 48.0763 48.4972

∆η = 0.4209%
− −

−

This departure is economically very 
representative and it is worthwhile diagnosing its 
causes. 

If the mass and energy balances are 
formulated, 82 constraints appear (note that heat 
exchangers admit two mass balances but 
generators do not). An additional 5 equations 
reflect temperature or pressure identities. As 
many as eighty three stream variables can be 
considered to be independent: ambient condi-
tions, control set points, gas compositions3. 

                                                 
2 Alternatively, mass flows could be independent but 
control strategies for gas turbines usually set the 
power instead of the fuel flow rate, unless operating at 
full load. 
3 The composition of flue gases is actually not 
independent, because stoichometry relates it to mass 
flows and inlet compositions, but its contribution as 
sources of malfunction is negligible in the TADEUS 
problem. 



With respect to the components, eighty one 
parameters can be defined for them: pressure 
drops (30 items), heat exchanger effectiveness 
(13 items), energy losses to the environment (25 
items), turbine flow coefficients (4 items), 
mechanical efficiencies of pumps (3 items), and 
isentropic efficiencies of turbines and 
compressors (6 items), all with the following 
generic definitions: 
Heat exchanger effectiveness (single phase): 

 steam,out steam,in

gas,in steam,in

T T
ε = 

T T
−

−
 (15) 

Heat exchanger effectiveness (evaporator): 

 gas,in gas,out

gas,in steam

T T
ε = 

T T
−

−
 (16) 

Turbine flow coefficient: 

 in
in

in

v
Φ = m

P
 (17) 

Isentropic efficiency of turbines: 

 
( )

in out
s

in out in

h h
η  = 

h h P , s
−

−
 (18) 

Isentropic efficiency of compressors: 

 ( )out in in
s

out in

h P , s h
η  = 

h h
−

−
 (19) 

Mechanical efficiency of pumps: 

 ( )out in
m

elec

m v P P
η  = 

w
⋅ ⋅ −  (20) 

Energy losses are necessary to account for 
the possible non-adiabatic condition of some 
components but are not expected to play a 
significant role as malfunctions. Every parameter 
implies a new equation to add to the system of 
constraints. 

Summarizing the main features of the 
system of constraints, there are 332 variables 
(251 related to streams and 81 defined for 
components) and 168 constraints, which result in 
164 independent variables (the aforementioned 
81 for components and 83 related to the streams). 
The system is hence determined, and allows the 
diagnosing of up to 164 different causes. 

 

Linearization according to equation (7) 
does not incur in any noticeable error. In turn, 
equation (12) (linearization of the constraints and 
matrix inversion) induces an error less than 1% 
in the global efficiency, that is, the sum of the 
individual malfunctions amounts 0.4242% 
instead of 0.4209%. Individual errors on each 
diagnosis variable can be tracked throughout the 
algorithm. 

The results are presented below (see 
TABLE I) sorted by absolute value. In the 
problem definition (Valero et al., 2004, 2002a,b), 
it was stated that three simultaneous mal-
functions were simulated: filter fouling in the 
GTA, increasing flow coefficient and decreasing 
isentropic efficiency in the GTA (equivalent to 
blade erosion), and high pressure superheater 
fouling. The results that have been obtained 
match fairly well with the definition of the 
problem: 
 The three first parameter departures are 

directly related to the deterioration of gas 
turbine A and amount to two thirds of the 
total impact. 

 Filter fouling has also been detected 
although it only ranks 23rd. 

 The effectiveness of the high pressure 
superheater ranks even lower (27th), but in 
any case, it is the first effectiveness of the 
HRSG to be ranked and is far away from the 
next. 

 Other existing malfunctions appear, some-
times not negligible, such as the turbine 
outlet temperatures. 

 The power of the gas turbines has been 
considered as an independent variable, 
although it may also be regarded as an 
induced malfunction. The deviation in 
compressor efficiencies can also be assumed 
to be an induced malfunction. 

 Furthermore, many of the supposed 
malfunctions are actually induced such as 
the so-called “cooling air” (variations in the 
mass flow, temperature, and pressure of the 
cooling air streams). The same is valid for 
the losses, which could even be due to a lack 
of enough decimal places in the input data. 
Nevertheless, these malfunctions amount to 
only 20% of the total impact and do not 
change the overall conclusions. 

It should be emphasized here that all these 
calculations have been made without the use of 
either the original simulator or auxiliary models 
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TABLE I. DIAGNOSIS RESULTS FOR THE TADEUS PROBLEM. 

Diagnosis Variable Operating 
Case 

Reference 
Case Delta  

Impact on 
efficiency 

(%) 
Error 

Turbine A isentropic efficiency 98,0334 98,7117 -0,6783 % -0,1338 0,0035
GT A power output 122599 125000 -2401 kW -0,0895 -0,0075
Turbine A flow coefficient 61,7103 60,1751 1,5353 - -0,0736 0,0019
GTB power output 125989 125000 989 kW 0,0374 0,0018
Compressor A isentropic effic. 82,2984 82,8423 -0,5439 % -0,0318 0,0008
Compressor B isentropic effic. 82,5231 82,8423 -0,3192 % -0,0184 0,0002
Turbine B outlet temperature 506,6 509,8 -3,2 ºC -0,0182 0,0017
Losses compressor B 4636,8651 4483,676 153,1891 kW -0,0151 0,0003
Losses GTB 3993,8694 3842,7882 151,0812 kW -0,0149 0,0003
GTA cooling air 209 17,75 17,4 0,35 kg/s -0,0136 0,0004
Condenser effectiveness 48,6536 48,4563 0,1972 % 0,0130 -0,0006
Losses HPEV A 1673,4978 1418,7388 254,7589 kW -0,0126 0,0006
GTA cooling air 208 16,35 16,03 0,32 kg/s -0,0125 0,0003
Losses HP DRUM A -406,1314 -161,9504 -244,181 kW 0,0121 -0,0005
LPST isentropic efficiency 80,254 80,3674 -0,1135 % -0,0109 0,0005
Losses HP DRUM B -380,8171 -161,9504 -218,8667 kW 0,0108 -0,0005
Turbine B isentropic efficiency 98,6567 98,7117 -0,0551 % -0,0108 0,0001
GTB cooling air 209 17,67 17,4 0,27 kg/s -0,0104 0,0001
Turbine A outlet temperature 511,5 509,8 1,7 ºC 0,0098 -0,0007
GTB cooling air 208 16,27 16,03 0,24 kg/s -0,0093 0,0001
Losses compressor A 4570,5448 4483,676 86,8688 kW -0,0086 0,0003
Losses HPEV B 1580,2612 1418,7388 161,5224 kW -0,0080 0,0004
Filter A pressure drop 0,0111 0,0089 0,0022 bar -0,0059 0,0002
Losses HPSHTR A -2158,6936 -2044,1831 -114,5104 kW 0,0056 -0,0003
GTA cooling air 207 6,707 6,573 0,134 kg/s -0,0052 0,0001
Losses CC B 3429,7129 3508,2799 -78,567 kW 0,0052 -0,0001
HPSHTR A effectiveness 88,7283 89,6809 -0,9526 % -0,0050 0,0002
GTB cooling air 207 6,674 6,573 0,101 kg/s -0,0039 0
Losses CC A 3556,9321 3508,2799 48,6522 kW -0,0032 0,0001
Losses HPSHTR B -2103,2173 -2044,1831 -59,0342 kW 0,0029 -0,0001
Losses generator A 1238 1263 -25 kW 0,0025 -0,0001
Mass flow cooling water 3342,8899 3341,1599 1,73 kg/s 0,0017 -0,0001
HPSHTR B effectiveness 89,3805 89,6809 -0,3004 % -0,0015 0,0001
GTA cooling air 206 1,763 1,727 0,036 kg/s -0,0014 0
Losses GT A 3856,4691 3842,7882 13,6809 kW -0,0014 0
fwt pressure A 6,608 6,535 0,073 kg/s -0,0011 0,0001
Losses LPSHTR B 0,9849 36,3123 -35,3274 kW 0,0011 -0,0001
GTB cooling air 206 1,754 1,727 0,027 kg/s -0,0010 0
Losses generator B 1273 1263 10 kW -0,0010 0
fwt pressure A 6,608 6,535 0,073 kg/s -0,0010 0
HPEVB effectiveness 95,47 95,5332 -0,0632 % -0,0009 0
Losses LP DRUM A 103,2485 42,5678 60,6807 kW -0,0009 0
HP pressure A 64,77 63,94 0,83 bar -0,0008 0
HP Pressure A 64,77 63,94 0,83 bar -0,0007 0
HPST isentropic efficiency 85,8237 85,8134 0,0104 % 0,0007 0
Losses ST generator 1231,07 1225,9 5,17 kW -0,0007 0
Losses COND 51,2445 -3,5416 54,7862 kW 0,0007 0
Losses HPECO B 286,2505 237,6574 48,5931 kW -0,0006 0
LP Evap B effectiveness 74,359 74,0933 0,2657 % 0,0005 0
HPST flow coefficient 3,4801 3,4778 0,0023 - -0,0004 0
HP pump A efficiency 79,6844 79,0395 0,645 % 0,0004 0
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Diagnosis Variable Operating 
Case 

Reference 
Case Delta  

Impact on 
efficiency 

(%) 
Error 

Losses LPSHTR A 45,62 36,3123 9,3076 kW -0,0003 0
LP Evap A effectiveness 73,9583 74,0933 -0,1349 % -0,0003 0
Losses LPEV B 21,9561 39,6581 -17,702 kW 0,0003 0
HPEVA effectiveness 95,5481 95,5332 0,0149 % 0,0002 0
Turbine B flow coefficient 60,1788 60,1751 0,0038 - -0,0002 0
HPSHTR B dp steam 1,63 1,61 0,02 bar -0,0002 0
HPSHTR A dp steam 1,63 1,61 0,02 bar -0,0002 0
FWT pressure 7,867 7,779 0,088 bar -0,0002 0
HPECO A effectiveness 95,7914 95,7798 0,0116 % 0,0001 0
HPECO B effectiveness 95,7914 95,7798 0,0116 % 0,0001 0
 
5.  Conclusions 

This paper outlines the features that a 
diagnosis algorithm must exhibit in order to be 
applied in a power plant monitoring system that 
usually has real-time functionality. Iterative 
processes for solving non-linear constraints, such 
those which simulators implement, require large 
computational resources and are prone to 
convergence failures. The use of pre-calculated 
maps may speed up the on-line calculations but 
always with a loss of accuracy and a need for 
retuning during the life of the monitoring system. 
In addition, results must be generated in terms 
with which the end-users are familiar, while 
diagnosis variables should be rigorously chosen 
as actual free variables. 

The algorithm proposed above complies 
with all these requirements because it relies on 
the very general constraints of the system 
without the need for more detailed models and 
uses directly measurable parameters as well as 
component parameters of universal definition as 
diagnosis variables. Also, since a system of 
equations must be solved, the algebraic 
determination of this system implies that every 
free variable has been taken into account, and 
hence the algorithm is exhaustive. 

Some additional ancillary benefits which 
stem from the nature of the proposed algorithm 
are the ease of portability or the rapidity of 
implementation through automatic code 
generation. 

Nevertheless this method does not 
implicitly solve the problem of discerning 
between induced and intrinsic malfunctions, nor 
can it determine the uncertainty propagation if 
the constraints are badly conditioned or the input 
data sets fail to be completely coherent. Thus, the 
quality of the diagnosis results will, of course, 
depend on the quality of the implementation. 

The application to the TADEUS problem 
has shown a very high accuracy for the 

application of the proposed diagnosis algorithm. 
Furthermore, it is important to note that the 
calculations have not made use of any detailed 
models, but only of very general constraints: 
mass and energy balances and definitions of the 
component parameters. This method has already 
been successfully implemented on an industrial 
scale for an IGCC plant and a coal power plant. 

Nomenclature 

f target function of the diagnosis 
If impact on the target function 

*
f, ik  impact factor on the target function 

x variable or parameter of the system 

Matrices and vectors 
g constraint of the system  
J Jacobian matrix of the constraints 

*
fk  vector of impact factors 

M, N auxiliary matrices 
U identity matrix 
x vector of system variables or parameters 

Greek 

ε heat exchanger effectiveness 
φ flow coefficient 
η efficiency 
ηm mechanical efficiency 
ηs isentropic efficiency 

Subscripts 
dep dependent variable 
in inlet of a component 
indep  independent or free diagnosis variable 
out outlet of a component 
var number of dependent and independent 
 variables  

Superscripts 
0 reference case 
1 operating case 
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